当前位置: 首页 SCI期刊 SCIE期刊 医学 中科院2区 JCRQ1 期刊介绍(非官网)
Insights Into Imaging

Insights Into ImagingSCIE

国际简称:INSIGHTS IMAGING  参考译名:洞察成像

  • 中科院分区

    2区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:1869-4101
E-ISSN:1869-4101
是否OA:开放
是否预警:否
TOP期刊:是
出版信息:
出版地区:GERMANY
出版商:Springer Berlin Heidelberg
出版语言:English
出版周期:1 issue/year
出版年份:2010
研究方向:Medicine-Radiology, Nuclear Medicine and Imaging
评价信息:
影响因子:4.1
CiteScore指数:7.3
SJR指数:1.24
SNIP指数:2.142
发文数据:
Gold OA文章占比:99.66%
研究类文章占比:77.40%
年发文量:208
自引率:0.0425...
开源占比:0.996
出版撤稿占比:0
出版国人文章占比:0.02
OA被引用占比:1
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Insights Into Imaging期刊介绍

Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!

I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.

Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.

A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.

I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.

The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.

The journal went open access in 2012, which means that all articles published since then are freely available online.

期刊简介Insights Into Imaging期刊介绍

《Insights Into Imaging》自2010出版以来,是一本医学优秀杂志。致力于发表原创科学研究结果,并为医学各个领域的原创研究提供一个展示平台,以促进医学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道医学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

  • 预计审稿时间: 13 Weeks
  • 国际TOP期刊
  • 医学
  • RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
  • SCIE
  • 中科院2区
  • 非预警

Cite Score数据(2024年最新版)Insights Into Imaging Cite Score数据

  • CiteScore:7.3
  • SJR:1.24
  • SNIP:2.142
学科类别 分区 排名 百分位
大类:Medicine 小类:Radiology, Nuclear Medicine and Imaging Q1 42 / 333

87%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Insights Into Imaging 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
医学 2区 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 核医学 2区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Insights Into Imaging JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING SCIE Q1 30 / 204

85.5%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING SCIE Q1 30 / 204

85.54%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • Italy65
  • USA64
  • England38
  • Austria34
  • Spain32
  • France29
  • Netherlands28
  • Switzerland21
  • GERMANY (FED REP GER)20
  • Belgium19

本刊中国学者近年发表论文

  • 1、Machine learning combined with radiomics and deep learning features extracted from CT images: a novel AI model to distinguish benign from malignant ovarian tumors

    Author: Jan, Ya-Ting; Tsai, Pei-Shan; Huang, Wen-Hui; Chou, Ling-Ying; Huang, Shih-Chieh; Wang, Jing-Zhe; Lu, Pei-Hsuan; Lin, Dao-Chen; Yen, Chun-Sheng; Teng, Ju-Ping; Mok, Greta S. P.; Shih, Cheng-Ting; Wu, Tung-Hsin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-023-01412-x

  • 2、Multi-channel deep learning model-based myocardial spatial-temporal morphology feature on cardiac MRI cine images diagnoses the cause of LVH

    Author: Diao, Kaiyue; Liang, Hong-qing; Yin, Hong-kun; Yuan, Ming-jing; Gu, Min; Yu, Peng-xin; He, Sen; Sun, Jiayu; Song, Bin; Li, Kang; He, Yong

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-023-01401-0

  • 3、CT and MRI features of hepatic epithelioid haemangioendothelioma: a multi-institutional retrospective analysis of 15 cases and a literature review

    Author: Luo, Lianmei; Cai, Zeyu; Zeng, Sihui; Wang, Lizhu; Kang, Zhuang; Yang, Ning; Zhang, Yaqin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01344-y

  • 4、Predicting histologic differentiation of solitary hepatocellular carcinoma up to 5 cm on gadoxetate disodium-enhanced MRI

    Author: Yang, Ting; Wei, Hong; Wu, Yuanan; Qin, Yun; Chen, Jie; Jiang, Hanyu; Song, Bin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01354-w

  • 5、Predictive models and early postoperative recurrence evaluation for hepatocellular carcinoma based on gadoxetic acid-enhanced MR imaging

    Author: Li, Qian; Wei, Yi; Zhang, Tong; Che, Feng; Yao, Shan; Wang, Cong; Shi, Dandan; Tang, Hehan; Song, Bin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01359-5

  • 6、Impact of glycemic control on biventricular function in patients with type 2 diabetes mellitus: a cardiac magnetic resonance tissue tracking study

    Author: Zhu, Jing; Li, Wenjia; Chen, Fang; Xie, Zhen; Zhuo, Kaimin; Huang, Ruijue

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01357-7

  • 7、Deep learning and radiomic feature-based blending ensemble classifier for malignancy risk prediction in cystic renal lesions

    Author: He, Quan-Hao; Feng, Jia-Jun; Lv, Fa-Jin; Jiang, Qing; Xiao, Ming-Zhao

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01349-7

  • 8、A feasibility study of reduced full-of-view synthetic high-b-value diffusion-weighted imaging in uterine tumors

    Author: Tang, Qian; Zhou, Qiqi; Chen, Wen; Sang, Ling; Xing, Yu; Liu, Chao; Wang, Kejun; Liu, Weiyin Vivian; Xu, Lin

    Journal: INSIGHTS INTO IMAGING. 2023; Vol. 14, Issue 1, pp. -. DOI: 10.1186/s13244-022-01350-0

投稿常见问题

通讯方式:ONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, United States, NY, 10004。