发布时间:2023-10-08 17:36:16
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇物联网网络安全技术,期待它们能激发您的灵感。
中图分类号:TP212.9 文献标识码:A 文章编号:2095-1302(2012)12-0020-03
Wireless sensor network security technology in Internet of Things
LIU Ming-jun1,2
(1.School of Electronic Engineering, Xidian University, Xi’an 710071, China; 2. Unit 95844 of PLA, Jiuquan 735018, China)
Abstract: The Internet of Things is known as the third wave of the information revolution, and its development has huge social and economic benefits. With the successful application of the Internet of Things in various fields, the security problem has become increasingly apparent. Wireless sensor networks, which play an important role in linking traditional network in Internet of Things, have prominent security problems. Through the analysis of the structure, characteristics of the wireless sensor network, the paper analyzes the security challenges IOT facing, and studies key security technologies.
Keywords: Internet of Things; wireless sensor networks; security; key management
0 引 言
最近几年,物联网之所以能成为研究的热点,究其原因:一是物联网是新一代信息技术的重要组成部分,将对社会的发展起到推动作用;二是物联网的应用将产生巨大的经济效益,据有关专家估算,物联网的产值将达到万亿级别。
伴随着物联网在各个领域的成功应用,物联网的安全问题也变得越来越重要,由于无线传感器网络(WSN)在物联网体系中担当着链接传统网络的重任,因此其安全问题尤其突出。可以说,不解决安全问题,物联网是没有明天的。
1 WSN的结构特点
1.1 WSN的结构
WSN以感知为目的,通过各种方式将节点部署在被感知对象的内部或附近,获取物理世界的各种信息。被部署的节点通过自组织方式构成的网络,其节点中集成有传感器、数据处理单元和通信单元。WSN借助于节点中的传感器来测量周围环境,可以探测温度、湿度、噪声、速度、光强度、电磁波等各种环境参数。
WSN在物联网中的作用就像一个虚拟的皮肤,它能感受到一切物理世界的信息,并与观察者分享这些信息。
一个典型的WSN体系结构如图1所示。
图1 无线传感器网体系结构图
该体系包括分布式传感器节点、目标节点(sink)、Internet和用户端。sink也就是数据中心,它的处理能力、存储能力和通信能力相对较强,可连通传感器网络与外部网络,从而实现协议栈之间的通信转换。每个散布在网络中的节点通过多跳路由的方式将感知数据传送到sink,用户可以通过Internet或者卫星与sink进行通讯。
1.2 WSN的网络特征
为了使WSN成为物联网的一个内在组成部分,通常需要考虑各种挑战,包括从适应现有的互联网标准到互操作的协议创造和发展以及支持机制等。其中的挑战之一就是安全性,主要是因为WSN不能够直接适用于现有以Internet为中心的安全机制。无线传感器网络有其固有特性。
(1) 资源更有限。由于受价格、体积和功耗的限制,其计算能力比普通的计算机功能要弱很多。
(2) 网络规模更大,覆盖更广。为了获得精确的信息,通常会在被监测区域部署大量的传感器节点,传感器节点的数量数以万计,节点的分布更加密集。
(3) 网络自组。网络的布设和展开不依赖于预设的网络设施,节点通过分层协议和分布式算法协调各自的行为,自动组成一个独立的网络。
(4) 能量更有限。由于受到硬件条件的影响,无线传感器节点一般采用电池供电,电源能量更加有限,因此,无线传感网络节点的通信距离更短,通常只有几十米。
(5) 干扰更强。相对于传统网络,无线传感器网络的工作环境更加恶劣,再加上传感器节点分布更加密集,其环境噪声干扰和节点之间的干扰更强。
(6) 多跳路由。网络中节点的通信距离有限,节点只能与它的邻节点直接通信。如果希望与其传输覆盖范围之外的节点进行通信,就需要通过多跳路由进行通信。多跳路由是由普通网络节点完成的,没有专门的路由设备。因此,网络中的每个节点,既是终端又是路由器。
