当前位置: 首页 SCI期刊 SCIE期刊 化学 中科院2区 JCRQ1 期刊介绍(非官网)
Chemometrics And Intelligent Laboratory Systems

Chemometrics And Intelligent Laboratory SystemsSCIE

国际简称:CHEMOMETR INTELL LAB  参考译名:化学计量学和智能实验室系统

  • 中科院分区

    2区

  • CiteScore分区

    Q1

  • JCR分区

    Q1

基本信息:
ISSN:0169-7439
E-ISSN:1873-3239
是否OA:未开放
是否预警:否
TOP期刊:是
出版信息:
出版地区:NETHERLANDS
出版商:Elsevier
出版语言:English
出版周期:Bimonthly
出版年份:1986
研究方向:工程技术-分析化学
评价信息:
影响因子:3.7
H-index:109
CiteScore指数:7.5
SJR指数:0.667
SNIP指数:1.184
发文数据:
Gold OA文章占比:19.85%
研究类文章占比:99.46%
年发文量:186
自引率:0.0769...
开源占比:0.0894
出版撤稿占比:0
出版国人文章占比:0.28
OA被引用占比:0.0114...
英文简介 期刊介绍 CiteScore数据 中科院SCI分区 JCR分区 发文数据 常见问题

英文简介Chemometrics And Intelligent Laboratory Systems期刊介绍

Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.

Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.

The journal deals with the following topics:

1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)

2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.

3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.

4) Well characterized data sets to test performance for the new methods and software.

The journal complies with International Committee of Medical Journal Editors' Uniform requirements for manuscripts.

期刊简介Chemometrics And Intelligent Laboratory Systems期刊介绍

《Chemometrics And Intelligent Laboratory Systems》自1986出版以来,是一本化学优秀杂志。致力于发表原创科学研究结果,并为化学各个领域的原创研究提供一个展示平台,以促进化学领域的的进步。该刊鼓励先进的、清晰的阐述,从广泛的视角提供当前感兴趣的研究主题的新见解,或审查多年来某个重要领域的所有重要发展。该期刊特色在于及时报道化学领域的最新进展和新发现新突破等。该刊近一年未被列入预警期刊名单,目前已被权威数据库SCIE收录,得到了广泛的认可。

该期刊投稿重要关注点:

  • 预计审稿时间: 约3.0个月 约11.1周
  • 国际TOP期刊
  • 化学
  • AUTOMATION & CONTROL SYSTEMS
  • SCIE
  • 中科院2区
  • 非预警

Cite Score数据(2024年最新版)Chemometrics And Intelligent Laboratory Systems Cite Score数据

  • CiteScore:7.5
  • SJR:0.667
  • SNIP:1.184
学科类别 分区 排名 百分位
大类:Chemistry 小类:Spectroscopy Q1 13 / 76

83%

大类:Chemistry 小类:Analytical Chemistry Q1 33 / 156

79%

大类:Chemistry 小类:Computer Science Applications Q1 178 / 817

78%

大类:Chemistry 小类:Software Q1 99 / 407

75%

大类:Chemistry 小类:Process Chemistry and Technology Q2 23 / 73

69%

CiteScore 是由Elsevier(爱思唯尔)推出的另一种评价期刊影响力的文献计量指标。反映出一家期刊近期发表论文的年篇均引用次数。CiteScore以Scopus数据库中收集的引文为基础,针对的是前四年发表的论文的引文。CiteScore的意义在于,它可以为学术界提供一种新的、更全面、更客观地评价期刊影响力的方法,而不仅仅是通过影响因子(IF)这一单一指标来评价。

历年Cite Score趋势图

中科院SCI分区Chemometrics And Intelligent Laboratory Systems 中科院分区

中科院 2023年12月升级版 综述期刊:否 Top期刊:否
大类学科 分区 小类学科 分区
化学 2区 AUTOMATION & CONTROL SYSTEMS 自动化与控制系统 CHEMISTRY, ANALYTICAL 分析化学 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE 计算机:人工智能 INSTRUMENTS & INSTRUMENTATION 仪器仪表 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS 数学跨学科应用 STATISTICS & PROBABILITY 统计学与概率论 3区 3区 3区 3区 3区 3区

中科院分区表 是以客观数据为基础,运用科学计量学方法对国际、国内学术期刊依据影响力进行等级划分的期刊评价标准。它为我国科研、教育机构的管理人员、科研工作者提供了一份评价国际学术期刊影响力的参考数据,得到了全国各地高校、科研机构的广泛认可。

