发布时间:2023-10-08 10:03:48
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇航天航空标准,期待它们能激发您的灵感。
关键词:XML;数据体制;统一标准化;航天测控网统一系统;综合服务应用平台
中图分类号:TN915.4—34文献标识码:A文章编号:1004—373X(2012)18—0099—03
数据是航天测控系统处理和应用的核心[1]。随着我国航天测控事业的不断发展,整个航天测控系统将发展成为以中继卫星为中心的天基测控网,以陆地测站为中心的陆基测控网和以测量船站为中心的海基测控网三个相对独立的测控系统[2—3],而且各方用户对整个系统提供综合应用服务的需求也不断提高。现有传统的航天测控数据体制,采用约定字段数据包结构的数据处理和应用模式,使得的数据处理及应用都较受限制。为此,构建一个统一化、标准化的数据体制,实现整个测控系统数据的统一标准化处理和应用,将对我国航天测控事业的进一步发展具有重要意义。随着XML(eXtensibleMarkupLanguage)相关协议标准和应用技术的不断成熟,使XML逐渐成为一种处理应用系统间数据交换的标准[4—5]。
1现有传统航天测控数据体制分析
现有传统的航天测控系统采用约定字段数据包结构的数据体制,这种体制在数据处理和应用方面,都有其自身的局限性。
1.1数据处理方面
在以约定字段数据包为核心的数据处理中,数据的生产者需要按照约定的格式填写各个字段,建立完整的数据包并发送给数据的消费者。数据的消费者首先要按照约定的格式,从数据包中分解出各个数据字段,最终得到各个应用数据,然后才能对这些数据进行处理[6]。这种数据处理方式有几个明显的不足:一是数据处理的代码耦合度高,为针对不同任务而进行的软件维护设计将要求对软件代码的重新修改与测试,从而影响了软件的可重用性和模块化;二是不同数据处理单元之间的接口复杂,标准不统一。假设有n个模块要进行信息交互,则会存在Cn2个接口,这使得数据的交互和集成变得十分困难。
此外,传统数据体制对数据的处理不能有效区分实时与非实时数据,实际可用数据处理资源无法实现合理分配,传输带宽的弹性较小。
1.2数据应用方面
数据应用以数据处理为基础。一方面基于约定字段数据包结构的传统数据体制限制了系统对底层数据的处理方式和处理能力,从而影响了数据应用的可实现行和丰富性;另一方面,在传统的航天测控数据体制下,不同测控网之间的数据交互仅仅只解决了基本的数据链路和数据传输的问题,对数据网络层与应用层的设计与处理较少。同时,数据的传输与网络特性单一,使得系统对通信资源的分配和利用力不从心,系统可统一应用的数据范围和综合性较受限制,不利于系统的适应性和拓展性发展。
2基于XML的航天测控数据体制
2.1XML的特点
XML是由W3C(WorldWideWebConsortium)的一种标准,是标准通用标记语言(StandardGeneralizedMarkupLanguage,SGML)的一个简化子集。它具有以下几个传统约定数据包结构数据不具有的显著特点[7—8]:
(1)数据的自描述性,适用于特定领域的数据处理和应用。
(2)结构化的数据模型,为数据显示和处理提供标准的处理方式。
(3)丰富的网络传输特性,可作为性能良好的通信协议。
(4)成熟的XML应用标准与处理技术,如XSL,DOM,SAX,WML,XLink和XPointer等为XML的应用拓展提供了技术支持。
此外,航天测控网的IP化改造,也为XML的技术实现提供了硬件平台。
2.2基于XML的航天测控数据体制
