当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院2区 JCRQ1 期刊介绍(非官网)
Calculus Of Variations And Partial Differential Equations

Calculus Of Variations And Partial Differential EquationsSCIE

国际简称:CALC VAR PARTIAL DIF  参考译名:变分法和偏微分方程

  • 中科院分区

    2区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:0944-2669
E-ISSN:1432-0835
是否OA:未开放
是否预警:否
TOP期刊:是
出版信息:
出版地区:UNITED STATES
出版商:Springer Berlin Heidelberg
出版语言:English
出版周期:Monthly
出版年份:1993
研究方向:数学-数学
评价信息:
影响因子:2.1
H-index:57
CiteScore指数:3.3
SJR指数:2.357
SNIP指数:1.712
发文数据:
Gold OA文章占比:30.19%
研究类文章占比:100.00%
年发文量:260
自引率:0.0476...
开源占比:0.2615
出版撤稿占比:0
出版国人文章占比:0.17
OA被引用占比:0.1677...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Calculus Of Variations And Partial Differential Equations期刊介绍

Calculus of variations and partial differential equations are classical, very active, closely related areas of mathematics, with important ramifications in differential geometry and mathematical physics. In the last four decades this subject has enjoyed a flourishing development worldwide, which is still continuing and extending to broader perspectives.

This journal will attract and collect many of the important top-quality contributions to this field of research, and stress the interactions between analysts, geometers, and physicists. The field of Calculus of Variations and Partial Differential Equations is extensive; nonetheless, the journal will be open to all interesting new developments. Topics to be covered include:

- Minimization problems for variational integrals, existence and regularity theory for minimizers and critical points, geometric measure theory

- Variational methods for partial differential equations, optimal mass transportation, linear and nonlinear eigenvalue problems

- Variational problems in differential and complex geometry

- Variational methods in global analysis and topology

- Dynamical systems, symplectic geometry, periodic solutions of Hamiltonian systems

- Variational methods in mathematical physics, nonlinear elasticity, asymptotic variational problems, homogenization, capillarity phenomena, free boundary problems and phase transitions

- Monge-Ampère equations and other fully nonlinear partial differential equations related to problems in differential geometry, complex geometry, and physics.

期刊简介Calculus Of Variations And Partial Differential Equations期刊介绍

《Calculus Of Variations And Partial Differential Equations》自1993出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Calculus Of Variations And Partial Differential Equations Cite Score数据

  • CiteScore:3.3
  • SJR:2.357
  • SNIP:1.712
学科类别 分区 排名 百分位
大类:Mathematics 小类:Analysis Q1 40 / 193

79%

大类:Mathematics 小类:Applied Mathematics Q2 205 / 635

67%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Calculus Of Variations And Partial Differential Equations 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:是
大类学科 分区 小类学科 分区
数学 2区 MATHEMATICS 数学 MATHEMATICS, APPLIED 应用数学 2区 2区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Calculus Of Variations And Partial Differential Equations JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS SCIE Q1 25 / 489

95%

学科:MATHEMATICS, APPLIED SCIE Q1 53 / 331

84.1%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS SCIE Q1 37 / 489

92.54%

学科:MATHEMATICS, APPLIED SCIE Q1 33 / 331

90.18%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • USA152
  • CHINA MAINLAND151
  • Italy91
  • GERMANY (FED REP GER)84
  • France61
  • Spain31
  • Canada29
  • England27
  • Japan27
  • Switzerland26

本刊中国学者近年发表论文

  • 1、Poisson metrics and Higgs bundles over noncompact Kahler manifolds

    Author: Wu, Di; Zhang, Xi

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02343-z

  • 2、Hypersurfaces of constant Gauss-Kronecker curvature with Li-normalization in affine space

    Author: Nie, Xin; Seppi, Andrea

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02329-x

  • 3、A two-dimensional Keller-Segel-Navier-Stokes system with logarithmic sensitivity: generalized solutions and classical solutions

    Author: Liu, Ji

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02371-9

  • 4、Liouville type theorems for positive harmonic functions on the unit ball with a nonlinear boundary condition

    Author: Lin, Daowen; Ou, Qianzhong

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02376-4

  • 5、L-p-regularity for fourth order elliptic systems with antisymmetric potentials in higher dimensions

    Author: Guo, Chang-Yu; Wang, Changyou; Xiang, Chang-Lin

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02373-7

  • 6、Regularity for quasi-linear parabolic equations with nonhomogeneous degeneracy or singularity

    Author: Fang, Yuzhou; Zhang, Chao

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02360-y

  • 7、Existence and asymptotic behavior of normalized ground states for Sobolev critical Schrodinger systems

    Author: Bartsch, Thomas; Li, Houwang; Zou, Wenming

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02355-9

  • 8、Classification of finite Morse index solutions to the polyharmonic Henon equation

    Author: Ao, Weiwei; Lai, Shanshan; Luo, Senping

    Journal: CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS. 2023; Vol. 62, Issue 1, pp. -. DOI: 10.1007/s00526-022-02361-x

投稿常见问题

通讯方式:SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 10013。