当前位置: 首页 精选范文 高层建筑结构设计规程范文

高层建筑结构设计规程精选(五篇)

发布时间:2023-09-19 15:26:13

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇高层建筑结构设计规程,期待它们能激发您的灵感。

篇1

关键词:高层建筑结构设计;工程规则性;多道设防

Abstract: In this paper, the structure design of high-rise building application contrast, description of the bearing capacity, stiffness and ductility for the leading goal, design wind and earthquake are ideal for high-rise building is completely possible. Around high-rise structure design engineering rules and multiple protection design this paper describes the structure design of high-rise building’s key concepts and design ideas.

Key words: high-rise building; structure design; engineering rules; multiple protections

中图分类号:TU318文献标识码:A 文章编号:

一个建筑工程的结构设计首先要明确抗震设防情况、场地情况等。结构方案是结构设计的关键,只有正确选择结构方案,才能在设计中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、方便施工,保证质量。应根据材料性能、结构型式、受力特点和建筑使用要求及施工条件等因素合理选择结构方案[1]。作为一个合理的结构方案,其技术经济效果应当是好的或比较好的,因为它是结构方案的综合评价。本文以马那瓜美洲银行大楼实例为据围绕在设计和构造上利用多道设防的思想,如框架结构采用强柱弱梁设计,梁屈服后柱仍能保持稳定;框架—剪力墙结构设计成连梁首先屈服,然后是墙肢,框架作为第三道防线;剪力墙结构能过构造措施保证连梁先屈服,并通过空间整体性形成高次超静定等的工程抗震设计应用。

一、工程规则性与多道设防的实际工程对比应用

马那瓜地处太平洋火山地震带东侧,近100年来已遭受4次强烈地震的袭击。1972年12月22日夜至23日凌晨的一次突发性强烈地震和震后的大火,使城市几乎全部被毁(市区92%的建筑被摧毁),地面下沉12英寸,死伤数万人(5000--10000人死亡),损失达10多亿美元,至今仍然可以看到地震的遗迹。 震级6.2,烈度估计8度,该次地震,地面加速度为0.35g,几乎是设计地震0.06g的6倍。大地震后,高18层,1963年设计的马那瓜美洲银行大楼(当时最高)只是出现了一些裂缝,而同位于市区的15层的马拉瓜中央银行却严重受损(震后拆除),周围建筑物也发生大规模倒塌,5000多人死亡。当时,这个消息几乎传遍了整个尼加拉瓜,相距如此近(培训四P11:毗邻)的建筑,为何有这般差别?人们发现,马那瓜美洲银行大楼之所以轻微受损,是由于它的形状非常规则、对称,且运用了多道设防设计思想。而中央银行平面和竖向上都不规则。

(1)中央银行平面不规则:四个楼梯间,偏置塔楼西侧,再加上西端有填充墙,地震时产生较大的扭转偏心效应。四层以上的楼板仅50mm厚,搁置在14m长的小梁上,小梁的全高仅450mm,这样一个楼面体系是十分柔弱的,抗侧力的刚度很差,在水平地震作用下产生很大的楼板水平变形和竖向变形。

竖向不规则:塔楼的上部(四层楼面以上),北、东、西三面布置了密集的小柱子,共64根,支承在四楼板水平处的过渡大当人上,大梁又支承在其下面的10根1mx1.55m柱子上(间距9.4m),形成上下两部分严重不均匀、不连续的结构系统。主要破坏:A、第四层与第五层之间,周围柱子严重开裂,柱钢筋压屈(竖向刚度和承载力突变)。B、横向裂缝贯穿三层以上的所有楼板(有的宽达10mm),直至电梯井的东侧。C、塔楼的西立面、其他立面的窗下和电梯井处的空心砖填充墙及其他非结构构件均严重破坏或倒塌。美国加州大学伯克莱分校在震后对其计算分析表明:A、结构存在十分严重的扭转效应;B、塔楼三层以上北面和南面的大多数柱子抗剪能力大大不足,率先破坏;C、在水平地震作用下,柔而长的楼板产生可观的竖向运动等。(2)美洲银行

结构系统平面竖向均匀对称。概念设计思想为多道防线、刚柔结合。先由4个4.6m等边的L形柔性筒(H/b=13.3>>7),通过每层的连梁组成一个11.6mx11.6m的正方形核心筒用为主要抗震结构。在风荷载和抗震设防烈度的地震作用下具有很大的抗弯刚度(H/b≈5),为了预防罕遇强烈地震,有意识地在连梁的中部开了较大的孔洞,一方面可以用来穿越通风管道,减小楼层结构高度;另一方面是有意地形成结构总体系(第一道防线)中的预定薄弱环节,在未来遭遇强烈地震时,通过控制首先在连梁处开裂、屈服、出现塑性铰,从而变成具有延性和耗能能力的结构体系(第二道防线),即各分体系(L形筒)作为独立的抗震单元,则整体结构变柔,周期变长,阻尼增加,地震动力反应将大大地减小,从而可以继续保持结构的稳定性和良好的受力性能。即使在超出弹性极限的情况下,仍具有塑性强度,可以做到较大幅度的摇摆而不倒塌。为确保每一L形柔筒都可以作为有效的独立抗震单元,林在L形筒的每面墙内的配筋几乎都是一样的。