航天测控数据处理按时间的要求不同可分为实时数据处理和非实时数据处理。实时数据处理要求处理速度快,时间短,方法简单,所使用的数据为流数据,大多不会重复使用。非实时数据处理流程多,方法精细、复杂,所使用的数据为积累数据,大多需要重复使用。
传统约定字段数据包结构的数据处理方式具有实时性强,效率高的特点,而基于XML的数据处理模型,标准统一,具有良好的传输与网络特性。基于此,对于测控网中要求实时处理的数据(大部分为单个测控网内部的设备数据),采用传统数据的处理机制;而对于非实时处理数据(一般包括单个测控网内部与测控网之间的交互数据),使用XML数据格式进行统一标准化的封装、处理和交互。为此,基于XML的航天测控数据体制的测控网信息交互框架如图1所示。
关键词:焊接技术;航空航天工业;应用
焊接技术是链接技术中的一部分,是航空航天工业紧密器件制造中补课或缺的技术。在现代生产中,各种新型焊接技术的广泛引用,极大地简化了航空航天中各类构件的加工,节省了生产材料,提升了生产效率。随着焊接技术的不断进步,航天飞机的重量得到了坚强,同时也为航天飞机及其器件的设计提供了技术支持,带动了航天飞机整体性能的提升。文章将对焊接技术在航空航天工业中的应用研究
1 航空航天工业常见焊接技术
1.1 电子束焊技术
在真空环境下,将高速电子流聚焦后对准工件进行缝接,而这时电子束的动能转化为热能,将金属工件熔合,这种焊接方法就称为电子束焊( EBW)。它也是一种高能束流加工技术,与其它焊接技术相比具有很多优点,例如:能量密度高、焊接深宽比大、变形小、精度高,还可以自动控制等。电子焊接技术这些优势,使得它在航空、航天、电子、核工业等产业方面应用广泛。将电子束焊接技术运用于航空制造业中,使得制造飞机发动机更加精密,质量更加先进,也使得很多零件的减重设计、异种材料或者难以整体加工的零件材料的焊接得以实现。在航空航天产业方面,最重要的技术就是焊接零件具备高强度、低重量和稳定性的特点,而电子束焊接恰好解决了这一问题。由此可见,在航天航空领域,电子束焊接已经成为一项必不可少的技术。
1.2 激光焊技术
激光技术首先依靠偏光镜反射装置,将激光束聚焦在工件上,利用光束产生的巨大能量,瞬间就可以将工件熔化和蒸发,这种技术就是激光焊接。激光焊所需的装置较为简单,焊接时能量密度高、精确度高,工件变形小,而且可以焊接难熔零件等,这种技术在室温或特殊条件下都可以进行。在对飞机大蒙皮和附件进行拼接时,经常用到激光焊技术。早在1970年左右,美国就将激光焊技术运用于航空航天工业中。他们制造了一台15kW的CO2仿激光焊机弧光器,在生产飞机的各种零件和材料时运用了激光焊技术,对其进行焊接试验及提高工艺标准。空中客车公司生产的A340飞机,其零件中的全部铝合金内隔板都是利用激光焊接技术完成,使得机身重量有所,生产成本也得到降低。
1.3 搅拌摩擦焊技术
1991年,英国焊接研究所(英文简称为TWI),研发了一种新的固相连接技术,并将其命名为搅拌摩擦焊技术(英文简称为FSW)。该项技术是世界焊接技术发展史上研究历史最短但传播速度最快的焊接技术。它的工作原理是,通过一种非耗损的搅拌头,使其高速旋转,然后压入待焊界面,经过高速摩擦加热被焊金属界面从而产生热塑性。最后,零件在压力、推力和挤压力的共同作用下形成致密的金属间扩散连接。该项技术的特点是,焊接时无需材料、无飞溅、无需气体保护、零件损伤小等,由此也被称作当代最具革命性的焊接技术。例如,波音公司在生产C-17和C-130运输机时,也利用该技术焊接地板来代替紧固件连接,使得地板结构得到简化,生产成本得到降低。总而言之,搅拌摩擦焊技术将在未来的工业应用中发挥巨大的潜力。
1.4 扩散焊技术
