当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院4区 JCRQ2 期刊介绍(非官网)
Communications On Applied Mathematics And Computation

Communications On Applied Mathematics And ComputationSCIE

国际简称:COM APPL MATH COMPUT  参考译名:应用数学与计算通讯

  • 中科院分区

    4区

  • CiteScore分区

    Q2

  • JCR分区

    Q2

基本信息:
ISSN:2096-6385
E-ISSN:2661-8893
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:PEOPLES R CHINA
出版商:Springer Nature
出版语言:None
研究方向:MATHEMATICS, APPLIED
评价信息:
影响因子:1.4
CiteScore指数:2.5
SJR指数:0.662
SNIP指数:0.985
发文数据:
Gold OA文章占比:17.41%
研究类文章占比:94.95%
年发文量:99
自引率:0.0625
开源占比:0.1556
出版撤稿占比:
出版国人文章占比:0
OA被引用占比:
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Communications On Applied Mathematics And Computation期刊介绍

Communications on Applied Mathematics and Computation is an international journal dedicated to the fields of applied mathematics and computational mathematics. It aims to reflect the latest research findings in these two areas and promote academic exchange among scholars worldwide. This journal provides a platform for researchers to share their innovative ideas and breakthrough discoveries in fields such as applied analysis, mathematical modeling, numerical analysis, and scientific computing.

The high-quality academic papers and reviews published in journals not only cover theoretical research, but also practical application cases, demonstrating how mathematical tools and computational methods can be applied to solve real-world problems. These papers and reviews typically undergo a rigorous peer review process to ensure the academic quality and innovation of the published content. Encourage interdisciplinary research and support collaboration between mathematicians, computer scientists, engineers, and experts in other fields. This interdisciplinary collaboration helps to promote the application of mathematical theories and computational techniques in a wider range of fields, such as physics, biology, economics, and engineering.

期刊简介Communications On Applied Mathematics And Computation期刊介绍

《Communications On Applied Mathematics And Computation》是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Communications On Applied Mathematics And Computation Cite Score数据

  • CiteScore:2.5
  • SJR:0.662
  • SNIP:0.985
学科类别 分区 排名 百分位
大类:Mathematics 小类:Applied Mathematics Q2 278 / 635

56%

大类:Mathematics 小类:Computational Mathematics Q2 89 / 189

53%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Communications On Applied Mathematics And Computation 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 4区 MATHEMATICS, APPLIED 应用数学 4区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Communications On Applied Mathematics And Computation JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS, APPLIED ESCI Q2 102 / 331

69.3%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS, APPLIED ESCI Q2 125 / 331

62.39%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

本刊中国学者近年发表论文

  • 1、High-Order Bound-Preserving Finite Difference Methods for Multispecies and Multireaction Detonations

    Author: Du, Jie; Yang, Yang

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 31-63. DOI: 10.1007/s42967-020-00117-y

  • 2、New Finite Difference Mapped WENO Schemes with Increasingly High Order of Accuracy

    Author: Zhu, Jun; Qiu, Jianxian

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 64-96. DOI: 10.1007/s42967-021-00122-9

  • 3、A New Sixth-Order WENO Scheme for Solving Hyperbolic Conservation Laws

    Author: Zhao, Kunlei; Du, Yulong; Li Yuan

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 3-30. DOI: 10.1007/s42967-020-00112-3

  • 4、High-Order Semi-Lagrangian WENO Schemes Based on Non-polynomial Space for the Vlasov Equation

    Author: Christlieb, Andrew; Link, Matthew; Yang, Hyoseon; Chang, Ruimeng

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 116-142. DOI: 10.1007/s42967-021-00150-5

  • 5、A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries

    Author: Meng, Xucheng; Gu, Yaguang; Hu, Guanghui

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 315-342. DOI: 10.1007/s42967-021-00163-0

  • 6、Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes

    Author: Wang, Bao-Shan; Don, Wai Sun; Kurganov, Alexander; Liu, Yongle

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 295-314. DOI: 10.1007/s42967-021-00161-2

  • 7、A New Hybrid WENO Scheme with the High-Frequency Region for Hyperbolic Conservation Laws

    Author: Wan, Yifei; Xia, Yinhua

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 199-234. DOI: 10.1007/s42967-021-00153-2

  • 8、High Order Finite Difference WENO Methods for Shallow Water Equations on Curvilinear Meshes

    Author: Liu, Zepeng; Jiang, Yan; Zhang, Mengping; Liu, Qingyuan

    Journal: COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION. 2023; Vol. 5, Issue 1, pp. 485-528. DOI: 10.1007/s42967-021-00183-w

投稿常见问题