震后调查正如设计所预料那样,核心筒的连梁发生剪切破坏,是整个结构能观察到的主要破坏。连梁混凝土保护层剥落、开裂,这较易修复。墙体没有开裂,只是在核心筒的墙面上掉下了几块大理石饰面。这充分说明,虽然主体结构没有开裂,但剪力墙内已具有很高的应力[2]。也就是说在地震的剪力和弯矩作用下,墙仍处于弹性阶段。伯克利大学的教授V.Bertero在震后对该建筑作了动力分析,见下表。

可见,当核心筒连梁破坏后,四个L形角筒独立作用时,结构的自振周期和顶部位移明显加大,而基底剪力和倾覆力矩却明显减小。在正常工状态下,即在风荷载或设防烈度的地震作用下,设计所选择的结构图的自振周期T=1.3s,相当于0.72n,顶部侧移12cm,相当于1/500楼高。美洲银行大楼的抗震实例说明了以承载力、刚度和延性为主导目标,设计抗议风和抗震都比较理想的高层建筑是完全可能的。在风荷载作用下结构的整体刚度大,有较高的自振频率;而在罕遇的强烈地震作用下,可通过发挥延性(其中包括结构延性、构件延性或截面延性)与耗能能力使结构仍具有足够的承载力。二、高层建筑结构设计的应用体会

高层建筑结构至关重要的就是使结构承载力、刚度、能量耗散和延性等多种性能得到最佳组合。选择有利的建筑体型,是减少高层建筑结构风载效应、地震作用效应和侧移的重要手段之一。建筑体型又与建筑平面形状、建筑立面形状和房屋的高度等因素密切相关。与H,H/B,L/B,突出和收进尺寸,细部尺寸等有关。

建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。建筑和结构设计者在高层建筑设计中应特别重视规程中有关结构概念设计的各项规定,设计中不能陷入只凭计算的误区。若结构严重不规则、整体性差,则仅按目前的结构设计计算水平,难以保证结构的抗震、抗风性能,尤其是抗震性能。抗震概念设计时应充分考虑结构简单、规则和均匀性、整体性、钢度和抗震能力等准则。

1.结构简单是指结构在地震作用下具有直接和明确的传力途径,结构的计算模型、内力和位移分析以及限制薄弱层部位出现都易于把握,对结构抗震性能的估计也比较可靠。

2.结构的规则和均匀性。沿竖向建筑造型和结构布置比较均匀,避免刚度、承载力和传力途径的突变,以限制竖向出现薄弱部位。建筑平面比较规则,平面内结构布置比较均匀,使建筑物分布质量产生的惯性力能以比较短和直接的途径传递,并使质量分布与结构刚度分布协调,限制质量和刚度之间的偏心。

3.结构的刚度和抗震能力。可使结构沿平面上两个主轴方向具有足够的刚度和抗震能力。结构的抗震能力是结构承载力及延性的综合反映。结构刚度选择时注意控制结构变形的增大,过大的变形也会因效应过大而导致结构破坏[3]。结构除需要满足水平方向的刚度和变形能力外,还应具有足够的抗扭刚度和抵抗扭转振动的能力。4.结构的整体性。高层建筑结构中,楼盖对于结构的整体性起到非常重要的作用。楼盖体系最重要的作用是提供足够的面内刚度的抗力,并与竖向各子结构有效连接。高层建筑基础的整体性以及基础与上部结构的可靠连接是结构整体性的重要保证。

参考文献:

[1] 吴育武.谈谈高层建筑结构概念设计的若干问题[J].中国科技纵横,2010,(15):143,85.

[2] 柳浩杰.某高层办公综合楼结构方案的设计[J].四川建材,2009,35(2):91-93.