扩散焊又称扩散连接,它是指在真空环境或者气体保护下,对母材加热至熔点以下,将两个或多个零件表面施加压力,使界面产生微观塑性变形形成紧密接触,保持某一温度使原子在界面扩散而,最终将零件连接到一起。使用该焊接方法,一次可焊接多个接头,零件的接头质量好、形变小,而且焊后无需机加工。由于这些优点,在直升飞机的钛合金旋翼桨毂、夹层风扇叶片、飞机大梁、发动机机匣、涡轮叶片等零件的生产制造过程中,扩散焊技术已经得到了广泛的运用。在航空航天领域,焊接技术已经成为了必不可少的重要连接技术,该技术的运用使得飞行器重量有所减轻,发动机质量有所提高,所以大大推动了航天航空产业的发展和生产技术的提高。很显然,我国航天航空工业在将来的发展中,离不开焊接技术。与此同时,该技术的运用也会推动航天航空工业的飞速发展。
2 焊接技术在航空航天工业中的应用―以电子束焊接技术为例
随着技术的不断进步,越来越多的先进焊接技术被研发出来,不仅可以有效地减轻航天航天结构的重量,更可以通过提供先进的技术支持,为航天航空飞机、发动机综合性能和整体性能的提升提供帮助。电子束焊接技术则是航空航天工业中普遍运用的一种焊接技术。
2.1 电子束焊接在发动机燃烧室中的应用
发动机燃烧室身部主要使用的是不锈钢焊接结构和铜胎上电铸金属。但是,在进行焊接时,由于受各自物理化学性能存在巨大差别,极大地增加了焊接难度,特别是在接头处记忆产生杂质。当存在较大的焊接应力时,接头处容易出现开裂。同时,在高温情况下,电铸层容易出现削弱,甚至剥离。此外,在采用电子束焊接时,也会受到来自电铸金属层的磁性的影响。因此,在采用电子束焊接技术进行焊接时,首先应对电铸金属层进行整体退磁,对电子束的路径进行磁场屏蔽处理。焊接时,主要采用高压型电子束焊机对燃烧室进行焊接。要尽量避免焊接时产生过多热量,避免变形,并尽可能的降低接头的应力,防止易熔夹层的形成,避免应高温而出现的结合力降低的情况,可以有效地避免开裂情况的出现。
2.2 电子束焊接在波纹管组合件中的应用
航空航天发动机产品中波纹管组合件是其重要组件之一。同时,也是需要利用电子束焊接技术进行焊接的重要部分。一般而言,多层金属波纹管是航天发动机的主要的动密封原件。多层金属波纹管作为动密封原件的主要优势在于不会出现卡滞现象,相对比较灵活。为此,保证运动灵活与良好气密性是波纹管组合件生产的关键所在,而这个环节需要通过焊接来实现。采用电子束焊接技术,可以有效地增强波纹管的接头强度,从而在尽可能避免变形的同时,保证焊接的美观和密封性。
2.3 电子束焊接在压力容器中的应用
在航空航天工业应用中,压力容器的主要用途在于对各种流体介质进行存储。压力容器质量的好坏,直接关系到空间系统的稳定性。电子束焊接在制造高质量压力容器中具有主导作用。在推进系统中,燃料储箱与气瓶是关键部件。根据有关部门的统计结果显示,压力容器的多发故障主要集中在气瓶焊缝处。因此,在进行焊接时,气瓶处焊接要求极高。采用电子束焊接时,可以通过单面焊双面成形,从设备和工艺的角度控制焊缝内外表面的咬边缺陷的出现。此外,随着近年来复核材料气瓶逐渐增多,其由内外两层构成。其中,内层为金属衬层,而外层的复合材料层。前者的作用在于气密作用,而后者的复核材料则主要承担大部分内压载荷。通过电子束焊接技术主要针对气瓶中的内层,即金属内衬进行焊接,这部分的金属一般采用钛合金或铝合金制作,因而相对比较薄。通过真空电子束可以更加精确的进行焊接,避免气孔缺陷。
3 结束语
焊接技术是航空航天领域的重要连接技术,它在促进航空航天制造技术的发展、实现飞行器的减重、高效中发挥着越来越重要的作用。可以预见,我国航空航天工业在突飞猛进的焊接技术的推动下定将取得快速发展。我们相信,随着技术焊接技术的不断进步,我国航空航天工业水平也将得到明显的提升。
参考文献
[1]王亚军,卢志军.焊接技术在航空航天工业中的应用和发展建议[J].航空制造技术,2008,16:26-31.