(7) 动态拓扑。无线传感器网络拓扑结构会随着时间的推移发生改变,主要是因为节点可能会因故障失效。由于监测区域的变化,新节点会添加到现有的网络中,因此,无线传感器网络具有动态拓扑重构功能。
(8) 无线传感器网络是一个以数据为中心的网络。它不像传统的网络那样以连接为中心,而是以数据为中心的网络,因此,需要节点进行数据聚合、融合、缓存和压缩等处理。
2 WSN各层主要面临的安全挑战
WSN的协议栈包括物理层、数据链路层、网络层、传输层和应用层,与互联网协议栈的五层协议相对应。WSN面临的安全问题也就是协议栈中各层面临的问题。
2.1 物理层
物理层主要负责载波频率的产生、信号的调制和解调等工作。物理层中的安全问题主要是干扰攻击和节点俘获。干扰攻击是指干扰WSN中节点所使用的无线电频率。节点俘获是指攻击者捕获节点,知道节点上所保存的任何信息,从而代替这个节点进行通信。
2.2 数据链路层
数据链路层主要负责媒体访问和错误控制。在介质访问控制协议中,节点通过监测邻近节点是否发送数据来确定自身是否能访问通信信道,这种载波监听的方式容易遭到拒绝服务攻击(DoS)。DoS是指当存在网络流量冲击或者外界恶意攻击时,可能产生“雪崩”效应,此时网络性能急剧下降,甚至会由于网络拥塞导致停止服务。
2.3 网络层
网络层主要负责路由的发现和维护,是无线传感器网络的重要因素。针对路由的攻击可能导致整个网络的瘫痪。针对网络层的攻击方式有伪造路由信息、选择性转发、黑洞攻击和Sybil攻击。
2.4 传输层
传输层主要负责将无线传感器网络采集的数据提供给外部网络。泛洪攻击和异步攻击是针对这个层次的主要攻击手段。
2.5 应用层
应用层主要负责实现特定应用所需的功能,如将采集的数据进行融合处理及其他应用任务。应对这个层的攻击一般可根据具体任务而定。
3 WSN中的安全技术
面对WSN中出现的种种安全问题,主要可采用以下几种技术予以解决:
(1) 入侵检测技术。入侵检测可对网内的节点行为进行监测,及时发现可疑节点行为。入侵检测系统基于一个合理假设:恶意节点的行为与网内其它节点存在明显的不同,以至于入侵检测系统可以根据预先设定规则将其识别出来。
(2) 干扰控制。干扰控制用于对付无线电干扰攻击。由于敌人无法进行长期持续的全频攻击,所以,通信节点可以采取跳频传输和扩频传输的方法来解决信号干扰攻击。
(3) 安全路由。根据不同应用的特点,制定合适的安全路由协议,以保证数据安全地到达目标节点,同时尽可能少地消耗节点资源。安全路由技术中广泛采用SPINS安全框架协议,包括SNEP协议和?TESLA协议,其中SNEP协议用以实现通信的机密性、完整性、新鲜性和点到点的认证,?TESLA协议用以实现点到多点的广播认证。
(4) 密钥管理。密钥管理是无线传感器网络关键安全技术的核心,主要有四种密钥分布协议:简单密钥分布协议、密钥预分布协议、动态密钥管理协议、分层密钥管理协议。简单密钥分布协议网内所有节点都保存同一个密钥用于数据的加解密,其内存需求是所有密钥管理协议中最低的,但是它的安全性也最低。密钥预分布协议中的节点在被部署到监控区域前,将被预先载入一些密钥。当节点被部署好后,传感器节点通过执行共享密钥发现过程来为安全链路的形成建立共享密钥。动态密钥管理协议可以根据用户要求周期性地改变节点的管理密钥,使用动态密钥管理协议可以改善网络面临攻击时的生存性。分层密钥管理协议采用LEAP协议,是一种典型的确定性密钥管理技术,使用的是多种密钥机制。LEAP在每个节点上维护四个密钥:分别是基站单独共享的身份密钥(预分布)、网内节点共享的组密钥(预分布)、邻居节点共享的邻居密钥以及簇头共享的簇头密钥。
(5) 密钥算法。密钥算法主要包括对称密钥算法与非对称密钥算法,非对称密钥算法主要有Rabin’s cheme、NtuEncrypt、RAS和椭圆曲线算反ECC,对称算法主要有Skipjack和RC5。相比较而言,对称密钥算法与非对称密钥算法相比具有计算量小、代码短和能耗低的特点,因此,对称密钥算法在WSN应用较广。
(6) 数据融合。数据融合是节省能量、增强所收集数据的准确性以及提高数据收集效率的重要手段。数据融合主要有两种方式:一种是在发送节点和汇聚节点之间使用端到端的加密方式,汇聚节点先对收到的数据进行解密,然后再进行数据融和;另一种方法是对密文数据直接进行数据融合,这要求加密时采用特定的数据转换方法。
WSN协议栈中各层所面临的安全问题一般不是采用单一安全措施就可以解决的,往往需要多种措施并用。协议栈中各层采取的安全技术如图2所示。
4 结 语
WSN虽然出现得较早,但对它的研究也是随着物联网概念的兴起才成为热点。事实上,WSN网络还不成熟,安全漏洞很多。研究者应该为它们制定相应的安全协议,并尽可能地减小安全技术所引入的副作用,促进WSN健康发展。
图2 无线传感器网中安全技术与网络层次关系图
参 考 文 献
[1] ROMAN Rodrigo, ALCARAZ Cristina. Key management systems for sensor networks in the context of the Internet of Things [J]. Computers and Electrical Engineering , 2011(37): 147-159.
