发布时间:2023-10-07 15:38:08
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇古代土木工程特点,期待它们能激发您的灵感。
1土木工程发展历史
1.1古代土木工程公元前5000年开始至17世纪中叶时期,称为古代土木工程阶段。土木工程的古代时期是从新石器时代开始的。人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至18~19世纪,在长达两千多年时间里,砖和瓦一直是土木工程的重要建筑材料,为人类文明作出了伟大的贡献,甚至在目前还被广泛采用。历经漫长的古代大型土木工程的发展,土木工程建设内容更加丰富,建设工具有了新的发展,同时人们积累了丰富的土木工程建设的经验,为大型土木工程建设的发展打下了坚实的基础。
1.2近代土木工程产业革命的开始是近代土木工程发展的开端。随着近代工业的发展,人类的生活需求也不断增长,这些不仅反映在吃穿行上,还反映在房屋建筑及市政工程方面。而电力的应用,使高层建筑实用化成为可能;电气照明、给水排水、供热通风、道路桥梁等市政设施与房屋建筑结合配套,开始了市政建设和居住条件的近代化;在结构上要求安全和经济,在建筑上要求美观和适用。随着大型土木工程近代工业化的进一步发展,在19世纪中叶为满足科学技术发展和分工的需要,土木和建筑开始分成为各有侧重的两个单独学科分支。工程实践经验的积累促进了理论的发展。材料力学、静力学、运动学、动力学等学科逐步形成,各种静定和超静定桁架内力分析方法和图解法得到很快的发展。这为大型土木工程建设的理论提供了很好的交流平台,有利于促进土木工程建设理论的进一步发展。理论上的突破,反过来极大地促进了工程实践的发展,这样就使近代土木工程这个工程学科日臻成熟。第一次世界大战以后,近代土木工程发展到成熟阶段。这个时期的一个标志是道路、桥梁、房屋等大规模建设的出现。另一个标志是预应力钢筋混凝土的广泛应用。
1.3现代土木工程时期第二次世界大战的结束刚好是现代土木工程发展的开端。第二次世界大战结束后,社会生产力出现了新的飞跃,现代主义运动取得了全面胜利。现代科学技术突飞猛进,土木工程进入一个新时代。在近40年中,前20年土木工程的特点是进一步大规模工业化,而后20年的特点则是现代科学技术对土木工程的进一步渗透。首先,现代主义的高层建筑在理论计算方面有了新的发展,高层建筑结构的分析计算已基本告别传统的手工计算而采用计算机程序计算,基本上都采用三维空间结构分析计算程序。其次,高层建筑由于对抗震、抗风的要求高,且建筑多样化,层数、高度日益提高。再者,现代主义的高层建筑反对外部包装、建筑含义和历史风格,强调形式追随功能和技术,技术上升到艺术层次。
2土木工程理论、材料及技术的发展
通过多年来实践探索,土木工程的发展日臻完善。在科学理论方面,理论研究精密化,计算力学、结构动力学、动态规划法、网络理论、随机过程论、滤波理论的成果,随着计算机的普及而渗进了土木工程领域。结构动力学也已发展完备,荷载不再是静止的和确定性的,而被作为随时间变化的随机过程来处理。静态的、确定的、线性的、单个的分析,逐步被动态的、随机的、非线性的、系统与空间的分析所代替。电子计算机使高次超静定的分析成为可能,进而使得高层建筑中框架-剪刀墙体系、筒中筒体系空间工作和大跨度的桥梁得以实现。大跨度建筑的形式层出不穷,薄壳、悬索、网架和充气结构覆盖大片面积,满足种种大型社会公共活动的需要。从材料特性、结构分析、结构抗力计算到极限状态理论,在土木工程各个分支中都也得到了充分发展。理论研究的日益深入,使现代土木工程取得了许多质的进展。