当前位置: 首页 SCI期刊 SCIE期刊 计算机科学 中科院3区 JCRQ2 期刊介绍(非官网)
International Journal Of Machine Learning And Cybernetics

International Journal Of Machine Learning And CyberneticsSCIE

国际简称:INT J MACH LEARN CYB  参考译名:国际机器学习与控制论杂志

  • 中科院分区

    3区

  • CiteScore分区

    Q1

  • JCR分区

    Q2

基本信息:
ISSN:1868-8071
E-ISSN:1868-808X
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:GERMANY
出版商:Springer Berlin Heidelberg
出版语言:English
出版周期:12 issues per year
出版年份:2010
研究方向:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
评价信息:
影响因子:3.1
H-index:30
CiteScore指数:7.9
SJR指数:0.988
SNIP指数:1.217
发文数据:
Gold OA文章占比:3.75%
研究类文章占比:99.66%
年发文量:295
自引率:0.1071...
开源占比:0.037
出版撤稿占比:0
出版国人文章占比:0.56
OA被引用占比:0.0215...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介International Journal Of Machine Learning And Cybernetics期刊介绍

Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.

The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.

Key research areas to be covered by the journal include:

Machine Learning for modeling interactions between systems

Pattern Recognition technology to support discovery of system-environment interaction

Control of system-environment interactions

Biochemical interaction in biological and biologically-inspired systems

Learning for improvement of communication schemes between systems

期刊简介International Journal Of Machine Learning And Cybernetics期刊介绍

《International Journal Of Machine Learning And Cybernetics》自2010出版以来,是一本计算机科学优秀杂志。致力于发表原创科学研究结果,并为计算机科学各个领域的原创研究提供一个展示平台,以促进计算机科学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道计算机科学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)International Journal Of Machine Learning And Cybernetics Cite Score数据

  • CiteScore:7.9
  • SJR:0.988
  • SNIP:1.217
学科类别 分区 排名 百分位
大类:Computer Science 小类:Computer Vision and Pattern Recognition Q1 21 / 106

80%

大类:Computer Science 小类:Software Q1 85 / 407

79%

大类:Computer Science 小类:Artificial Intelligence Q1 84 / 350

76%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区International Journal Of Machine Learning And Cybernetics 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
计算机科学 3区 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能 3区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区International Journal Of Machine Learning And Cybernetics JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SCIE Q2 86 / 197

56.6%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SCIE Q2 84 / 198

57.83%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • CHINA MAINLAND467
  • India63
  • Iran39
  • Australia27
  • USA27
  • Canada17
  • England17
  • Turkey14
  • Saudi Arabia12
  • Taiwan12

本刊中国学者近年发表论文

  • 1、Learning relations in human-like style for few-shot fine-grained image classification

    Author: Li, Shenming; Feng, Lin; Xue, Linsong; Wang, Yifan; Wang, Dong

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 2, pp. 377-385. DOI: 10.1007/s13042-021-01473-8

  • 2、Locality-constrained weighted collaborative-competitive representation for classification

    Author: Gou, Jianping; Xiong, Xiangshuo; Wu, Hongwei; Du, Lan; Zeng, Shaoning; Yuan, Yunhao; Ou, Weihua

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 2, pp. 363-376. DOI: 10.1007/s13042-021-01461-y

  • 3、Distance metric learning with local multiple kernel embedding

    Author: Zhang, Qingshuo; Tsang, Eric C. C.; He, Qiang; Hu, Meng

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 1, pp. 79-92. DOI: 10.1007/s13042-021-01487-2

  • 4、Micro-extended belief rule-based system with activation factor and parameter optimization for industrial cost prediction

    Author: Wang, Suhui; Ye, Fei-Fei; Yang, Long-Hao; Liu, Jun; Wang, Hui; Martinez, Luis

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 1, pp. 63-78. DOI: 10.1007/s13042-021-01485-4

  • 5、Small target deep convolution recognition algorithm based on improved YOLOv4

    Author: Li, Fudong; Gao, Dongyang; Yang, Yuequan; Zhu, Junwu

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 2, pp. 387-394. DOI: 10.1007/s13042-021-01496-1

  • 6、A hybrid-attention semantic segmentation network for remote sensing interpretation in land-use surveillance

    Author: Lv, Ning; Zhang, Zenghui; Li, Cong; Deng, Jiaxuan; Su, Tao; Chen, Chen; Zhou, Yang

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 2, pp. 395-406. DOI: 10.1007/s13042-022-01517-7

  • 7、Global attention network for collaborative saliency detection

    Author: Li, Ce; Xuan, Shuxing; Liu, Fenghua; Chang, Enbing; Wu, Hailei

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 2, pp. 407-417. DOI: 10.1007/s13042-022-01531-9

  • 8、An iterative recommendation model of supporting personalized learning based on schematic patterns mining from schema-enhanced contexts of problem-solving

    Author: Guo, Lankun; Jia, Zhenhua; Ma, Guozhi; Li, Jinhai

    Journal: INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS. 2023; Vol. 14, Issue 1, pp. 93-115. DOI: 10.1007/s13042-022-01525-7

投稿常见问题

通讯方式:TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。