[2] AKYILDIZ I, SU W. Wireless sensor networks: a survey [J]. Comput Networks, 2002, 38(4): 393-422.
[3] CHRISTIN D, REINHARDT A, MOGRE P, et al. Wireless sensor networks and the Internet of Things: selected challenges [C]// Proceedings of the 8th GI/ITG KuVS Fachgesprach Drahtlose Sensornetze. Hamburg: FGSN, 2009: 11-20.
[4] ALCARAZ C, LOPEZ J. A security analysis for wireless sensor mesh networks in highly critical systems [J]. IEEE Trans. on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2010, 40(4): 419-428.
[5] 马春光,尚治国,王慧强.无线传感器网络密钥管理问题研究综述[C].计算机科学(第一届中国无线传感器网络会议论文集), 2007,34 (专刊):158-161
[6] 唐尧华,黄欢.物联网安全关键技术研究[J].河北省科学院学报,2011,28(4):49-52.
[7] 李振汕.物联网安全性研究[J].技术研究,2011(4):75-77.
[8] 朱政坚.无线传感器网络安全关键技术研究[D].长沙:国防科学技术大学,2010.
关键词:物联网;网络攻击;安全防护
随着物联网在国家基础设施、经济活动、以及智能家居、交通、医疗等社会活动方面的广泛应用,物联网的安全问题已不仅仅局限于网络攻防等技术领域范畴,而是已成为影响人们日常生活和社会稳定的重要因素。
1 物联网安全风险分析
从信息安全和隐私保护的角度讲,物联网各种智能终端的广泛联网,极易遭受网络攻击,增加了用户关键信息的暴露危险,也加大了物联网系统与网络的信息安全防护难度。
2 物联网攻击技术及安全防护体系
2.1 感知层安全问题
⑴物理安全与信息采集安全。感知层是物联网的网络基础,由具体的感知设备组成,感知层安全问题主要是指感知节点的物理安全与信息采集安全。
⑵典型攻击技术。针对感知层的攻击主要来自节点的信号干扰或者信号窃取,典型的攻击技术主要有阻塞攻击、伪装攻击、重放攻击及中间人攻击等。
2.2 网络层安全问题
网络层主要实现物联网信息的转发和传送,包括网络拓扑组成、网络路由协议等。利用路由协议与网络拓扑的脆弱性,可对网络层实施攻击。
⑴物联网接入安全。物联网为实现不同类型传感器信息的快速传递与共享,采用了移动互联网、有线网、Wi-Fi、WiMAX等多种网络接入技术。网络接入层的异构性,使得如何为终端提供位置管理以保证异构网络间节点漫游和服务的无缝联接时,出现了不同网络间通信时安全认证、访问控制等安全问题。
跨异构网络攻击,就是针对上述物联网实现多种传统网络融合时,由于没有统一的跨异构网络安全体系标准,利用不同网络间标准、协议的差异性,专门实施的身份假冒、恶意代码攻击、伪装欺骗等网络攻击技术。
⑵信息传输安全。物联网信息传输主要依赖于传统网络技术,网络层典型的攻击技术主要包括邻居发现协议攻击、虫洞攻击、黑洞攻击等。
邻居发现协议攻击。利用IPv6中邻居发现协议(Neighbor Discovery Protocol),使得目标攻击节点能够为其提供路由连接,导致目标节点无法获得正确的网络拓扑感知,达到目标节点过载或阻断网络的目的。如Hello洪泛攻击。
2.3 应用层安全问题
应用层主要是指建立在物联网服务与支撑数据上的各种应用平台,如云计算、分布式系统、海量信息处理等,但是,这些支撑平台要建立起一个高效、可靠和可信的应用服务,需要建立相应的安全策略或相对独立的安全架构。典型的攻击技术包括软件漏洞攻击、病毒攻击、拒绝服务流攻击。
