当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院4区 JCRQ3 期刊介绍(非官网)
Metrika

MetrikaSCIE

国际简称:METRIKA  参考译名:公制

  • 中科院分区

    4区

  • CiteScore分区

    Q3

  • JCR分区

    Q3

基本信息:
ISSN:0026-1335
E-ISSN:1435-926X
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:GERMANY
出版商:Springer Berlin Heidelberg
出版语言:English
出版周期:Bimonthly
出版年份:1958
研究方向:数学-统计学与概率论
评价信息:
影响因子:0.9
H-index:36
CiteScore指数:1.5
SJR指数:0.535
SNIP指数:1.106
发文数据:
Gold OA文章占比:19.12%
研究类文章占比:100.00%
年发文量:47
自引率:0.1428...
开源占比:0.1404
出版撤稿占比:0
出版国人文章占比:0.23
OA被引用占比:0.0404...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Metrika期刊介绍

Metrika is an international journal for theoretical and applied statistics. Metrika publishes original research papers in the field of mathematical statistics and statistical methods. Great importance is attached to new developments in theoretical statistics, statistical modeling and to actual innovative applicability of the proposed statistical methods and results. Topics of interest include, without being limited to, multivariate analysis, high dimensional statistics and nonparametric statistics; categorical data analysis and latent variable models; reliability, lifetime data analysis and statistics in engineering sciences.

期刊简介Metrika期刊介绍

《Metrika》自1958出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Metrika Cite Score数据

  • CiteScore:1.5
  • SJR:0.535
  • SNIP:1.106
学科类别 分区 排名 百分位
大类:Mathematics 小类:Statistics and Probability Q3 179 / 278

35%

大类:Mathematics 小类:Statistics, Probability and Uncertainty Q3 109 / 168

35%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Metrika 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 4区 STATISTICS & PROBABILITY 统计学与概率论 4区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Metrika JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:STATISTICS & PROBABILITY SCIE Q3 102 / 168

39.6%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:STATISTICS & PROBABILITY SCIE Q3 125 / 168

25.89%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • CHINA MAINLAND54
  • USA28
  • GERMANY (FED REP GER)18
  • India18
  • Canada16
  • France13
  • Spain9
  • Greece7
  • Iran7
  • Italy7

本刊中国学者近年发表论文

  • 1、Lasso regression in sparse linear model with phi-mixing errors

    Author: Peng, Ling; Zhu, Yan; Zhong, Wenxuan

    Journal: METRIKA. 2023; Vol. 86, Issue 1, pp. 1-26. DOI: 10.1007/s00184-022-00860-7

  • 2、Empirical likelihood based tests for detecting the presence of significant predictors in marginal quantile regression

    Author: Tang, Songqiao; Wang, Huiyu; Yan, Guanao; Zhang, Lixin

    Journal: METRIKA. 2023; Vol. 86, Issue 2, pp. 149-179. DOI: 10.1007/s00184-022-00866-1

  • 3、A-optimal designs for non-parametric symmetrical global sensitivity analysis

    Author: Chen, Xueping; Gai, Yujie; Wang, Xiaodi

    Journal: METRIKA. 2023; Vol. 86, Issue 2, pp. 219-237. DOI: 10.1007/s00184-022-00872-3

  • 4、Communication-efficient sparse composite quantile regression for distributed data

    Author: Yang, Yaohong; Wang, Lei

    Journal: METRIKA. 2023; Vol. 86, Issue 3, pp. 261-283. DOI: 10.1007/s00184-022-00868-z

  • 5、Bayesian empirical likelihood of quantile regression with missing observations

    Author: Liu, Chang-Sheng; Liang, Han-Ying

    Journal: METRIKA. 2023; Vol. 86, Issue 3, pp. 285-313. DOI: 10.1007/s00184-022-00869-y

  • 6、A constrained maximum likelihood estimation for skew normal mixtures

    Author: Jin, Libin; Chiu, Sung Nok; Zhao, Jianhua; Zhu, Lixing

    Journal: METRIKA. 2023; Vol. 86, Issue 4, pp. 391-419. DOI: 10.1007/s00184-022-00873-2

  • 7、Lower-order confounding information of inverse Yates-order designs with three levels

    Author: Huang, Zhiyun; Li, Zhiming; Zhang, Ge; Chen, Tao

    Journal: METRIKA. 2023; Vol. 86, Issue 2, pp. 239-259. DOI: 10.1007/s00184-022-00876-z

  • 8、Communication-efficient distributed estimation for high-dimensional large-scale linear regression

    Author: Liu, Zhan; Zhao, Xiaoluo; Pan, Yingli

    Journal: METRIKA. 2023; Vol. 86, Issue 4, pp. 455-485. DOI: 10.1007/s00184-022-00878-x

投稿常见问题

通讯方式:SPRINGER HEIDELBERG, TIERGARTENSTRASSE 17, HEIDELBERG, GERMANY, D-69121。