[2]马卓.先进焊接技术发展现状与趋势[J].科技创新与应用,2013,3:122.
贾可:航天高科技成果转化门类达18个
中国航天科技集团公司2014年营业收入超过1680亿元,其中民用产业986.4亿元。展览上,中国航天科技集团公司抓总研制的五号运载火箭、嫦娥三号着陆器与巡视器、高分工程、北斗卫星导航系统等航天重大工程,以及通信卫星、风云三号卫星、50吨液氢液氧发动机、直径2米分段式固体助推发动机等展品集体展出,备受瞩目。
“以北斗导航系统的应用为例,不仅满足我国交通运输、渔业、林业、电信、水利等行业需求,而且支撑起我国卫星导航产业链,推动导航卫星在国民经济和社会生活各方面的应用。”贾可说,“国民经济目前20个门类中,我们集团公司航天高技术涉及的科技成果转化门类达到18个,为促进国民经济结构优化升级,提高国民经济科技含量发挥了积极作用。”
吕晓戈:军工企业研发民品也是大咖
中国航天科工集团公司携“航天云网”等用40余项展品重磅“亮相”,涉及信息安全、高端装备、公共安全、大型活动安保、智慧城市、应急救援等多个领域。
航天科工打造的以云制造服务为核心,以资源共享、能力协同为目标的产业化创新服务平台――“航天云网”2015年6月正式上线运行。截至目前,已吸引2万余家企业用户、覆盖全国30个省区市。此外,被誉为中国新税制“生命线”的防伪税控系统和3000马力大功率液力变速器分获国防科技工业军民融合发展产业先锋奖和技术创新奖。
“在抗震抢险的一线,在反恐维稳的战场,在刑侦禁毒的山区……海鹰无人机犹如一个个空中智能机器人,以‘无人机+’捍卫着国家安全。它可以24小时全天候实施监控,可抗击大风沙,目前已成功应用于国土测绘、警用巡逻、应急救援、农林植保等众多行业领域。”吕晓戈说。
马学文:民机机队数量年均增长27%
中航工业同样以强大阵容亮相展会,展品涉及民用飞机、车辆及零部件、电子信息、智能产品、高端装备制造、新能源与新材料等六大“技术同源、产业同根”的民用产业。
11项展品组成强大飞机方阵,全方位展示中航工业在大型客机、直升机、通用飞机、无人机、航空发动机、飞行模拟器等民机领域的研制实力。AC311和小鹰500两型真机在室外展区展示。AC312、新舟700、新舟60、AG600、运12F、鹞鹰无人机以模型形式出现在室内展区。两轴全向飞行模拟器可以全方位、无死角模拟飞机的各个姿态,同时加入了空战元素和联网对抗机制,让观众切身感受飞行的乐趣。
Comic Life是一个相当有意思的应用程序,用户可以通过它以自己的照片为素材制作漫画。它最让人觉得舒心的莫过于使用简单了。使用时,就像在漫画中生活的感觉一样。用户可以快速把图片拖进程序窗口中,并按顺序排开,还可以同时拖进一些文本框,加进一些注释。Comic Life提供了许多独具风格的图形,表格和文字字体让人联想到一些优秀的动画片和漫画。过滤器可以将同一图片制作成不同的风格,比如转换成SimCity中的场景。
图片去水印工具 Inpaint
Inpaint是一款可以从图片上去除不必要的物体,让用户轻松摆脱照片上的水印、划痕、污渍、标志等瑕疵的实用型软件;简单说来,Inpaint就是一款强大实用的图片去水印软件,图片中不想要的部分,如额外的线、人物、文字等,Inpaint都会帮你全自动进行擦除,同时Inpaint会根据附近图片区域重建擦除的区域,使看起来完美无瑕,没有痕迹。
NASA开源飞机设计软件 OpenVSP
美国航空航天航空航天科学会议最近在纳什维尔研究所举行,美国航空航天局的工程师推出了新的开源的OpenVSP。根据这项开源协议,这款软件能够让用户自己简单的参数比如翼展和机身长度等就能构建完整的飞机模型。OpenVSP采用NASA开源协议,提供了Windows和Mac OS X的预编译版。OpenVSP的前任由NASA工程师在1990年代开发,目前的版本是OpenVSP 2.0。
Amaze - 迷宫生成器
Amaze 迷宫生成器,用它生成迷宫,打印给家里的小朋友玩。最大可以生成“800×800”个单元格的迷宫。相当变态。有方格迷宫,六边形迷宫和三角形迷宫可选。“Ctrl + 空格”变换迷宫类型,“Ctrl + G”可以看到唯一穿过迷宫的路径,最后一个“Stay”,是迷宫的复杂度,“1”表示复杂度最高。还可以设置背景颜色、线条颜色。设置完毕,即可打印或导出为图片等格式。这里再告诉大家一个100%能走出迷宫的方法,当进入迷宫后,把左手放在左边的墙上,一直沿着左边的墙走,就一定能走出去哦!