3 物联网安全防护的关键技术
物联网安全防护,既有传统信息安全的各项技术需求,又包含了物联网自身的特殊技术规范,特别是物物相连的节点安全。
3.1 节点认证机制技术
节点认证机制是指感知层节点与用户之间信息传送时双方进行身份认证,确保非法节点节点及非法用户不能接入物联网,确保信息传递安全。通过加密技术和密钥分配,保证节点和用户身份信息的合法性及数据的保密性,从而防止在传递过程中数据被窃取甚至篡改。
物联网主要采用对称密码或非对称密码进行节点认证。对称密码技术,需要预置节点间的共享密钥,效率高,消耗资源较少;采用非对称密码技术的传感,通常对安全性要求更高,对自身网络性能也同样要求很高。在二者基础上发展的PKI技术,由公开密钥密码技术、数字证书、证书认证中心等组成,确保了信息的真实性、完整性、机密性和不可否认性,是物联网环境下保障信息安全的重要方案。
3.2 入侵检测技术
入侵检测技术,能够及时发现并报告物联网中未授权或异常的现象,检测物联网中违反安全策略的各种行为。
信息收集是入侵检测的第一步,由放置在不同网段的传感器来收集,包括日志文件、网络流量、非正常的目录和文件改变、非正常的程序执行等情况。信息分析是入侵检测的第二步,上述信息被送到检测引擎,通过模式匹配、统计分析和完整性分析等方法进行非法入侵告警。结果处理是入侵检测的第三步,按照告警产生预先定义的响应采取相应措施,重新配置路由器或防火墙、终止进程、切断连接、改变文件属性等。
3.3 访问控制技术
访问控制在物联网环境下被赋予了新的内涵,从TCP/IP网络中主要给“人”进行访问授权、变成了给机器进行访问授权,有限制的分配、交互共享数据,在机器与机器之间将变得更加复杂。
访问控制技术用于解决谁能够以何种方式访问哪些系统资源的问题。适当的访问控制能够阻止未经允许的用户有意或无意获取数据。其手段包括用户识别代码、口令、登录控制、资源授权、授权核查、日志和审计等。
[参考文献]
[1]刘宴兵,胡文平.物联网安全模型与关键技术.数字通信,2010.8.
[2]臧劲松.物联网安全性能分析.计算机安全,2010.6.
试点示范是在2015年工作基础上,将工作覆盖对象拓展至互联网企业和网络安全企业,包括各省、自治区、直辖市通信管理局,中国电信集团公司、中国移动通信集团公司、中国联合网络通信集团有限公司,各互联网域名注册管理和服务机构,各互联网企业,各网络安全企业有关单位。其目的在于继续引导企业加大网络安全投入,加强网络安全技术手段建设,全面提升网络安全态势感知能力,促进先进技术和经验在行业的推广应用,增强企业防范和应对网络安全威胁的能力,切实提升电信和互联网行业网络安全防御能力。
试点示范申报项目应为支撑企业自身网络安全工作或为客户提供安全服务的已建成并投入运行的网络安全系统(平台)。对于入选的试点示范项目,工业和信息化部将在其申请国家专项资金、科技评奖等方面,按照有关政策予以支持。
试点示范重点引导重点领域,包括:
(一)网络安全威胁监测预警、态势感知与技术处置。具备网络攻击监测、漏洞挖掘、威胁情报收集或工业互联网安全监测等能力,对安全威胁进行综合分析,实现及早预警、态势感知、攻击溯源和精确应对,降低系统安全风险、净化公共互联网网络环境。
(二)数据安全和用户信息保护。具备防泄漏、防窃密、防篡改、数据脱敏、审计及备份等技术能力,实现企业数据资源和用户信息在收集、处理、共享和合作等过程中的安全保护,能够不断提升企业数据资源和用户信息保障水平。
(三)抗拒绝服务攻击。具备抵御拒绝服务攻击和精确识别异常流量的能力,能对突发性大规模网络层、应用层拒绝服务攻击进行及时、有效、准确的监测处置。
(四)域名系统安全。实现域名解析服务的应急灾难备份,有效防御针对域名系统的大流量网络攻击、域名投毒以及域名劫持攻击,提供连续可靠的域名解析服务或自主域名安全解析服务。