在工程材料方面,标号为500~600号的混凝土已在工程中普遍应用,而轻质、高强化的混凝土成为大跨、高层、结构复杂的工程的新要求。高强钢材与高强混凝土的结合使预应力结构得到较大的发展,先张法和后张法的预应力混凝土屋架、吊车梁和空心板在工业建筑和民用建筑中广泛使用。同时铝合金、镀膜玻璃、石膏板、玻璃钢等工程材料以现代科学技术的进步为背景发展迅速,为大跨、高层、结构复杂的工程建设提供了全新的支持。在施工技术方面,种种现场机械化施工方法发展得特别快。同步液压千斤顶,滑模,直升机安装天线,用一群小提升机同步提升大面积平板的升板结构等一系列施工方法广泛应用。此外,钢制大型吊装设备与混凝土自动化搅拌楼、输送泵等相结合,形成了一套现场机械化施工工艺,使传统的现场灌筑混凝土方法获得了新生命,在高层、多层房屋和桥梁中部分地取代了装配化,成为一种发展很快的方法。精密化的理论研究、全新的工程材料和先进的施工技术,使得大跨、高层、结构复杂的大型土木工程的建设成为可能。
关键词:发展阶段;大型土木工程
中图分类号:K826.16 文献标识码:A 文章编号:
土木工程的建设由来已久。由原来的伐木采石,模仿天然掩蔽物建造居住场所,到现在的美轮美奂的超高层建筑、雄伟的水利水电工程和超高超长跨度的桥梁,土木工程经历了一个漫长的发展历程。在这个漫长的发展历程中,无论是土木工程结构的理论方法、力学分析、施工手段 , 还是土木工程的地基基础处理 , 都有了非常大的突破和发展。
一、土木工程发展历史
1.古代土木工程
公元前 5000 年开始至 17 世纪中叶时期,称为古代土木工程阶段。土木工程的古代时期是从新石器时代开始的。人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至 18 ~ 19 世纪,在长达两千多年时间里,砖和瓦一直是土木工程的重要建筑材料,为人类文明作出了伟大的贡献,甚至在目前还被广泛采用。历经漫长的古代大型土木工程的发展,土木工程建设内容更加丰富,建设工具有了新的发展,同时人们积累了丰富的土木工程建设的经验,为大型土木工程建设的发展打下了坚实的基础。
2. 近代土木工程
产业革命的开始是近代土木工程发展的开端。随着近代工业的发展,人类的生活需求也不断增长,这些不仅反映在吃穿行上,还反映在房屋建筑及市政工程方面。而电力的应用,使高层建筑实用化成为可能;电气照明、给水排水、供热通风、道路桥梁等市政设施与房屋建筑结合配套,开始了市政建设和居住条件的近代化;在结构上要求安全和经济,在建筑上要求美观和适用。随着大型土木工程近代工业化的进一步发展,在 19 世纪中叶为满足科学技术发展和分工的需要,土木和建筑开始分成为各有侧重的两个单独学科分支。工程实践经验的积累促进了理论的发展。材料力学、静力学、运动学、动力学等学科逐步形成,各种静定和超静定桁架内力分析方法和图解法得到很快的发展。这为大型土木工程建设的理论提供了很好的交流平台,有利于促进土木工程建设理论的进一步发展。理论上的突破 , 反过来极大地促进了工程实践的发展,这样就使近代土木工程这个工程学科日臻成熟。第一次世界大战以后,近代土木工程发展到成熟阶段。这个时期的一个标志是道路、桥梁、房屋等大规模建设的出现。另一个标志是预应力钢筋混凝土的广泛应用。
3. 现代土木工程时期
第二次世界大战的结束刚好是现代土木工程发展的开端。第二次世界大战结束后,社会生产力出现了新的飞跃,现代主义运动取得了全面胜利。现代科学技术突飞猛进,土木工程进入一个新时代。在近 40 年中,前 20 年土木工程的特点是进一步大规模工业化,而后 20 年的特点则是现代科学技术对土木工程的进一步渗透。
二、土木工程理论、材料及技术的发展