键盘鼠标共享 Synergy
Synergy允许用户轻松地在办公桌上的多台计算机之间共享鼠标和键盘,用户要做的只是将鼠标指针从一台计算机的屏幕边缘移出到另一个计算机的屏幕上。它还可以共享剪贴板。所有这一切需要的仅仅是一个网络连接。Synergy是跨平台的(可以运行于Windows,Mac OS X和Linux)。
关键词:临近空间飞行器;虚拟试验;高层体系结构;多物理场耦合;异构仿真模型
引言i
临近空间(Near space)通常是指20~100km的高空,由于技术和认识上的原因,临近空间的政治、经济和军事价值直到最近才引起各国的重视,并成为美国、俄罗斯、欧洲等国家和地区近期飞行器技术研究的热点。与其他飞行器不同,临近空间飞行器高速在相当高度的大气层内飞行,各物理场耦合作用特性较强。
临近空间飞行器具有重要政治、经济价值,是一类典型的复杂产品,其研究虽然刚刚起步,但对于我国航天、航空领域建设具有重要意义和深远影响,也是未来几十年内最重要的航天、航空飞行器研究之一。受政治、经济等方面因素的影响,临近空间飞行器的飞行试验不能进行全程验证,难以全面评估飞行性能。虚拟飞行试验在一定的精度下,能够替代真实试验对临近空间飞行器进行性能分析,对真实飞行试验进行预示,并指导方案设计。从而为提升系统的总体设计水平,提高飞行试验成功率,缩短研制周期,降低研制成本和风险等提供技术保障。
与传统航天航空飞行器系统研究中主要进行基于HLA的航天航空体系仿真及导航、制导与控制闭路的协同仿真不同,临近空间飞行器需要开展多学科、全系统、多物理场耦合过程的协同仿真研究。学科领域的仿真,功能结构复杂,技术含量高,领域间存在着大量的耦合与交互关系,其中一些涉及领域间交互的复杂仿真问题需要多个学科领域的仿真模型、软件相互协作共同完成。协同仿真不需要拆散一个系统,应保持其全貌,使得对系统的分析、设计和评价过程尽可能地接近人们认识系统的方法和习惯;使得分析、设计、实现系统的方法学(原理)与人们认识客观世界的过程尽可能一致。
本文结合临近空间飞行器的各领域模型研究成果,开发了一套能够综合考虑各学科子系统多场耦合作用的跨学科领域的协同建模与仿真的平台,实现基于HLA的临近空间高超声速虚拟飞行仿真试验,为系统总体性能分析与验证提供有效的技术途径。
1临近空间飞行器虚拟试验系统
如图1所示,本文开发的临近空间飞行器虚拟试验软件系统针对结构、强度、控制系统、载荷、热环境、气动力等几个领域的模型,提供其与协同仿真支撑环境相链接的高层模型转换方法来建立起联邦对象模型,并结合上述模型仿真计算所基于的ABAQUS、MSC、ANSYS、MATLAB/SIMULINK、FORTRAN等计算工具研制的仿真软件,并提供仿真适配器与领域模型仿真工具的联结,提供各组成邦员之间数据交换的约定,统一各邦员之间可见的仿真对象及属性,定义交互类,按照对象模型模版格式创建,描述邦员间互操作的约定。
图1 临近空间飞行器虚拟试验系统及异构仿真模型集成方法