篇2

关键词:高层建筑,结构设计,问题,原则

1 高层建筑结构设计原则

高层建筑结构设计原则,是高层建筑结构设计过程中需要注意和遵循的重要标准和准则,也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下,才可以进行建筑结构设计。总体来讲,高层建筑结构设计原则主要包括以下几点:

1.1 基础方案合理。

合理的建筑结构基础方案是高层建筑结构设计的前提和基础,在实际的建筑结构基础方案设计中,设计单位需要根据实际施工地质条件,根据实际建筑结构施工需求进行设计。同时建筑结构基础方案需要配置完善的施工地质勘察报告,最大程度的发挥建筑物地基的潜力,必要的情况下设计人员还需要对地基的变形做好相应的验算。另一方面,设计单位还需要对建筑物进行综合性分析,尤其是对于建筑物负荷以及上部结构类型,通过对这些综合性分析,最终选定最适合的基础方案,从而可以在提高设计质量的基础上获得更好的经济效益。

1.2 计算简图适当。

计算简图设计,也是高层建筑结构设计中需要注意的重要问题,主要原因在于高层建筑结构设计时需要对一些基本的数据进行计算分析,而这些计算分析都必须要建立在计算简图的基础之上。只有通过计算简图基础之上的数据分析,才可以提高高层建筑结构设计的安全性以及牢靠性。举例来讲,建筑物结构节点问题,建筑物结构节点并不是我们传统观念中的铰节点或者是钢节点,设计单位在进行计算简图设计时,需要对建筑物结构节点进行深入研究,提高计算简图计算的精确性,进而将计算简图的误差控制在合理的范围内。

1.3 结构措施完善。

除了基础方案合理以及计算简图适当这两大基本原则之外,还有一条基本原则是设计单位经常忽略的,那就是结构措施完善原则。设计单位在进行建筑物结构的设计时,需要注意结构组件的延展性,例如建筑物中钢筋的锚固长度等。同时,设计单位还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响,对于这两方面的问题,在实际的设计过程中,需要遵循“强柱弱梁、强剪弱弯以及强压弱拉”的基本原则,只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。

2 高层建筑结构设计问题与策略

2.1 高层建筑结构设计高度问题及解决。

我国有关部门对于高层建筑结构体系的最大高度问题,出台了一系列的规章制度,对其进行了严格的规定与规范,其中之一便是《高层建筑混凝土结构技术规程》。该《高层建筑混凝土结构技术规程》对于高层建筑结构体系的高度问题规定,主要是从经济性以及适用性等方面进行规范的。《规程》所规定的结构体系最适宜高度,不仅仅与我国建筑施工技术水平以及建筑水平相关,而且还与我国国民经济发展水平,与建筑工程规范体系相协调。但是在实际的高层建筑结构设计以及施工中,出现了许多与《高层建筑混凝土结构技术规程》规定相违背的高度。举例来讲,在有些建筑物设计以及施工过程中,甚至出现了高达四百多米的组合机构大厦以及三百多米的混凝土结构体系的广场。尤其是近几年来,建筑物的高度不断增加,建筑物自身的参考系数已经超出了《高层建筑混凝土结构技术规程》的规定,例如在安全指标、荷载取值以及延性要求、材料性能、力学模型选择等方面。为此,对于这些高层建筑结构设计高度问题,设计单位需要严格根据《高层建筑混凝土结构技术规程》等有关规定,对设计高度保持科学严谨的态度。

2.2 钢筋混凝土梁承载力问题及解决。

一般来讲,城市高层建筑主要是以写字楼以及其他办公场所为主,因此,在实际的高层建筑结构设计过程中,设计单位需要着重考虑到空调、消防等设备。这些设备不同于其他设备,它们往往是布置于楼层的梁底之下的,如果没有梁底开洞,就没有办法进行设备的安装。因此,在设备安装之前,设计单位需要对梁的承载力进行分析以及计算,避免出现由于梁底承载力不足而出现安全结构问题。对于梁底开洞之后的承载力,设计单位可以通过孔洞周边补强筋以及开孔梁挠度、裂缝宽度等数据进行分析。对于钢筋混凝土梁腹部开孔,国家出台了有关政策,例如《高层建筑混凝土结构技术规程》《混凝土结构构造手册》等,对于钢筋混凝土梁腹部开孔的位置、流程、环节以及大小等进行了科学的规定。设计单位在进行钢筋混凝土梁承载力计算时,还需要参考不同种类腹部开孔方式,提高钢筋混凝土梁承载力计算的精确度,这对于提高建筑物的稳定性以及安全性意义重大。除此之外,还可以对钢筋混凝土梁承载力进行有效地计算。在计算过程中还需参考不同种类的腹部开孔方式。