(五)企业内部集中化安全管理。具备全局化的企业内部管理功能,实现网络和信息系统资产与安全风险的关联管理,能够对企业的内部系统全生命周期的安全策略实现可控、可信、可视的统一精细化管理。
(六)新技术新业务网络安全。具备云计算、大数据、移动互联网、物联网、车联网、移动支付等新技术新业务的安全防护能力,能对以上各类业务场景提供特定可行有效的安全保护手段和解决方案。
(七)防范打击通讯信息诈骗。一是具备监测拦截功能;二是能够实现对防范打击通讯信息诈骗重点业务的管理。
(八)其他。其他应用效果突出、创新性显著、示范价值较高的网络安全项目。
关键词:物联网;体系结构;安全
物联网是继计算机、互联网与移动通信网络之后的一个新兴网络技术。物联网能够让物体拥有智慧,从而实现人与物、物与物之间的信息交互。它是全面感知、可靠传输和智能处理的叠加。从信息安全的角度看,物联网是一个多网并存的异构融合网络,存在的安全问题包括与其他网络相同的安全问题,也包括其特殊的安全问题。目前,物联网的体系结构被公认为有三个层次:感知层、网络层和应用层。
1物联网感知层安全
感知层要全面感知外界信息,主要是采集、捕获原始信息和识别物体。感知层设备收集的信息通常具有明确的应用目的,如公路摄像头捕捉的图像信息直接用于交通监控,使用导航仪可以轻松了解当前位置及要去目的地的路线;使用摄像头可以和朋友聊天和在网络上面对面交流;使用RFID技术的汽车无匙系统,可以自由开关门,甚至开车都免去钥匙的麻烦,也可以在上百米内了解汽车的安全状态等。但是,各种方便的感知系统给人们生活带来便利的同时,也存在各种安全和隐私问题。例如,通过摄像头的视频对话或监控在给人们生活提供方便的同时,也会被恶意企图的人控制利用,从而监控个人的生活,泄露个人的隐私。特别是近年来,黑客利用个人计算机连接的摄像头泄露用户的隐私事件层出不穷[1]。另外,在物联网应用中,有时需要同时处理、综合利用多种类型的感知信息,不同的感应信息可能会相互影响。同时,物联网应用强调的是信息共享,因此,相同的信息会被不同的平台应用,如何处理这些感知信息将对信息的有效应用产生直接影响。
1.1感知层的安全挑战
1)感知层的网络节点遭到恶意控制。2)感知节点所获取的信息被非法捕获。3)感知层的普通节点密钥被控制者捕获。4)感知层的普通节点被非法捕获。5)网络DoS的攻击。6)大量感知节点的标识、识别、认证和控制问题。
1.2感知层的安全需求
针对以上感知层的安全挑战,感知层的安全需求可以归纳为:1)保密性:大多数的感知层内部是不需要进行认证和密钥管理的,因此可考虑在整个感知层统一部署一个可共享的密钥。2)节点认证:当数据共享时,考虑到非法节点接入的可能性,个别感知层的节点需要进行认证。3)密钥协商:预先协商会话密钥要在数据传输前进行[2]。4)信誉评估:为降低攻击方入侵后的危害,经常性评估重要感知层可能被攻击方控制的节点行为。5)安全路由:所有感知层内部对安全路由技术有不同的要求。
1.3感知层面临的安全问题
感知层面临的信息安全问题体现在以下几个方面:1)传统的互联网的安全保护能力相对完整,但是当互联网中大量数据同时发送时,可能会使得感知层的节点受到来自于网络的拒绝服务(DoS)攻击。2)感知层的普通节点被敌手捕获或者网关节点被敌手控制,都会为入侵者对物联网发起攻击提供可能性[3]。3)要十分关注每个感知层节点的标识、识别、认证和控制问题。
2物联网网络层安全
通过物联网网络层,可以把感知层所收集到的信息安全可靠地传送到应用层,主要依靠网络基础设施,包括互联网、移动网和一些专用网(如国家电力专用网、广播电视网)等[2]。因此,在信息传输过程中不可避免地会出现跨网络传输,在物联网环境中尤为常见,因此,极有可能产生信息安全隐患。物联网不仅存在移动通信网络和互联网这些传统网络带来的网络安全问题,而且由于在物联网中存在大量缺少有效管控的自动设备,并且终端数量庞大,设备种类和应用场景复杂,这些因素都对物联网网络安全提出了新的挑战。
