当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院3区 JCRQ2 期刊介绍(非官网)
Semigroup Forum

Semigroup ForumSCIE

国际简称:SEMIGROUP FORUM  参考译名:半群论坛

  • 中科院分区

    3区

  • CiteScore分区

    Q2

  • JCR分区

    Q2

基本信息:
ISSN:0037-1912
E-ISSN:1432-2137
是否OA:未开放
是否预警:否
TOP期刊:否
出版信息:
出版地区:GERMANY
出版商:Springer US
出版语言:Multi-Language
出版周期:Bimonthly
出版年份:1970
研究方向:数学-数学
评价信息:
影响因子:0.7
H-index:31
CiteScore指数:1.5
SJR指数:0.735
SNIP指数:1.269
发文数据:
Gold OA文章占比:21.19%
研究类文章占比:100.00%
年发文量:63
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Semigroup Forum期刊介绍

Semigroup Forum is a platform for speedy and efficient transmission of information on current research in semigroup theory.

Scope: Algebraic semigroups, topological semigroups, partially ordered semigroups, semigroups of measures and harmonic analysis on semigroups, numerical semigroups, transformation semigroups, semigroups of operators, and applications of semigroup theory to other disciplines such as ring theory, category theory, automata, logic, etc.

Languages: English (preferred), French, German, Russian.

Survey Articles: Expository, such as a symposium lecture. Of any length. May include original work, but should present the nonspecialist with a reasonably elementary and self-contained account of the fundamental parts of the subject.

Research Articles: Will be subject to the usual refereeing procedure.

Research Announcements: Description, limited to eight pages, of new results, mostly without proofs, of full length papers appearing elsewhere. The announcement must be accompanied by a copy of the unabridged version.

Short Notes: (Maximum 4 pages) Worthy of the readers' attention, such as new proofs, significant generalizations of known facts, comments on unsolved problems, historical remarks, etc.

Research Problems: Unsolved research problems.

Announcements: Of conferences, seminars, and symposia on Semigroup Theory.

Abstracts and Bibliographical Items: Abstracts in English, limited to one page, of completed work are solicited.

Listings of books, papers, and lecture notes previously published elsewhere and, above all, of new papers for which preprints are available are solicited from all authors.

Abstracts for Reviewing Journals: Authors are invited to provide with their manuscript informally a one-page abstract of their contribution with key words and phrases and with subject matter classification. This material will be forwarded to Zentralblatt für Mathematik.

期刊简介Semigroup Forum期刊介绍

《Semigroup Forum》自1970出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Semigroup Forum Cite Score数据

  • CiteScore:1.5
  • SJR:0.735
  • SNIP:1.269
学科类别 分区 排名 百分位
大类:Mathematics 小类:Algebra and Number Theory Q2 50 / 119

58%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Semigroup Forum 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 3区 MATHEMATICS 数学 3区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Semigroup Forum JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS SCIE Q2 217 / 489

55.7%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS SCIE Q2 182 / 489

62.88%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

本刊中国学者近年发表论文

  • 1、On d-semigroups, r-semigroups, dr-semigroups and their subclasses

    Author: Wang, Shoufeng

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 1, pp. 230-270. DOI: 10.1007/s00233-022-10326-x

  • 2、Endomorphisms of semigroups of oriented transformations

    Author: Li, De Biao; Fernandes, Vitor H.

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 1, pp. 184-210. DOI: 10.1007/s00233-022-10325-y

  • 3、Centralizers in graph products of semigroups

    Author: Yang, Dandan; Li, Hengyang

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 1, pp. 285-326. DOI: 10.1007/s00233-022-10331-0

  • 4、On varieties of flat nil-semirings

    Author: Wu, Y. N.; Zhao, X. Z.; Ren, M. M.

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 1, pp. 271-284. DOI: 10.1007/s00233-023-10337-2

  • 5、Semigroup algebras which are Azumaya algebras

    Author: Guo, Junying; Guo, Xiaojiang

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 1, pp. 160-168. DOI: 10.1007/s00233-023-10339-0

  • 6、The semigroups of order-preserving transformations with restricted range

    Author: Zhao, Ping; Hu, Huabi

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 2, pp. 516-525. DOI: 10.1007/s00233-023-10345-2

  • 7、A class of join-completions of partially ordered semigroups

    Author: Wang, Haiwei

    Journal: SEMIGROUP FORUM. 2023; Vol. 106, Issue 2, pp. 504-515. DOI: 10.1007/s00233-023-10348-z

  • 8、Variety generated by conical residuated lattice-ordered idempotent monoids

    Author: Wei Chen, Yizhi Chen

    Journal: SEMIGROUP FORUM, 2019, Vol., , DOI:10.1007/s00233-019-10014-3

投稿常见问题

通讯方式:SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 10013。