2.3 抗震构造与框架梁设计问题及解决。

为了进一步提高城市高层建筑结构设计的安全性以及稳定性,建筑结构设计单位在高层建筑结构设计方面做出了重大的努力,取得了重大的突破,高层建筑结构安全性以及稳定性水平得到进一步提升。但是由于我国的建筑物抗震标准较低,在抗震与构造方面,很难处理好结构设计与抗震烈度之间的关系。为此,在实际的高层建筑抗震与构造设计中,抗震与构造设计需要有一定的弹性,这样才可以满足高层建筑结构设计安全性以及稳定性要求。举例来讲,中震烈度的重现期是475年,被超越率是10%;大震的重现期约为2000年,被超越率是2%。我国建筑构造规定的安全度及抗震计算方法也相对较低,且在轴压比、配筋率以及梁柱承载力匹配程度等抗震延性的相关规定也不够严格。结构设计造价在建筑整体投资之中比例的减少也应给予重视,尤其是在高烈度区域应有严格的抗震方法以及构造措施来保证建筑物结构的稳定性与安全性。另一方面,在实际的高层建筑结构设计过程中还需要进一步解决与框架柱和剪力墙相连的框架梁设计问题。就高层建筑结构的截面设计而言,竖向变形差过大通常会导致与框架柱和剪力墙相连的框架梁出现超筋现象,进而影响到框架梁截面设计。

框架梁端部竖向变形差所引起的剪力和固端弯矩的计算函数式如下:

其中,MAB/MBA为框架梁固端弯矩;QAB/QBA为框架梁端剪力;Δ为框架梁端部竖向变形差;Ib为框架梁截面惯性矩;I为框架梁计算长度。

针对与框架柱和剪力墙相连的框架梁超筋问题,可以从优化结构的轴压比以及提高计算方法的合理性两个方面进行解决。

篇3

针对当前复杂高层与超高层建筑结构设计中存在的问题,阐述了建筑结构设计方案的选择,包括结构方案的选择和结构类型的选择,并分析了建筑结构设计要点,以期为复杂高层与超高层建筑的建设提供一定的理论依据。

关键词:

复杂高层建筑;超高层建筑;结构设计;结构类型

随着我国市场经济发展进程的不断加快,复杂高层与超高层建筑工程的项目建设需求越来越大。然而,其建设设计过程的复杂程度也在不断加深,尤其是结构设计。做好结构设计工作是保障建筑物使用安全性和经济性的关键。对于复杂高层建筑或者是超高层建筑,要根据它们所承受的不同强度来开展抗震设防烈度的设计工作。

1建筑结构设计方案的选择

1.1结构方案和结构类型的选择在设计复杂高层与超高层建筑结构的过程中,结构方案选择的合理性是决定其建设质量的关键。对于复杂高层与超高层建筑结构方案的选择,如果没有根据实际工程情况进行,就很容易导致建设后期中的调整。这就在一定程度上增加了复杂高层与超高层建筑结构的设计难度,从而为建筑设计单位带来较大的修改工作量和经济损失。因而,复杂高层与超高层建筑的设计单位在结构方案的选择过程中,应充分结合相关的建筑结构专业知识,并将其应用到设计当中。对于结构类型的选择,设计人员不仅要将工程建设地的岩土工程地质条件考虑在内,还要将抗震设防烈度的要求考虑在内。这样才能降低工程建设企业复杂高层与超高层建筑工程的造价。由此可以看出,在选择结构设计类型时,需要认真考虑工程的造价和施工的合理性。

1.2结构方案和结构类型的选择要点结构方案和结构类型的选择应注重复杂高层与超高层建筑的概念设计。由大量的设计实践经验得出,在复杂高层与超高层建筑的结构设计过程中,要尽可能地提升建筑结构的均匀性和规则性,保证建筑工程结构的传力途径直接而清晰,尤其是结构竖向和抗侧力的传力途径。随着建筑行业的快速发展和科学技术的不断进步,如何实现可持续发展的建设目标已经成为研究人员重点关注的问题。

2建筑结构设计要点

2.1抗震设防烈度复杂高层与超高层建筑抗震设防烈度的设计是保证建筑物使用安全的重要设计内容。对于复杂高层与超高层建筑的结构设计要求,设计人员要根据其承受的不同强度来开展抗震设防烈度的设计工作。然而,由于建筑物高度是不同的,这就意味着在进行结构设计时,要依据实际工程情况进行有针对性的设计。一般情况下,复杂高层与超高层建筑高度均超过300m,那么在结构设计时,就不适合将其设计在抗震设防烈度为“八”的区域,而更适合设计在抗震设防烈度为“六”的区域。由此可以看出,在设计复杂高层与超高层建筑结构时,要综合考虑抗震设防烈度的具体情况。这样做,不仅可以有效减少建设误差,还可以保障居民的生命财产安全。此外,提高复杂高层与超高层建筑结构设计中的抗震技术水平,能够在一定程度上增强建筑物的经济性和安全性。因此,设计人员应从细节出发,秉承“以人为本”的设计理念。只有这样,才能有效保障人民群众的生命财产安全。

