当前位置: 首页 SCI期刊 SCIE期刊 地球科学 中科院3区 JCRQ1 期刊介绍(非官网)
Geoscientific Model Development

Geoscientific Model DevelopmentSCIE

国际简称:GEOSCI MODEL DEV  参考译名:地球科学模型开发

  • 中科院分区

    3区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:1991-959X
E-ISSN:1991-9603
是否OA:开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:GERMANY
出版商:Copernicus Gesellschaft mbH
出版语言:English
出版周期:12 issues/year
出版年份:2008
研究方向:GEOSCIENCES, MULTIDISCIPLINARY
评价信息:
影响因子:4
H-index:59
CiteScore指数:8.6
SJR指数:2.055
SNIP指数:1.319
发文数据:
Gold OA文章占比:99.82%
研究类文章占比:98.52%
年发文量:338
自引率:0.0980...
开源占比:0.9923
出版撤稿占比:0
出版国人文章占比:0.05
OA被引用占比:1
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Geoscientific Model Development期刊介绍

Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:

* geoscientific model descriptions, from statistical models to box models to GCMs;

* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;

* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;

* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;

* model experiment descriptions, including experimental details and project protocols;

* full evaluations of previously published models.

期刊简介Geoscientific Model Development期刊介绍

《Geoscientific Model Development》自2008出版以来,是一本地球科学优秀杂志。致力于发表原创科学研究结果,并为地球科学各个领域的原创研究提供一个展示平台,以促进地球科学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道地球科学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Geoscientific Model Development Cite Score数据

  • CiteScore:8.6
  • SJR:2.055
  • SNIP:1.319
学科类别 分区 排名 百分位
大类:Mathematics 小类:Modeling and Simulation Q1 22 / 324

93%

大类:Mathematics 小类:General Earth and Planetary Sciences Q1 15 / 195

92%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Geoscientific Model Development 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
地球科学 3区 GEOSCIENCES, MULTIDISCIPLINARY 地球科学:综合 3区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Geoscientific Model Development JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:GEOSCIENCES, MULTIDISCIPLINARY SCIE Q1 41 / 253

84%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:GEOSCIENCES, MULTIDISCIPLINARY SCIE Q1 33 / 253

87.15%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • USA298
  • GERMANY (FED REP GER)238
  • England176
  • France147
  • CHINA MAINLAND93
  • Netherlands86
  • Switzerland74
  • Australia71
  • Canada66
  • Spain59

本刊中国学者近年发表论文

  • 1、Forecasting tropical cyclone tracks in the northwestern Pacific based on a deep-learning model

    Author: Wang, Liang; Wan, Bingcheng; Zhou, Shaohui; Sun, Haofei; Gao, Zhiqiu

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 8, pp. 2167-2179. DOI: 10.5194/gmd-16-2167-2023

  • 2、Climate impacts of parameterizing subgrid variation and partitioning of landsurface heat fluxes to the atmosphere with the NCAR CESM1.2

    Author: Yin, Ming; Han, Yilun; Wang, Yong; Sun, Wenqi; Deng, Jianbo; Wei, Daoming; Kong, Ying; Wang, Bin

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 1, pp. 135-156. DOI: 10.5194/gmd-16-135-2023

  • 3、A nonhydrostatic oceanic regional model, ORCTM v1, for internal solitary wavesimulation

    Author: Huang, Hao; Song, Pengyang; Qiu, Shi; Guo, Jiaqi; Chen, Xueen

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 1, pp. 109-133. DOI: 10.5194/gmd-16-109-2023

  • 4、WRF-ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer

    Author: Zhong, Xiaohui; Ma, Zhijian; Yao, Yichen; Xu, Lifei; Wu, Yuan; Wang, Zhibin

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 1, pp. 199-209. DOI: 10.5194/gmd-16-199-2023

  • 5、Ocean Modeling with Adaptive REsolution (OMARE; version 1.0) - refactoring the NEMO model (version 4.0.1) with the parallel computing framework of JASMIN - Part 1: Adaptive grid refinement in an idealized double-gyre case

    Author: Zhang, Yan; Wang, Xuantong; Sun, Yuhao; Ning, Chenhui; Xu, Shiming; An, Hengbin; Tang, Dehong; Guo, Hong; Yang, Hao; Pu, Ye; Jiang, Bo; Wang, Bin

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 2, pp. 679-704. DOI: 10.5194/gmd-16-679-2023

  • 6、Monthly-scale extended predictions using the atmospheric model coupled with a slab ocean

    Author: Wang, Zhenming; Zhang, Shaoqing; Jin, Yishuai; Jia, Yinglai; Yu, Yangyang; Gao, Yang; Yu, Xiaolin; Li, Mingkui; Lin, Xiaopei; Wu, Lixin

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 2, pp. 705-717. DOI: 10.5194/gmd-16-705-2023

  • 7、SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery

    Author: Li, Ruidong; Sun, Ting; Tian, Fuqiang; Ni, Guang-Heng

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 2, pp. 751-778. DOI: 10.5194/gmd-16-751-2023

  • 8、AttentionFire_v1.0: interpretable machine learning fire model for burned-area predictions over tropics

    Author: Li, Fa; Zhu, Qing; Riley, William J.; Zhao, Lei; Xu, Li; Yuan, Kunxiaojia; Chen, Min; Wu, Huayi; Gui, Zhipeng; Gong, Jianya; Randerson, James T.

    Journal: GEOSCIENTIFIC MODEL DEVELOPMENT. 2023; Vol. 16, Issue 3, pp. 869-884. DOI: 10.5194/gmd-16-869-2023

投稿常见问题

通讯方式:BAHNHOFSALLEE 1E, GOTTINGEN, GERMANY, 37081。