中科院分区表 将所有期刊按照一定指标划分为1区、2区、3区、4区四个层次,类似于“优、良、及格”等。最开始,这个分区只是为了方便图书管理及图书情报领域的研究和期刊评估。之后中科院分区逐步发展成为了一种评价学术期刊质量的重要工具。

历年中科院分区趋势图

JCR分区Chemometrics And Intelligent Laboratory Systems JCR分区

2023-2024 年最新版
按JIF指标学科分区 收录子集 分区 排名 百分位
学科:AUTOMATION & CONTROL SYSTEMS SCIE Q2 26 / 84

69.6%

学科:CHEMISTRY, ANALYTICAL SCIE Q2 28 / 106

74.1%

学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SCIE Q2 66 / 197

66.8%

学科:INSTRUMENTS & INSTRUMENTATION SCIE Q1 17 / 76

78.3%

学科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 13 / 135

90.7%

学科:STATISTICS & PROBABILITY SCIE Q1 10 / 168

94.3%

按JCI指标学科分区 收录子集 分区 排名 百分位
学科:AUTOMATION & CONTROL SYSTEMS SCIE Q1 15 / 84

82.74%

学科:CHEMISTRY, ANALYTICAL SCIE Q1 18 / 106

83.49%

学科:COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE SCIE Q1 45 / 198

77.53%

学科:INSTRUMENTS & INSTRUMENTATION SCIE Q1 11 / 76

86.18%

学科:MATHEMATICS, INTERDISCIPLINARY APPLICATIONS SCIE Q1 23 / 135

83.33%

学科:STATISTICS & PROBABILITY SCIE Q1 14 / 168

91.96%

JCR分区的优势在于它可以帮助读者对学术文献质量进行评估。不同学科的文章引用量可能存在较大的差异,此时单独依靠影响因子(IF)评价期刊的质量可能是存在一定问题的。因此,JCR将期刊按照学科门类和影响因子分为不同的分区,这样读者可以根据自己的研究领域和需求选择合适的期刊。

历年影响因子趋势图

发文数据

2023-2024 年国家/地区发文量统计
  • 国家/地区数量
  • CHINA MAINLAND205
  • Spain54
  • USA49
  • Iran36
  • France30
  • Italy26
  • Canada25
  • Brazil21
  • England18
  • India18

本刊中国学者近年发表论文

  • 1、Simultaneous measurement of chemical oxygen demand and turbidity in water based on broad optical spectra using backpropagation neural network

    Author: Zhou, Chao; Zhang, Jiang

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 237, Issue , pp. -. DOI: 10.1016/j.chemolab.2023.104830

  • 2、A multi-task learning approach for chemical process abnormity locations and fault classifications

    Author: Zhao, Wenlei; Li, Jince; Li, Hongguang

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 233, Issue , pp. -. DOI: 10.1016/j.chemolab.2022.104719

  • 3、ConInceDeep: A novel deep learning method for component identification of mixture based on Raman spectroscopy

    Author: Zhao, Ziyan; Liu, Zhenfang; Ji, Mingqiang; Zhao, Xin; Zhu, Qibing; Huang, Min

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 234, Issue , pp. -. DOI: 10.1016/j.chemolab.2023.104757

  • 4、GAMB-GNN: Graph Neural Networks learning from gene structure relations and Markov Blanket ranking for cancer classification in microarray data

    Author: Zhang, Shoujia; Xie, Weidong; Li, Wei; Wang, Linjie; Feng, Chaolu

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 232, Issue , pp. -. DOI: 10.1016/j.chemolab.2022.104713

  • 5、Simple dilated convolutional neural network for quantitative modeling based on near infrared spectroscopy techniques

    Author: Gan, Feng; Luo, Jianfei

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 232, Issue , pp. -. DOI: 10.1016/j.chemolab.2022.104710

  • 6、Design the arbitrary order calculus operator by a simulated hyperbolic function for analytical applications

    Author: Yao, Zhixiang; Yao, Ju; Su, Hui

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 234, Issue , pp. -. DOI: 10.1016/j.chemolab.2023.104754

  • 7、Application of iterative distance correlation and PLS for wavelength interval selection in near infrared spectroscopy

    Author: Huang, Xin; Xia, Li

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 234, Issue , pp. -. DOI: 10.1016/j.chemolab.2023.104756

  • 8、Nonlocal, local and global preserving stacked autoencoder based fault detection method for nonlinear process monitoring

    Author: Yang, Jingchao; Wang, Li

    Journal: CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS. 2023; Vol. 235, Issue , pp. -. DOI: 10.1016/j.chemolab.2023.104758

投稿常见问题

通讯方式:ELSEVIER SCIENCE BV, PO BOX 211, AMSTERDAM, NETHERLANDS, 1000 AE。