通过多年来实践探索,土木工程的发展日臻完善。在科学理论方面,理论研究精密化,计算力学、结构动力学、动态规划法、网络理论、随机过程论、滤波理论的成果,随着计算机探讨土木工程发展趋势的普及而渗进了土木工程领域。结构动力学也已发展完备,荷载不再是静止的和确定性的,而被作为随时间变化的随机过程来处理。静态的、确定的、线性的、单个的分析,逐步被动态的、随机的、非线性的、系统与空间的分析所代替。电子计算机使高次超静定的分析成为可能,进而使得高层建筑中框架 、剪刀墙体系、筒中筒体系空间工作和大跨度的桥梁得以实现。大跨度建筑的形式层出不穷,薄壳、悬索、网架和充气结构覆盖大片面积,满足种种大型社会公共活动的需要。从材料特性、结构分析、结构抗力计算到极限状态理论,在土木工程各个分支中都也得到了充分发展。理论研究的日益深入,使现代土木工程取得了许多质的进展。在工程材料方面,标号为 500 ~ 600 号的混凝土已在工程中普遍应用,而轻质、高强化的混凝土成为大跨、高层、结构复杂的工程的新要求。高强钢材与高强混凝土的结合使预应力结构得到较大的发展,先张法和后张法的预应力混凝土屋架、吊车梁和空心板在工业建筑和民用建筑中广泛使用。同时铝合金、镀膜玻璃、石膏板、玻璃钢等工程材料以现代科学技术的进步为背景发展迅速,为大跨、高层、结构复杂的工程建设提供了全新的支持。在施工技术方面,种种现场机械化施工方法发展得特别快。同步液压千斤顶,滑模,直升机安装天线,用一群小提升机同步提升大面积平板的升板结构等一系列施工方法广泛应用。此外 , 钢制大型吊装设备与混凝土自动化搅拌楼、输送泵等相结合,形成了一套现场机械化施工工艺,使传统的现场灌筑混凝土方法获得了新生命,在高层、多层房屋和桥梁中部分地取代了装配化,成为一种发展很快的方法。
三、土木工程发展新方向
飞速的经济发展,使得大城市及超级大城市的数量急剧上升,人们对空间的概念日趋强烈,寸土寸金普遍成为人们的共识。因此为了满足人们对日益发展的空间需求,高层、超高层建筑的建设得到普遍重视。同时高层、超高层建筑的建设也是解决人们空间日趋紧张问题的重要途径。飞速经济的发展不仅仅是空间需求的问题,更有电力、能源等多方面的需求。大型水利水电工程的建设,大型矿山资源的开发,石油、天然气等重要能源的运输等都成为影响经济发展的重要因素。因此,大型公益土木工程的修建,显得极为重要。而鉴于我国能源、电力多分布于西南地区,多为山区、丘陵、高原等复杂地形,同时该地区地质条件复杂。为使水利水电建设、矿山资源开发以及重要能源运输等大型土木工程的建设得以实现,大跨度桥梁、隧洞等工程成为整个工程中的关键。由上述可知,高层、超高层建筑的建设,水利水电设、矿山资源的开发、重要能源的运输等大型公益土木工程的建设以及配套的大跨度桥梁、超长隧洞等工程将成为经济发展的必须。而精密化的理论研究、全新的工程材料和先进的施工技术,又使得大跨、高层、结构复杂的大型土木工程的建设得以实现。可见,大型土木工程的普及建设必将成为未来土木工程发展的新方向。
关键词:砌体 ;结构;地震;设计;未来
中图分类号:TB482.2文献标识码:A
引言:
砌体的结构在我国有着悠久的历史,秦砖汉瓦和万里长城都是我们引以为豪的象征。砌体结构的材料有极强地方性,且取材容易、加工简单,砌筑工艺也易掌握,经过长时间改进与发展,形成具有地方特色传统制作方式、砌筑方法。据统计,在全国墙体材料中,以砌体为承重或非承重(填充、围护)材料大约占到85%左右,因而,砌体材料在另一方面也是我国主要墙体材料。
一、砌体介绍