2.1网络层的安全挑战
1)假冒攻击、中间人攻击等。2)非法接入。3)信息窃取、篡改。4)DoS攻击、DDoS攻击。5)跨异构网络的网络攻击。
2.2网络层的安全需求
在网络层,异构网络的信息交换是需要集中关注的安全重点,尤其是在网络认证方面需要有更好的安全防护措施。信息在网络中传输时,很可能被攻击者非法获取到相关信息,甚至篡改信息,必须采取保密措施进行保密保护。因此,网络层的安全需求可以归纳如下:1)数据保密性:数据传输的内容不能被泄露。2)数据完整性:在传输过程不能出现非法篡改数据的现象。3)数据流保密性:有些应用要求数据流量信息不能被泄露。4)认证与密钥协商机制的一致性或兼容性:需要进行跨域认证和不同无线网络所使用的不同认证,并解决密钥协商机制对跨网认证的不利影响。5)DDoS攻击的检测和预防:这是物联网中最常见的攻击现象,需要采取对脆弱节点的DDoS攻击防护措施[2]。
2.3网络层面临的安全问题
2.3.1来自物联网接入方式的安全问题网络层传输采用各种网络,如移动互联网、有线网、WiFi、WiMAX等各种无线接入技术,于是,保证异构网络间节点漫游和服务的无缝移动成为了重要课题[1]。另外,物联网主要依靠移动通信网络接入,而移动通信网络中移动站与固定网络端之间的所有通信都是通过无线接口来传输的。众所周知,无线接口是开放的,这样就使得任何使用无线设备的个体都可以窃听无线信道,以此窃取其中传输的信息,甚至任意篡改其中传输的信息。因此,移动网络存在的安全因素有无线窃听、身份假冒、数据篡改等。2.3.2来自物联网终端自身的安全问题随着物联网应用的日益丰富,业务终端也日趋智能化,终端的计算和存储能力不断增强,同时也提高了终端感染病毒、木马或恶意代码入侵的几率。一旦终端被入侵成功,之后通过网络传播就变得非常容易。病毒、木马或恶意代码在物联网内具有更大的传播性和更强的破坏性。同时,网络终端自身系统平台的完整性保护和验证机制不健全,在此之上传递的信息很容易被窃取或篡改。如果物联网终端丢失或被盗,那么在终端内存储的私密信息也极有可能泄露。2.3.3来自核心网络的安全未来,物联网网络层的主要载体将会是全IP化移动通信网络和互联网。相对来说,移动通信网络和互联网的核心网络的安全保护能力是比较完整的,但在全IP化开放性网络中,传统的DoS攻击、DDoS攻击、假冒攻击等网络安全问题仍是不可避免的,且由于物联网中,以分布式集群方式存在的终端数量较多,所以在批量数据传输时极有可能使承载网络造成堵塞,产生拒绝服务攻击。
3物联网应用层安全
开展物联网系统的具体业务是物联网应用层设计的主要目的,它所涉及的信息安全问题是直接面向物联网用户群的,与物联网的其他层次有着明显的区别。物联网应用范围较广,因此,对广域范围的海量数据信息处理和业务控制策略提出了很大的安全挑战,尤以业务控制和管理、隐私保护等安全问题更为突出。此外,物联网应用层的信息安全还涉及信任安全、位置安全、云安全以及知识产权保护等。
3.1应用层的安全挑战
应用层的安全挑战大致可归纳为以下几点:1)大量终端的数据识别和处理;2)智能变成低能;3)应急控制和恢复;4)内部攻击;5)设备(尤其是移动设备)的丢失。
3.2应用层的安全需求
在物联网中,信息是海量的,平台是分布式的。当不同的数据通过一个平台处理时,首先应该解决数据分配的问题,因此要先进行数据分类。还有,许多数据都是加密数据,如何快速有效地处理海量加密数据是这一阶段要考虑的主要问题。应用层的安全需求可以从以下几个方面的问题加以考虑:1)使隐私保护和认证不冲突;2)追踪已泄露的信息;3)销毁计算机数据;4)进行计算机取证;5)保护电子产品和软件的知识产权;6)根据不同的访问权限筛选同一数据库中的内容[4]。
3.3应用层面临的安全问题
