当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院3区 JCRQ1 期刊介绍(非官网)
Fractals-complex Geometry Patterns And Scaling In Nature And Society

Fractals-complex Geometry Patterns And Scaling In Nature And SocietySCIE

国际简称:FRACTALS  参考译名:自然与社会中的分形复杂几何模式和尺度

  • 中科院分区

    3区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:0218-348X
E-ISSN:1793-6543
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:SINGAPORE
出版商:World Scientific Publishing Co. Pte Ltd
出版语言:English
出版周期:Quarterly
出版年份:1993
研究方向:数学-数学跨学科应用
评价信息:
影响因子:3.3
H-index:36
CiteScore指数:7.4
SJR指数:0.673
SNIP指数:0.913
发文数据:
Gold OA文章占比:39.15%
研究类文章占比:99.69%
年发文量:327
自引率:0.2340...
开源占比:0.388
出版撤稿占比:0
出版国人文章占比:0.48
OA被引用占比:0.1324...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊介绍

The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.

Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.

The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.

期刊简介Fractals-complex Geometry Patterns And Scaling In Nature And Society期刊介绍

《Fractals-complex Geometry Patterns And Scaling In Nature And Society》自1993出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Fractals-complex Geometry Patterns And Scaling In Nature And Society Cite Score数据

  • CiteScore:7.4
  • SJR:0.673
  • SNIP:0.913
学科类别 分区 排名 百分位
大类:Mathematics 小类:Geometry and Topology Q1 2 / 106

98%

大类:Mathematics 小类:Applied Mathematics Q1 39 / 635

93%

大类:Mathematics 小类:Modeling and Simulation Q1 29 / 324

91%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Fractals-complex Geometry Patterns And Scaling In Nature And Society 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 3区 MULTIDISCIPLINARY SCIENCES 综合性期刊 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用 2区 3区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Fractals-complex Geometry Patterns And Scaling In Nature And Society JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 19 / 135

86.3%

学科:MULTIDISCIPLINARY SCIENCES SCIE Q1 29 / 134

78.7%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 7 / 135

95.19%

学科:MULTIDISCIPLINARY SCIENCES SCIE Q1 18 / 135

87.04%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • CHINA MAINLAND317
  • USA38
  • Malaysia36
  • Pakistan26
  • Mexico22
  • Saudi Arabia22
  • Iran19
  • Taiwan19
  • India17
  • Turkey15

本刊中国学者近年发表论文

  • 1、A NOVEL COLLECTIVE ALGORITHM USING CUBIC UNIFORM SPLINE AND FINITE DIFFERENCE APPROACHES TO SOLVING FRACTIONAL DIFFUSION SINGULAR WAVE MODEL THROUGH DAMPING-REACTION FORCES

    Author: Yao, Shao-Wen; Arqub, Omar Abu; Tayebi, Soumia; Osman, M. S.; Mahmoud, W.; Inc, Mustafa; Alsulami, Hamed

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400698

  • 2、STUDY OF INTEGER AND FRACTIONAL ORDER COVID-19 MATHEMATICAL MODEL

    Author: Ouncharoen, Rujira; Shah, Kamal; Ud Din, Rahim; Abdeljawad, Thabet; Ahmadian, Ali; Salahshour, Soheil; Sitthiwirattham, Thanin

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400467

  • 3、DYNAMICS IN A FRACTIONAL ORDER PREDATOR-PREY MODEL INVOLVING MICHAELIS-MENTEN-TYPE FUNCTIONAL RESPONSE AND BOTH UNEQUAL DELAYS

    Author: Li, Peiluan; Gao, Rong; Xu, Changjin; Lu, Yuejing; Shang, Youlin

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. , Issue , pp. -. DOI: 10.1142/S0218348X23400704

  • 4、NEW FRACTAL SOLITON SOLUTIONS FOR THE COUPLED FRACTIONAL KLEIN-GORDON EQUATION WITH beta-FRACTIONAL DERIVATIVE

    Author: Wang, Kangle

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X23500032

  • 5、A NEW FRACTAL TRANSFORM FOR THE APPROXIMATE SOLUTION OF DRINFELD-SOKOLOV-WILSON MODEL WITH FRACTAL DERIVATIVES

    Author: Liu, Fenglian; Yang, Lei; Nadeem, Muhammad

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X2350007X

  • 6、RESEARCH ON NONLINEAR VARIATION OF ELASTIC WAVE VELOCITY DISPERSION CHARACTERISTIC IN LIMESTONE DYNAMIC FRACTURE PROCESS

    Author: Zhang, Zhibo; Wang, Enyuan; Zhang, Hongtu; Bai, Zhiming; Zhang, Yinghua; Chen, Xu

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X23500081

  • 7、A NOVEL FRACTAL MODEL FOR SPONTANEOUS IMBIBITION IN DAMAGED TREE-LIKE BRANCHING NETWORKS

    Author: Wang, Peilong; Xiao, Boqi; Gao, Jun; Zhu, Huaizhi; Liu, Mingxing; Long, Gongbo; Li, Peichao

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 1, pp. -. DOI: 10.1142/S0218348X2350010X

  • 8、MEYER WAVELET NEURAL NETWORKS PROCEDURES TO INVESTIGATE THE NUMERICAL PERFORMANCES OF THE COMPUTER VIRUS SPREAD WITH KILL SIGNALS

    Author: Sabir, Zulqurnain; Baleanu, Dumitru; Raja, Muhammad Asif Zahoor; Alshomrani, Ali S. S.; Hincal, Evren

    Journal: FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY. 2023; Vol. 31, Issue 2, pp. -. DOI: 10.1142/S0218348X2340025X

投稿常见问题

通讯方式:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224。