多层砌体房屋是我国民用建筑中数量最多,分布最广的一种类型。今后相当一段时期,虽框架,剪力墙及其他结构迅猛发展,不过由于我国经济发展水平和人口环境等现实情况,多层砌体房屋仍是多数城镇民用建筑的主要结构形式,经济不发达地区更是如此。但这类房屋建筑,因为由脆性材料粘土砖及砂浆砌筑成,若未合理抗震设计,其抗震性能一般是较差的。
(一)土木工程历史
中国土木工程历史
上古时期,中国古人类在野处穴居,为避免野兽侵袭,有巢氏(中国传说中巢居的发明者),教古人离开天然岩洞并构木为巢,居树上。古代土木工程多用土、石、木材料筑造,建造技术、艺术造型达到极高成就。如长城、赵州桥和都江堰等都是具代表性的我国古代土木工程杰作。
世界土木工程的发展历史
在欧洲,约8000年前就已开始用晒干的砖;凿琢自然石采用,大约5000~6000年前;谈到建筑中采用的砖,亦有3000年历史。世界古代伟大的建筑,以公认七大奇迹最引人注目,它们也都建于公元前600年~公元前200年,且均是石材建造,大都用于宗教、军事、航海。而且都建于当时经济科技极发达地区,这说明土木工程的发展与经济繁荣科技进步密不可分。
(二)土木工程现状
随着在19世纪中叶钢材、混凝土在土木工程中的使用,及20世纪20年代的后期预应力混凝土制造成功,造摩天大楼、大跨度建筑及跨海峡1000m以上大桥成为可能。目前,世界上最高的建筑是中国台北101大厦,总高度508m。在近代体育事业蓬勃发展,使大跨度房屋在世界各地亦如雨后春笋般地涌现。
二、震害分析
(一)震害调查 历次的震害表明,多层混合结构的房屋最易受地震破坏,1976年唐山地震,一千余栋多层砌体的房屋中,倒塌率70%~90%;1991年新疆柯坪地震,1993年云南普洱地震,多层砌体房屋破坏率达75%。其中,未设防老旧建筑比纵横墙的承重房屋破坏更急严重,平面形状不规则建筑物震害比简单体型建筑严重,节点构造的不合理,纵横墙拉结的不充分,以及整体刚度差,这些都是为地震破坏之隐患。
(二)影响震害主要因素 地震造成房屋破坏,影响因数是多方面的。由于砌体结构布置形式,结构反应及动力特性的不同,抗震性能也各不同,且还与地震烈度、地基条件、建筑体型、房屋的质量、刚度、空间整体性、构造措施及施工质量等有关。
(三)结构在地震中的主要特点
地震是以波的形式,从震源向周围传播,通过岩土及地基,使建筑物基础、上部结构产生不规则往复振动和激烈变形。结构在地震时的相应运动称地震反应,包括位移、速度和加速度。同时,在结构内部发生大的内力(应力)和变形,当它们超过材料构件的各项极限值,结构就将有各种程度的破坏,如混凝土裂缝、钢筋屈服、显著的残余变形、局部的破损、碎块或构件坠落、整体结构倾斜、甚至还会倒塌等等。
(四)震害的防治对策 对于近震中的地区,可能会遭受较强水平竖向地震作用的房屋,要适当加强在房屋的上部安全度。而对于弹性方案的房屋,可尽可能使各墙段有相近安全度,在纵横两向和各墙段间实现“等强”设计。
(五)设计建议 规范对多层砌体房屋的地震作用,一般只是考虑水平方向,所以,在现有程序的分析时,房屋的上部结构其抗震验算易满足,这使工程设计人员对调整降低上部结构砌体强度等级和砂浆强度等级时节约投资。
三、土木工程的未来
地球上可居住、生活及耕种的土地有限,反过来,人口增长速度在不断加快。因此,人类为争取生存,土木工程未来至少应朝五个方向发展:向高空延伸、向地下发展、向海洋拓宽、向沙漠进军、向太空迈进等。
四、结语
砌体结构不仅是一种量大和面广的结构形式,也是一种抗震性能差的结构形式。但我们不可能彻底地淘汰、摒弃它。只有面对现实,并要孜孜不倦地深入研究,提高其抗震性能。不断赋予砌体新内容、新理念,使砌体有更好的抗震性和安全性,这也是我们研究的目的。
参考文献:
[1]《建筑抗震设计规范》(GH50011).