1)业务控制和管理:首先要解决对物联网设备远程签约,以及对业务信息进行配置的问题。其次,物联网需要一个统一全面的安全管理平台。最后,还需要在不割裂网络与业务之间信任关系的前提下,解决对物联网机器的日志等安全信息进行管理的问题。2)隐私保护:涉及个体隐私的数据在物联网中是非常多的,如个人位置信息、个人健康数据、个人出行路线、企业产品信息等,因此,隐私保护技术将成为物联网安全技术研究的热点问题。
4结束语
针对各个层次的独立安全问题,已经有一些信息安全解决措施。但对于一个物联网应用整体来讲,各个层次的独立安全措施简单叠加并不能达到一加一等于二甚至大于二的效果,也就是说,要对物联网提供可靠的安全保障,单纯依靠每个层次的独立安全措施是行不通的。一方面,已有的对感知层、网络层的部分安全解决方案在物联网环境中可以使用,另外一部分在物联网环境中不能适用。第一,物联网中的传感器数量和终端数量很多,这些都是单个传感网所不具备的;第二,物联网所连接的终端处理能力相差很大,它们之间相互作用,信任关系复杂;第三,与传统的互联网和移动网相比,物联网所处理的数据量要大得多。另一方面,物联网各个层次的安全并不代表整个物联网的安全。原因如下:1)物联网是一个大系统,它融合多个逻辑层于一体,而往往很多安全问题都来自于系统融合;2)数据共享是物联网区别于传感网的最大特点之一,因此,物联网对安全性的要求更高;3)物联网的应用领域非常广泛,渗透到现实生活中的各行各业,所以,在物联网应用中,除了传统网络的安全需求外,如认证、授权、审计等,还包括物联网应用数据的隐私安全需求、服务质量需求和应用部署安全需求等,对安全提出了更多的要求。因此,对物联网的发展而言,需要在现有信息安全体系之上,构建全面、可靠传输、智能处理并可持续发展的安全架构。
参考文献
[1]桂小林,张学军,赵建强.物联网信息安全[M].北京:机械工业出版社,2014:1-53.
[2]武传坤.物联网安全架构初探[J].中国科学院院刊,2010(4):411-419.
[3]张横云.物联网感知层的信息安全防护研究[J].电脑知识与技术,2011,7(19):73-74.
[4]曲艳博.面向物联网的SIP协议安全方案研究[D].西安:西安电子科技大学,2014.
【关键词】未来;信息安全;趋势
随着信息技术应用与生产生活的日益融合,以其开放性、创新性、信息的交互性和数据的共享性应用到各个领域,促进了社会的发展。因此也受到来自互联网上的黑客、竞争对手等攻击的安全威胁。传统的防火墙、IDS、IPS因限于网络边界的安全防护,能力受到局限,攻击者多采用如APT、利用社交网络漏洞,使传统的安全手段难以检测、防护。同时,云计算及虚拟化、物联网网等新技术的快速发展,为用户提供了更为灵活、开放的体系应用及服务,同时也为信息安全管理和防护提出了新要求。未来对用户的信息安全,不仅拘囿于单纯的安全软硬件实体,而是一种安全实体、安全的服务和防护策略的整体实施。
一、未来信息安全的相关角色
在探讨信息安全发展趋势中,依据应用及管理角度的不同,分为用户、管理机构、攻击者和系统供应商和安全厂商的相关角色。用户:IT系统的最终使用者;系统供应商:为用户提供应用系统和技术服务的供应商;管理机构:对信息系统的安全应用负有管理职责的行业主管部门;攻击者:对用户需求的服务、数据进行攻击破坏的个人、组织或集体;安全厂商:为用户提供安全服务包括安全产品和安全咨询的厂商,帮助用户抵御非法攻击和破坏。基于信息安全相关角色,通过相关角色技术能力和服务模式的发展,结合IT技术创新应用、攻防技术的发展及管理部门的要求等可能影响安全防护能力的因素,分析所面临的安全挑战,提出应对技术策略。信息安全技术是基于网络和系统应用的安全技术,是未来信息安全的发展方向,未来安全技术发展的趋势将是系统安全、智能化安全、物联网安全、云安全及虚拟化和数据安全。
二、未来安全技术发展趋势
(一)系统安全。系统安全是从系统供应商机角色予以实施的防护措施。操作系统、各种网络服务及应用程序经过开发商的测试人员和公测后,并不能保证系统的安全措施到位,各种漏洞公告已证实了的软件是有可能存在安全漏洞的,系统供应商将产品推向市场前应做好全方位的安全考虑,系统安全测试的方法论将成为学术界的一个重要研究课题。
