当前位置: 首页 SCI期刊 SCIE期刊 计算机科学 中科院2区 JCRQ1 期刊介绍(非官网)
Data Science And Engineering

Data Science And EngineeringSCIE

国际简称:Data Science And Engineering  参考译名:数据科学与工程

  • 中科院分区

    2区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:2364-1185
E-ISSN:2364-1541
是否OA:开放
是否预警:否
TOP期刊:是
出版信息:
出版地区:Germany
出版商:Springer Nature
出版语言:English
出版周期:4 issues per year
研究方向:Engineering-Computational Mechanics
评价信息:
影响因子:5.1
CiteScore指数:10.4
SJR指数:1.836
SNIP指数:3.246
发文数据:
Gold OA文章占比:100.00%
研究类文章占比:90.91%
年发文量:33
自引率:0.0238...
开源占比:0.988
出版撤稿占比:
出版国人文章占比:0
OA被引用占比:
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 常见问题

英文简介Data Science And Engineering期刊介绍

The journal of Data Science and Engineering (DSE) responds to the remarkable change in the focus of information technology development from CPU-intensive computation to data-intensive computation, where the effective application of data, especially big data, becomes vital. The emerging discipline data science and engineering, an interdisciplinary field integrating theories and methods from computer science, statistics, information science, and other fields, focuses on the foundations and engineering of efficient and effective techniques and systems for data collection and management, for data integration and correlation, for information and knowledge extraction from massive data sets, and for data use in different application domains. Focusing on the theoretical background and advanced engineering approaches, DSE aims to offer a prime forum for researchers, professionals, and industrial practitioners to share their knowledge in this rapidly growing area.

It provides in-depth coverage of the latest advances in the closely related fields of data science and data engineering. More specifically, DSE covers four areas: (i) the data itself, i.e., the nature and quality of the data, especially big data; (ii) the principles of information extraction from data, especially big data; (iii) the theory behind data-intensive computing; and (iv) the techniques and systems used to analyze and manage big data. DSE welcomes papers that explore the above subjects. Specific topics include, but are not limited to: (a) the nature and quality of data, (b) the computational complexity of data-intensive computing,(c) new methods for the design and analysis of the algorithms for solving problems with big data input,(d) collection and integration of data collected from internet and sensing devises or sensor networks, (e) representation, modeling, and visualization of  big data,(f)  storage, transmission, and management of big data,(g) methods and algorithms of  data intensive computing, such asmining big data,online analysis processing of big data,big data-based machine learning, big data based decision-making, statistical computation of big data, graph-theoretic computation of big data, linear algebraic computation of big data, and  big data-based optimization. (h) hardware systems and software systems for data-intensive computing, (i) data security, privacy, and trust, and(j) novel applications of big data.

期刊简介Data Science And Engineering期刊介绍

《Data Science And Engineering》是一本计算机科学优秀杂志。致力于发表原创科学研究结果,并为计算机科学各个领域的原创研究提供一个展示平台,以促进计算机科学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道计算机科学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Data Science And Engineering Cite Score数据

  • CiteScore:10.4
  • SJR:1.836
  • SNIP:3.246
学科类别 分区 排名 百分位
大类:Computer Science 小类:Computer Science Applications Q1 92 / 817

88%

大类:Computer Science 小类:Software Q1 49 / 407

88%

大类:Computer Science 小类:Information Systems Q1 51 / 394

87%

大类:Computer Science 小类:Artificial Intelligence Q1 58 / 350

83%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Data Science And Engineering 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
计算机科学 2区 COMPUTER SCIENCE, INFORMATION SYSTEMS 计算机:信息系统 COMPUTER SCIENCE, THEORY & METHODS 计算机:理论方法 2区 2区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Data Science And Engineering JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:COMPUTER SCIENCE, INFORMATION SYSTEMS ESCI Q1 43 / 249

82.9%

学科:COMPUTER SCIENCE, THEORY & METHODS ESCI Q1 19 / 143

87.1%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:COMPUTER SCIENCE, INFORMATION SYSTEMS ESCI Q2 72 / 251

71.51%

学科:COMPUTER SCIENCE, THEORY & METHODS ESCI Q1 24 / 143

83.57%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

投稿常见问题