2.2结构舒适度确保复杂高层与超高层建筑水平振动舒适度是树立“以人为本”重要结构设计理念的基础。从结构设计的一般方法来说,复杂高层与超高层建筑的结构是相对柔软的。因而,在进行结构设计的过程中,不仅要保证结构设计的安全性,更要满足建筑物使用人群对舒适度的要求。这就意味着要对高层建筑的高钢规程和混凝土规程作出明确的设计要求。这一过程是使高层建筑物的结构设计达到顺风向和横风向顶点的最大加速度的重要设计内容。结构舒适度分析是复杂高层与超高层建筑结构设计的重要组成部分。具体内容包括以下两方面:①对混凝土结构的建筑来说,其设计的阻尼比最好取0.05;②对于钢结构以及混合结构的建筑来说,其设计的阻尼比要根据工程项目的实际情况控制在0.01~0.02之间。此外,从复杂高层与超高层建筑的建设用途来看,公共建筑的水平振动指标限值与公寓类建筑的指标限制存在较大的差异,因此,设计人员要根据建筑使用功能的不同进行差异性设计,比如可以通过优化TMD技术或TLD技术来实现。这样一来,就可以在复杂高层与超高层建筑水平振动舒适度不合格的情况下,进一步提升建筑物的舒适度水平。

2.3施工过程可行性是对复杂高层与超高层建筑结构进行设计时必须要考虑的问题,否则,即使设计得再合理、先进技术应用得再多,也无法满足实际建设要求。因此,设计人员在设计的过程中,要充分考虑钢材的传力效果以及复杂节点部位钢筋的可靠性、施工建设的可操作性。这也是设计人员在对复杂高层与超高层建筑进行结构设计的过程中必将会涉及到的问题。要想解决型钢与其混凝土梁柱节点处主筋相交的问题,可采用以下四种设计方法对其进行有针对性的设计:①将钢筋与其表面的加劲板进行焊接处理;②将钢筋绕过型钢;③通过在钢板上开洞的方式来穿钢筋;④在型钢与其混凝土梁柱节点表面焊接钢筋、连接套筒。由于复杂高层与超高层建筑的建设要求越来越高,因此,可以采取一些特殊的施工工艺,这也是保证建筑结构稳定的有效措施。

3结束语

总而言之,复杂高层与超高层建筑的结构设计要点是将结构方案和结构类型、抗震设防烈度、结构舒适度以及施工的具体过程考虑在内,同时,还要将提高建筑构件的材料利用效率和结构设计的可行性作为设计重点。这是因为上述内容是提升复杂高层与超高层建筑质量的重要保障。由此可以看出,复杂高层与超高层建筑结构设计所有过程的实现都离不开设计人员对工程建设项目的全面了解。

参考文献

[1]刘军进,肖从真,王翠坤,等.复杂高层与超高层建筑结构设计要点[J].建筑结构,2011(11):34-40.

[2]黄鹤.复杂高层与超高层建筑结构设计要点探讨[J].才智,2012(04):24-25.

篇4

【关键词】建筑机构;设计;常见问题;解决措施

1 建筑结构设计中地基计存在的具体问题

1.1 建筑结构设计中对地基埋设所进行的设计不够合理

建筑物的地基设计要根据《钢筋混凝土高层建筑结构设计与施工规程》中的具体要就进行合理设计,然而在现实的基础地基设计中高层建筑基础有效埋置深度不足的问题非常普遍,建筑地基作为承受建筑结构物荷载的岩体埋设深度不符合建设标准,将严重影响到地基的有效承载能力,当地基上部的建筑结构荷载超过地基可承受的荷载范围时,地基会受到破坏甚至产生变形,地基质量一旦出现问题,将严重威胁建筑结构的安全性能,对居民的正常使用造成威胁。

1.2 地基设计过程中忽视了地基沉降问题

在具体的设计过程中设计工作人员应针对施工的具体环境,对天然地基与人工的地基的沉降量进行科学的估算,并在施工过程中对建筑地基的沉降量实施严格的控制,并采取有效措施保证建筑结构中不同部位的地基沉降要基本保持一致,不可存在较大的差异。只有这样才不至于因地基沉降问题导致建筑物上部结构出现裂痕,影响建筑的使用性能。然而在具体的地基设计中,设计人员往往忽视了对地基沉降问题的综合分析与研究,最终导致地基变形,难以维持建筑物的正常使用,给建筑单外以及用户造成巨大的经济损失。

2 钢筋混凝土结构体系选型、布置及构造方面存在的常见问题

2.1 房屋高度、高宽比超过现行规范、规程的限值

现行的规范、规程给出了房屋的最大适用高度和高宽比限值。审查中发现某些高层建筑房屋高度超过最大适用高度或高宽比超出规定限值,个别高层建筑房屋高度和高宽比均超出规定限值,且既无可靠的设计依据。在抗震设防区也没有采取有效的抗震加强措施,给结构抗震带来一定的隐患。根据建设部第59 号令,对于房屋高度、高宽比和体型复杂程度超过现行规范、规程的高层建筑,应按超限高层建筑进行设计,并按有关规定进行抗震设计专项审查。

另外还有一点常被设计人员所忽视的是,房屋适用高度除与结构体系类型及抗震设防烈度有关外,尚与场地类别和结构是否规则等因素有关,当位于Ⅳ类场地或结构平面与竖向布置不规则时,其最大适用高度应适当降低。

2.2 建筑结构的布置缺乏合理性,结构布置不规则

建筑结构的布置是否合理对建筑结构的抗震效果有着非常重要的影响。建筑结构的规则布置主要是指对建筑结构平面、立面的外型尺寸进行合理布置,同时还要兼顾建筑结构的质量分布以及建筑结构中抗侧力构建的具体分布情况,将影响建筑结构安全使用性能的各主要建筑结构进行有机整合,合理布置。在建筑结构设计中不规则的结构布置问题非常普遍,而且这一问题的存在很难用简单的定量指标来加以规范,为此解决建筑结构中的不合理布局具有一定的难度。

建筑结构设计人员在对建筑结构进行布置时由于缺乏标准规范的有效指导,同时由于缺乏对结构抗震的理念的足够认识,在进行具体结构布置时主观随意性非常大,有的设计人员甚至盲目服从业主的喜好以及建筑工程师的要求,导致建筑结构布置缺乏规则性,建筑结构的抗震效果受到极大的破坏,为建筑的安全使用埋下隐患。建筑结构设计中布置不规范的例子比比皆是,下面简单列举几个比较常见的例子:高层建筑中存在楼层错层问题,楼层错层问题主要是因楼层内部楼板缺乏连续性,楼板结构不是统一的整体,这一问题的存在极大地削弱了建筑结构的抗震能力;高层建筑中建筑结构设计不统一,不同的建筑结构设计无法形成合力来抵御外部作用力对建筑物所造成的影响;在高层建筑结构内,水暖与用电安装工作需要对楼板进行开洞,这些工作的进行往往导致楼板开洞率过高,有的甚至近乎于30%左右,严重影响了楼板的整体性与承重效果,不利于维护建筑结构的稳定性与安全使用性。在具体的建筑结构设计中,设计人员与施工人员应采取有效措施,尽量避免这些问题的存在,使建筑结构尽量趋近于规则,保障建筑物的安全性与稳定性。

2.3 建筑结构中楼板、楼柱等主要承重结构设计存在的问题

楼板是建筑上部结构的主要承重结构,楼板的设计要求设计人员对楼板的实际承重情况有清醒的认识,并对楼板的具体设计进行认真地计算,同时还要根据楼板内双向板的长短跨向的不同来对楼板配筋进行科学的计算,只有这样才能保证楼板在遭受外力作用时能够保持稳定,避免房倒屋塌的惨剧发生。同时还要在设计时保证楼板与房梁、楼柱等主要承重结构之间相互连接,浑然一体,只有这样才能够保障建筑机构整体的安全性与稳固性。然而设计人员在进行建筑物内承重结构设计时,没有坚持建筑机构设计的基本原则进行,此外建筑结构设计人员在执行具体设计任务时还带有极大的随意性与盲目性。

2.4 异形柱结构设计中存在的问题

近年来,我国在进行住宅建设中,特别是高层或小高层住宅,有些采用了异形柱结构。由于缺少相应的设计依据和规定,目前在异形柱结构设计中存在的问题很多,也比较突出,主要表现在异形柱结构房屋的高度超高、体型不规则、结构布置不合理、抗震构造措施不当等方面。

应当说,目前国内对异形柱的受剪承载力、节点承载力和结构延性等方面的试验研究还不多,对异形柱结构抗震性能的认识还不够充分。在这种情况下,设计异形柱结构时,对房屋高度、结构规则性及抗震措施等方面宜从严掌握。

2.5 结构缝设置不合理,缝宽度不足

对于超长建筑物,为减少温度变化对结构的不利影响,合理地设置伸缩缝是必要的。有些设计人员提出用后浇带代替伸缩缝,笔者认为此种做法并不一定妥当。因为后浇带仅能减少混凝土材料干缩的影响,不能解决温度变化的影响。后浇带处的混凝土封闭后,若结构再受温度变化的影响,后浇带就不能再起任何作用了。对于不能或不便设置温度伸缩缝的超长结构,除留设施工后浇带外,还应采取其它构造加强措施,如加强顶层屋面的保温隔热措施,对受温度变化影响较大的部位适当配置直径较小、间距较密的温度筋,或采用预应力混凝土结构等。

2.6 采取的结构抗震等级有误

对建筑结构抗震等级经常做出错误的判断,例如:异形柱结构抗震等级的划分不同于普通框架;框- 剪结构中框架部分抗震等级的划分常常出现差错;裙房结构的抗震等级划分常常有误。当裙房与主楼分开时,应按裙房本身确定抗震等级;但当裙房与主楼相连时,裙房抗震等级不应低于主楼的抗震等级;超限高层建筑结构抗震等级的划分不能再以现行规范、规程为依据。根据建设部第59 号令,应采取比现行规范、规程更严的抗震措施,因此超限高层建筑结构的抗震等级应适当提高,满足建筑结构抗震的基本需求。

3 总结

建筑结构设计对建筑物的使用性能以及建筑结构的安全性有着非常重要的影响,针对建筑结构设计中存在各种问题,作为建筑结构设计工作人员要在执行具体设计工作任务时认真贯彻落实建筑结构设计的基本原则,同时还要不断提高自身的理论素养和设计技能,吸取国内外建筑结构设计中的经验教训,提高自身的设计水平,为我国建筑工程事业的发展设计出质量好、安全性高的建筑结构,最大限度的满足广大用户的根本要求。

参考文献:

篇5

关键词:建筑、结构设计、方法、注意事项

中图分类号:TU318文献标识码: A

面对我国高层建筑规模越来越复杂化的今天,结构工程师将面临巨大的挑战,如何以简单清晰的思路应对设计的多元化,需引起足够的重视。尤其是在对钢筋混凝土高层建筑进行结构设计时,其中有许多的重点和细节需要加以注意。

1.我国高层建筑结构设计现状分析

根据《民用建筑设计通则》GB 50352-2005第3.1.2条的规定,住宅建筑一层至三层为低层住宅,四层至六层为多层住宅,七层至九层为中高层住宅,十层及十层以上为高层住宅;公共建筑及综合性建筑总高度超过24m者为高层(不包括高度超过24m的单体主体建筑);高层大于100m的民用建筑为超高层建筑。

根据《高层建筑混凝土结构技术规程》JGJ 3-2010规定,10层及10层以上或房屋高度超过28m的住宅建筑,以及房屋高度大于24m的其他民用房屋属于高层建筑。[1]

由于目前我国的城市建筑用地紧缺,以及一、二线城市资源汇聚,办公、住宅的需求量日益增加,增加建筑物高度是解决此两者矛盾的最有效手段。据数据表明,全球在建摩天大楼的87%是在中国,相信在未来,高层建筑设计将在建筑设计业成为主流。

高层建筑结构设计与低层、多层建筑结构设计相比较,结构设计在各专业中占有比较重要的地位,不同结构体系的选择,直接关系到建筑平面布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期的长短和投资造价的高低。根据笔者近几年的观察来看,对于超高层建筑,因为使用空间对结构构件尺寸的限制,钢混结构占的比重较大;而普通高层建筑,特别是100m以下的住宅建筑,都是以普通混凝土结构为主导,其中又以剪力墙结构最为主流。

根据以往地震震害的数据表明,砖混结构,特别是底框―砖混结构的震害较为严重。因此新规范对此类结构形式的要求加严了。

2.建筑结构设计的要求分析

一座优质的建筑最关键的因素是它的使用安全,因此,在进行建筑结构设计时首先要考虑人们的生命财产安全,结构设计人员在进行建筑结构设计的时候需要做到以下几个方面。(1)在进行结构设计时,设计人员要充分考虑设计的精度,在结构设计中对数值设计的要求非常高,必须把误差降到最小。对建筑结构所有部位的承载力极限状态进行准确计算,同时对其正常使用状态的最大承载力进行计算。(2)在进行结构设计时,设计人员应对建筑结构进行全面的分析,对建筑中的各个要素进行综合考虑。最重要的是要考虑到建筑的安全,把建筑物安全放在第一位,要尽一切可能提高建筑结构设计的质量。[2]

3.结构设计中的常见问题

3.1结构规则性的问题

对建筑结构的规则性,建筑抗震设计规范及高层建筑混凝土结构技术规程对结构平面布置及竖向布置作了详细的要求。对于结构的平面形状,宜简单、规则、质量、刚度和承载力分布宜均匀,不应采用严重不规则的平面;对于结构竖向布置,宜规则、均匀,避免有过大的外挑和收进,侧向刚度宜下大上小,逐渐均匀变化。对此,在高层建筑物结构设计时,应及早参与到建筑的前期设计中去,以控制建筑结构的规则性,达到经济合理的要求。

3.2嵌固端的设置问题

高层建筑在进行结构分析计算之前必须首先确定结构嵌固端的位置,我们这里所说的嵌固指的是强度嵌固而非力学嵌固(完全刚性的固定)。嵌固端的设置是否准确不仅关系到结构中某些构件内力分配的准确性,而且还影响到结构位移的真实性,最终会影响结构的安全性及经济性。因此,结构设计师应通过计算结果及工程实际情况两者来确定嵌固端的合理部位,使其能较为真实地反映结构实际的情况,提高计算的精度。

3.3短肢剪力墙设置

受建筑使用空间的影响,结构布置中经常会出现短肢剪力墙的情况。规范规定短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙。而广东省标准《高层建筑混凝土结构技术规程》DBJ 15-92-2013,第7.1.8条注1规定,短肢剪力墙指截面高度不大于1600mm且截面厚度小于300mm的剪力墙。

抗震设计时,高层建筑结构不应全部采用短肢剪力墙;B级高度高层建筑以及9度的A级高度高层建筑,不宜布置短肢剪力墙,不应采用具有较多短肢剪力墙结构。

3.4结构超高问题

在钢筋混凝土高层结构设计中,对于高层建筑的总高度,在抗震规范和高规中都有严格的要求,A级高度的为普通高层建筑结构,B级高度的为复杂高层建筑结构。对于B级高度的高层建筑,按照相关文献的规定,该类建筑属于超限建筑工程,需要进行抗震设防专项审查,且要求更为严格的计算分析和构造措施,以保证建筑物的安全。因此,在高层结构设计时,应该按照规范要求与建筑师协商严格控制建筑物高度,以合理控制造价,避免造成社会资源的浪费。

3.5地基与基础设计方面存在的问题

作为建筑结构的最底层构件,基础承托上部结构传递来的荷载,并将其传递至地基。基础设计为结构设计的根本,处理不当,往往会出现牵一发而动全身的连锁反应。

应选用整体性好,能满足地基承载力和建筑物容许变形要求的基础形式,以调节不均匀沉降,达到安全实用和经济合理的效果。根据上部结构类型、层数、荷载及基底土层的承载力及压缩模量,可逐次考虑采用独立柱基、条形交叉梁、满堂筏板或箱形基础、桩基、桩筏。其中筏板基础可以是梁板式和平板式,当建筑物层数较多、地下室柱距较大、基底反力很大时,宜优先采用平板式筏基。多高层建筑宜设置地下室以减少地基的附加压力和沉降量,以满足天然地基的承载力和增加上部结构的整体稳定性。基础有一定的埋置深度,对房屋抗震有利,可以减小上部结构的地震反应。同时,由于基础有一定的埋置深度后,地下室前后墙的被动土压力和侧墙的摩擦力限制了基础的摆动,使基础底板压力的分布趋于平缓。基础设计除满足地基承载力要求外,基础沉降复核也同样重要,因为沉降问题引起的问题年年都有,而且这方面的治理也较为复杂,所以需要设计人员在前期考虑清楚,采取相应的措施协调沉降,2013年的注册结构工程师考试加大了基础沉降计算的题量,也是志在引起大家的注意。

作为全国性的规范标准,只能在大方向上对基础设计作出规定。但是地基基础的设计地方性很强,尤其是桩基的设计应因地制宜,各地区对桩的选型、成桩工艺、承载力取值有各自成熟经验,不少省、市有地区规范,当工程所在地区有地区性地基基础设计规范或标准时,应依据该地区的规范或标准进行地基基础的设计。例如贵州地区,对于独立基础的剪切计算有别于国家规范,如按国家规范计算,则会比相邻工程的造价高出许多,不符合地区情况,会影响设计院以后在当地的发展。[3]

以现在的设计计算理论,对于上部结构、基础、地基的整体作用问题,还不够完善,还达不到真正设计计算量化的要求。虽然我国目前也有了专门的高层建筑与地基基础共同作用理论的相关程序,但大多数的设计人员还是引用以往不考虑上、下共同相互作用的影响,只考虑基础和地基共用的影响。实例表明,只考虑基础与地基间承载力关系设计的筏板基础,钢筋最大应力实测值远小于钢筋抗拉强度,造成很大程度上的浪费。在新理论没有得到证明之前,一线设计人员需顶着业主钢筋含量要求的压力,结合工程实测数据,对比工程情况,合理取舍。

4.结语

建筑工程质量的好坏直接关系到国家的利益和人民的生命安全,同时也决定了人们的生活质量。在今后的工作中,建筑结构设计人员需要重新认识自己工作的重要性,明确自己的责任,提高对结构设计质量安全问题的辨别能力,积累结构设计的工作经验,使建筑结构设计工作行业逐步步入正轨,使建筑物的设计更安全、更合理。

参考文献

[1]王续晶。高层建筑结构设计问题探讨[j].价值工程