(二)智能化安全。指智能信息处理及人工智能技术在信息安全领域的应用。目前网络安全产品虽已采用了一些智能信息处理技术,但多限于一些基于规则或策略的相关处理,安全产品的分散部署、独立管理的现状使各种信息难以得到共享和综合应用,缺少足够规模的高质量安全数据是当前网络安全领域走向更进一步智能化的一个瓶颈。
安全设备的互联整合、安全智能管理,为安全智能提供了更大的发展空间,开放的安全应用平台可以汇聚来自互联的各种安全设备的数据、检测信息以及其他方式获得的安全威胁信息等,从而解决安全分析数据不足的问题。而对大规模安全数据的管理、入侵行为模式分析、全局域网安全态势评估、安全信息评估、威胁情报分析以及各种自动化配置管理工具开发等安全运营相关的核心工作,都将离不开智能信息处理技术及人工智能技术的支持。
(三)物联网安全。物联网是一种虚拟网络与现实世界实时交互的新型系统,其特点是无处不在的数据感知、以无线为主的信息传输、智能化的信息处理。物联网技术的推广和运用,一方面将显著提高经济和社会运行效率,但由于物联网在许多场合都需无线传输,信号很容易被窃取,也更容易扰,这将直接影响到物联网体系的安全。物联网规模很大,与人类社会的联系十分紧密,一旦受到攻击,将导致用户或社会的混乱,影响巨大;另一方面物联网对信息安全和隐私保护问题提出了严峻的挑战,在未来的物联网中,每个人拥有的每件物品都将随时随地连接到网络上,随时随地被感知。如何确保信息的安全性和隐私性,防止个人信息、业务信息和财产丢失或被他人盗用,物联网安全技术是未来信息安全发展的一个重点。
(四)云安全及虚拟化。云安全是继云计算和云存储后出现的云技术的重要应用。其融合了并行处理、网格计算、未知病毒行为判断等新兴技术和概念,通过网状的大量客户端对网络中软件行为的异常监测,获取互联网中木马、恶意程序等最新信息,传送到Server端进行自动分析和处理,再把的解决方案分发到每一个客户端。云安全注重的是云计算和存储服务带来的安全问题与虚拟化技术提供的安全服务,涉及云计算、存储等方面的安全技术。云及虚拟化安全涉及云计算、存储及虚拟技术的安全功能及虚拟部署。
(五)数据安全。数据安全主要关注数据在生成、存储、传输、处理及销毁的整个数据生命周期地机密性、完整性及可用性,是信息安全防护体系中最为关键的基础防护措施。重要信息系统敏感数据的安全保护、互联网上个人隐私信息的防泄漏、舆情分析、内容过滤等都是当前数据安全技术研究的重点。
三、安全的发展趋势
基于信息安全防护技术的分析,未来信息安全发展趋势为:
(一)可信化。硬件平台上引入安全芯片,小型的计算平台变为“可信”的平台。充实和完善如基于TCP的访问控制、基于TCP的安全操作系统、基于TCP的安全中间件、基于TCP的安全应用等技术。
(二) 标准化。信息安全将步入规范化管理,安全技术要接入国际规范,走向应用。信息安全标准研究与制定如密码算法类标准、安全认证与授权类标准(PKI、PMI、生物认证)、安全评估类标准、系统与网络类安全标准、安全管理类标准,需要有一个统一的国际标准予以规范管理。
(三)融合化。从单一的信息安全技术与产品,向多种安全技术与服务融合的发展。安全产品硬件化/芯片化发展的技术趋势,为提升安全度与更高运算速率,开展灵活的安全实体技术,实现安全硬件实体与安全技术服务策略的融合。
四、结束语
综上分析,系统安全、智能化安全、物联网、云及虚拟化和数据安全是未来信息安全技术研究的趋势。而信息的可信化、网络化、标准化和安全实体服务融合将是未来信息安全的发展趋势,为实现信息安全,应合力建立健康的安全环境,加强关键信息基础设施的安全管理,提升系统安全性,加强安全经验积累,开展深入的安全探索,建立网络与信息安全的整体防御策略。为用户的安全提供可靠的保障。
参考文献:
[1]信息安全与保密.黄月江.2008.7.国防工业
[2]物联网在中国.雷吉成.2012.6.电子工业出版社