各领域仿真模型与应用软件通过异构仿真模型的协同集成软件系统与仿真运行平台相链接。协同集成软件系统与仿真运行平台均按照高层体系结构(High Level Architecture, HLA)接口规范建立的,是HLA协同仿真系统进行分层管理控制的工具,也是进行临近空间仿真技术研究的立足点。HLA期望通过提供一个采用标准的方法解决联邦模式仿真中存在的固有问题,支持对应用系统的即插即用;支持对未来新技术的充分兼容与应用;支持对不同仿真应用的重用,实现联邦的快速组合与重新配置;支持用户协同地开发复杂仿真应用系统,并最终降低开发新应用系统的成本和时间。基于HLA的软总线式协同仿真模式克服了其它协同仿真模式的不足,在开放性、灵活性和通用性上都具有很大的优势。
2 协同仿真运行平台
为便于描述飞行器系统仿真内部逻辑,明确多学科协同仿真运行平台的规划、设计、实施和运行,并提供一个完整通用的参考结构,需要首先从系统的角度对其进行分析和描述。如图2所示的仿真运行框架中,三层体系结构将数据、服务与应用分离开来,便于各种应用软件,包括商用仿真软件的集成,保证了整个系统的灵活性和开放性。
仿真运行服务主要需解决:互操作问题,如何由最高层的应用互操作映射到最底层的网络互操作,以保证整个运行过程的可行性;时间同步问题,如何保证多学科协同仿真系统能够正确的顺利的向前推进,并提供相应的容错机制;运行管理问题,如何实现对协同仿真运行过程进行有效的监视和控制,以增强整个系统的可操作性,实现系统调试、自动优化、用户交互等复杂操作。
图2 虚拟飞行仿真运行平台
协同仿真运行管理器符合HLA1516标准规范,从整体角度对协同仿真系统进行运行管理,包括仿真运行支撑软件的启动/停止,协同仿真联邦的创建/撤销、仿真进程的启动/暂停/恢复/完成等等。协同仿真运行管理器基于交互类通信机制,对协同仿真系统的运行过程进行管理。主要用户界面。仿真运行监控器提供对联邦成员的行为的实时监控功能,实现仿真过程的可视化并反馈给网络中的各个设计节点,使得仿真过程更加直观,实时显示仿真联邦的状态,便于用户进行监视,与仿真运行管理器共同通过相应的权限管理机制来保证系统的安全性。
仿真运行服务集的核心是仿真引擎,动态载入不同仿真任务相关的仿真模型后,形成相应的仿真应用系统,实现系统行为调度的形式化和可视化。支持模型的直接连接与快速运行,非编译模式构建系统。仿真引擎基于有限状态机算法实现了系统对模型行为的形式化调度。
3 虚拟飞行试验
基于本文虚拟试验软件平台进行临近空间飞行器虚拟飞行试验过程如图3所示。
图3 飞行段每帧的仿真时序和数据流
在全系统的协同仿真试验阶段,所有的模型都参与了仿真试验,能够充分反映临近空间飞行器飞行过程 中各学科的相互耦合关系,能够完成全程虚拟飞行,具备实现验证总体参数的合理性,验证各学科模型与虚拟试验系统的匹配性,对真实飞行试验进行预示,并指导飞行决策和飞行试验方案设计。
4 结论
与传统航天飞行器系统不同,临近空间飞行器全程飞行的总体性能分析与验证问题非常复杂,进行各相关学科、领域的一体化协同仿真来完成虚拟飞行试验是必要的途径。本文开发了基于HLA的临近空间飞行器虚拟试验系统软件并建立了虚拟飞行试验方法,基于协同仿真适配器和高层模型转换算法提出实现异构模型协同集成的技术,介绍了所提出体系中仿真运行平台和支撑平台的构建方法,所提虚拟飞行试验方法既可体现该复杂系统的整体性,又有效地重用了现有的信息资源,完成临近空间飞行器全程飞行的总体性能验证,符合目前尖端飞行器系统虚拟验证的发展趋势。