当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院3区 JCRQ2 期刊介绍(非官网)
Computational Statistics & Data Analysis

Computational Statistics & Data AnalysisSCIE

国际简称:COMPUT STAT DATA AN  参考译名:计算统计和数据分析

  • 中科院分区

    3区

  • CiteScore分区

    Q1

  • JCR分区

    Q2

基本信息:
ISSN:0167-9473
E-ISSN:1872-7352
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:NETHERLANDS
出版商:Elsevier
出版语言:English
出版周期:Monthly
出版年份:1983
研究方向:数学-计算机:跨学科应用
评价信息:
影响因子:1.5
H-index:93
CiteScore指数:3.7
SJR指数:1.008
SNIP指数:1.42
发文数据:
Gold OA文章占比:25.33%
研究类文章占比:100.00%
年发文量:134
自引率:0.0555...
开源占比:0.0862
出版撤稿占比:0
出版国人文章占比:0.2
OA被引用占比:0.0678...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Computational Statistics & Data Analysis期刊介绍

Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:

I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.

II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.

[...]

III) Special Applications - [...]

IV) Annals of Statistical Data Science [...]

期刊简介Computational Statistics & Data Analysis期刊介绍

《Computational Statistics & Data Analysis》自1983出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Computational Statistics & Data Analysis Cite Score数据

  • CiteScore:3.7
  • SJR:1.008
  • SNIP:1.42
学科类别 分区 排名 百分位
大类:Mathematics 小类:Statistics and Probability Q1 56 / 278

80%

大类:Mathematics 小类:Applied Mathematics Q2 166 / 635

73%

大类:Mathematics 小类:Computational Mathematics Q2 63 / 189

66%

大类:Mathematics 小类:Computational Theory and Mathematics Q2 64 / 176

63%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Computational Statistics & Data Analysis 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 3区 STATISTICS & PROBABILITY 统计学与概率论 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS 计算机:跨学科应用 3区 4区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Computational Statistics & Data Analysis JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS SCIE Q3 126 / 169

25.7%

学科:STATISTICS & PROBABILITY SCIE Q2 43 / 168

74.7%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS SCIE Q3 86 / 169

49.41%

学科:STATISTICS & PROBABILITY SCIE Q2 60 / 168

64.58%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • USA146
  • CHINA MAINLAND136
  • England44
  • Canada32
  • GERMANY (FED REP GER)31
  • Australia29
  • Italy29
  • South Korea26
  • France23
  • Taiwan21

本刊中国学者近年发表论文

  • 1、Sparse spatially clustered coefficient model via adaptive regularization

    Author: Zhong, Yan; Sang, Huiyan; Cook, Scott J.; Kellstedt, Paul M.

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 177, Issue , pp. -. DOI: 10.1016/j.csda.2022.107581

  • 2、Estimation for partial functional partially linear additive model

    Author: Tang, Qingguo; Tu, Wei; Kong, Linglong

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 177, Issue , pp. -. DOI: 10.1016/j.csda.2022.107584

  • 3、Specification testing for ordinary differential equation models with fixed design and applications to COVID-19 epidemic models

    Author: Liu, Ran; Zhu, Lixing

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 180, Issue , pp. -. DOI: 10.1016/j.csda.2022.107616

  • 4、Empirical Gittins index strategies with ?-explorations for multi-armed bandit problems

    Author: Li, Xiao; Li, Yuqiang; Wu, Xianyi

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 180, Issue , pp. -. DOI: 10.1016/j.csda.2022.107610

  • 5、Generalized martingale difference divergence: Detecting conditional mean independence with applications in variable screening

    Author: Li, Lu; Ke, Chenlu; Yin, Xiangrong; Yu, Zhou

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 180, Issue , pp. -. DOI: 10.1016/j.csda.2022.107618

  • 6、Applications on linear spectral statistics of high-dimensional sample covariance matrix with divergent spectrum

    Author: Zhang, Yangchun; Zhou, Yirui; Liu, Xiaowei

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 178, Issue , pp. -. DOI: 10.1016/j.csda.2022.107617

  • 7、Optimal designs for semi-parametric dose-response models under random contamination

    Author: Yu, Jun; Meng, Xiran; Wang, Yaping

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 178, Issue , pp. -. DOI: 10.1016/j.csda.2022.107615

  • 8、Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures

    Author: Yang, Yuehan; Xia, Siwei; Yang, Hu

    Journal: COMPUTATIONAL STATISTICS & DATA ANALYSIS. 2023; Vol. 178, Issue , pp. -. DOI: 10.1016/j.csda.2022.107620

投稿常见问题

通讯方式:ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE。