当前位置: 首页 SCI期刊 SCIE期刊 数学 中科院2区 JCRQ1 期刊介绍(非官网)
Journal Of Nonlinear Science

Journal Of Nonlinear ScienceSCIE

国际简称:J NONLINEAR SCI  参考译名:非线性科学杂志

  • 中科院分区

    2区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:0938-8974
E-ISSN:1432-1467
是否OA:未开放
是否预警:否
TOP期刊:是
出版信息:
出版地区:UNITED STATES
出版商:Springer US
出版语言:English
出版周期:Quarterly
出版年份:1991
研究方向:数学-力学
评价信息:
影响因子:2.6
H-index:51
CiteScore指数:5
SJR指数:1.179
SNIP指数:1.4
发文数据:
Gold OA文章占比:34.82%
研究类文章占比:100.00%
年发文量:115
自引率:0.0333...
开源占比:0.2905
出版撤稿占比:0
出版国人文章占比:0.13
OA被引用占比:0.1281...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Journal Of Nonlinear Science期刊介绍

The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area's boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.

All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.

期刊简介Journal Of Nonlinear Science期刊介绍

《Journal Of Nonlinear Science》自1991出版以来,是一本数学优秀杂志。致力于发表原创科学研究结果,并为数学各个领域的原创研究提供一个展示平台,以促进数学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道数学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

Cite Score数据(2024年最新版)Journal Of Nonlinear Science Cite Score数据

  • CiteScore:5
  • SJR:1.179
  • SNIP:1.4
学科类别 分区 排名 百分位
大类:Mathematics 小类:Applied Mathematics Q1 98 / 635

84%

大类:Mathematics 小类:Modeling and Simulation Q1 73 / 324

77%

大类:Mathematics 小类:General Engineering Q1 73 / 307

76%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Journal Of Nonlinear Science 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
数学 2区 MATHEMATICS, APPLIED 应用数学 MECHANICS 力学 PHYSICS, MATHEMATICAL 物理:数学物理 2区 2区 2区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Journal Of Nonlinear Science JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS, APPLIED SCIE Q1 28 / 331

91.7%

学科:MECHANICS SCIE Q2 64 / 170

62.6%

学科:PHYSICS, MATHEMATICAL SCIE Q1 7 / 60

89.2%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:MATHEMATICS, APPLIED SCIE Q1 62 / 331

81.42%

学科:MECHANICS SCIE Q1 26 / 170

85%

学科:PHYSICS, MATHEMATICAL SCIE Q1 7 / 60

89.17%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • USA100
  • CHINA MAINLAND50
  • GERMANY (FED REP GER)36
  • England31
  • Italy23
  • Canada20
  • France20
  • Spain13
  • South Korea7
  • Australia6

本刊中国学者近年发表论文

  • 1、Homogenization of Dissipative Hamiltonian Systems Under Levy Fluctuations

    Author: Wang, Zibo; Lv, Li; Duan, Jinqiao

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 1, pp. -. DOI: 10.1007/s00332-022-09872-z

  • 2、Non-uniform Continuity of the Generalized Camassa-Holm Equation in Besov Spaces

    Author: Li, Jinlu; Wu, Xing; Zhu, Weipeng; Guo, Jiayu

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 1, pp. -. DOI: 10.1007/s00332-022-09866-x

  • 3、Optimal Decay Rates of the Compressible Euler Equations with Time-Dependent Damping in R-n: (I) Under-Damping Case

    Author: Ji, Shanming; Mei, Ming

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 1, pp. -. DOI: 10.1007/s00332-022-09865-y

  • 4、Global Small Solutions to a Special 21/2-D Compressible Viscous Non-resistive MHD System

    Author: Dong, Boqing; Wu, Jiahong; Zhai, Xiaoping

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 1, pp. -. DOI: 10.1007/s00332-022-09881-y

  • 5、Equilateral Chains and Cyclic Central Configurations of the Planar Five-Body Problem

    Author: Deng, Yiyang; Hampton, Marshall

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 1, pp. -. DOI: 10.1007/s00332-022-09864-z

  • 6、Stochastic Variational Principles for Dissipative Equations with Advected Quantities

    Author: Chen, Xin; Cruzeiro, Ana Bela; Ratiu, Tudor S.

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 1, pp. -. DOI: 10.1007/s00332-022-09846-1

  • 7、Nilpotent Singularities and Periodic Perturbation of a GIb Model: A Pathway to Glucose Disorder

    Author: Tao, Yiwen; Sun, Yutong; Zhu, Huaiping; Lyu, Jiangnan; Ren, Jingli

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 3, pp. -. DOI: 10.1007/s00332-023-09907-z

  • 8、Adaptive Image Processing: First Order PDE Constraint Regularizers and a Bilevel Training Scheme

    Author: Davoli, Elisa; Fonseca, Irene; Liu, Pan

    Journal: JOURNAL OF NONLINEAR SCIENCE. 2023; Vol. 33, Issue 3, pp. -. DOI: 10.1007/s00332-023-09902-4

投稿常见问题

通讯方式:SPRINGER, 233 SPRING ST, NEW YORK, USA, NY, 10013。