当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院4区 JCRQ3 期刊介绍(非官网)
Order-a Journal On The Theory Of Ordered Sets And Its Applications

Order-a Journal On The Theory Of Ordered Sets And Its ApplicationsSCIE

国际简称:ORDER  参考译名:有序-有序集理论及其应用杂志

  • 中科院分区

    4区

  • CiteScore分区

    Q3

  • JCR分区

    Q3

基本信息:
ISSN:0167-8094
E-ISSN:1572-9273
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:NETHERLANDS
出版商:Springer Netherlands
出版语言:English
出版周期:Quarterly
出版年份:1984
研究方向:数学-数学
评价信息:
影响因子:0.6
H-index:22
CiteScore指数:1.1
SJR指数:0.409
SNIP指数:1.175
发文数据:
Gold OA文章占比:19.27%
研究类文章占比:100.00%
年发文量:39
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Order-a Journal On The Theory Of Ordered Sets And Its Applications期刊介绍

Order presents the most original and innovative research on ordered structures and the use of order-theoretic methods in graph theory and combinatorics, lattice theory and algebra, set theory and relational structures, and the theory of computing. In each of these categories, we seek submissions that make significant use of orderings to study mathematical structures and processes. The interplay of order and combinatorics is of particular interest, as are the application of order-theoretic tools to algorithms in discrete mathematics and computing. Articles on both finite and infinite order theory are welcome.

The scope of Order is further defined by the collective interests and expertise of the editorial board, which are described on these pages. Submitting authors are asked to identify a board member, or members, whose interests best match the topic of their work, as this helps to ensure an efficient and authoritative review.

期刊简介Order-a Journal On The Theory Of Ordered Sets And Its Applications期刊介绍

《Order-a Journal On The Theory Of Ordered Sets And Its Applications》自1984出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Order-a Journal On The Theory Of Ordered Sets And Its Applications Cite Score数据

  • CiteScore:1.1
  • SJR:0.409
  • SNIP:1.175
学科类别 分区 排名 百分位
大类:Mathematics 小类:Algebra and Number Theory Q3 71 / 119

40%

大类:Mathematics 小类:Discrete Mathematics and Combinatorics Q3 58 / 92

37%

大类:Mathematics 小类:Geometry and Topology Q3 68 / 106

36%

大类:Mathematics 小类:Computational Theory and Mathematics Q4 144 / 176

18%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Order-a Journal On The Theory Of Ordered Sets And Its Applications 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 4区 MATHEMATICS 数学 4区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Order-a Journal On The Theory Of Ordered Sets And Its Applications JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS SCIE Q3 263 / 489

46.3%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS SCIE Q3 350 / 489

28.53%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

本刊中国学者近年发表论文

  • 1、Twisted Weak Orders of Coxeter Groups

    Author: Weijia Wang

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2019, Vol., , DOI:10.1007/s11083-018-09481-0

  • 2、Connection Between Polynomial Optimization and Maximum Cliques of Non-Uniform Hypergraphs

    Author: Pingge Chen, Yuejian Peng

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2017, Vol.35, 301-319, DOI:10.1007/s11083-017-9434-3

  • 3、QFS-Domains and their Lawson Compactness

    Author: Gaolin Li, Luoshan Xu

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, Vol.30, 233-248, DOI:10.1007/s11083-011-9238-9

  • 4、Bounds on the <Emphasis Type="BoldItalic">k</Emphasis>-dimension of Products of Special Posets

    Author: Michael Baym, Douglas B. West

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, Vol.30, 779-796, DOI:10.1007/s11083-012-9276-y

  • 5、Lattice Classification by Cut-through Coding

    Author: Qifu Tyler Sun, Shuo-Yen Robert Li

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, Vol.31, 271-278, DOI:10.1007/s11083-013-9300-x

  • 6、Linear Discrepancy of Chain Products and Posets with Bounded Degree

    Author: Jeong-Ok Choi, Kevin G. Milans, Douglas B. West

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, Vol.31, 291-305, DOI:10.1007/s11083-013-9302-8

  • 7、Erratum to: Lattice Classification by Cut-through Coding

    Author: Qifu Tyler Sun, Shuo-Yen Robert Li

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, Vol.31, 289-289, DOI:10.1007/s11083-014-9322-z

  • 8、The Categorical Equivalence Between Algebraic Domains and F-Augmented Closure Spaces

    Author: Lankun Guo, Qingguo Li

    Journal: ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2014, Vol.32, 101-116, DOI:10.1007/s11083-014-9318-8

投稿常见问题

通讯方式:SPRINGER, 233 SPRING ST, NEW YORK , USA, NY, 10013。