[2]楼永林.滑移减振多层砖房的研究与试建.第二届全国建筑振动学术会议论集・杭州.
[3]周炳章. 砌体结构抗震的新发展[J] . 建筑结构学报.北京: 中国建筑工业出版社,2002.5.
[4]砌体结构设计规范.GB50003-2002.
土木工程活动中的树木与森林问题。许多土木工程活动存在一定的孤立性,重点局限在项目实物本身,忽视其在整体环境中的作用及影响。例如大量个体建筑和工程设施组成了城市,在保持其个性的同时,形成了个体所没有的城市性能,如景观协调、下垫层、热岛效应、交通拥堵等等,这是一个量变到质变的过程。这就从工程技术层次的“微观建筑”上升到技术科学层次的“宏观建筑”或“城市科学”[9]。现代土木工程活动早已超越工程技术层面了,但土木工程教育往往滞后。未来发展对土木工程的压力。人口增长、能源和资源匮乏、环境气候变化要求我们可持续发展,引导全球接受绿色设计理念和在全社会进行资源消耗平衡。全球对环境安全及环境恢复的要求不断提高,大多数环境目标却没有实现。对可持续能源、洁净水、清洁空气及废物安全处理的要求,推动了全球范围内的基础设施发展[10]。土木工程业是解决上述问题的主要承担者。土木工程的信息化建设。土木工程的信息化是用计算机、通信、自动控制等信息汇集处理高新技术对传统土木工程技术手段及施工方式进行改造与提升。重点建设设计、施工的技术和控制信息系统;标准、行业管理、工程管理、企业管理的信息系统以及土木工程基于互联网的方案。土木工程的信息化可能引起土木工程活动方式的深刻革命,土木工程新的理论和技术不断出现。例如工程项目生命周期成本(lifecyclecost,LCC)、工程材料生命周期评价(lifecycleanalysis,LCA)、适应拆毁的设计理念(DFD,DesignforDisassembly)、建筑构件和结构含能设计理念[11]、建筑垃圾最小化设计概念[12]、工程材料的复合高性能化与再生性的关系等等。上述已不是传统土木工程技术范围的问题,应对现代土木工程活动所需知识已经远远超出了传统工程技术范围。除了传统的土木工程技术外,土木工程师必须熟悉大量相关知识并承担社会与道德责任。此外,由于土木工程师的工作与基础设施建设和环境发展密切相关,因此他们将在维护世界稳定方面发挥着重要作用[13]。
二、新形势对工程教育技术的要求
党的十六大提出走新型工业化的发展道路[14]。“走新型工业化道路”要求全面提升工程师的知识面和工程素质:“科技含量高”要求工程师专业知识和能力过硬;“经济效益好”要求工程师懂市场,善于促销路、降成本、增利润;“能源消耗低”要求工程师有节能意识、熟悉与产品有关的能源知识和节能技术;“环境污染少”要求工程师对保护自然环境和人文环境有强烈的责任感和相应的文化素养;“人力资源优势得到最大程度的发挥”要求工程师提高管理能力和水平[15]。转型时期企业对我国的工程技术教育提出新的要求,希望在重视加强教学和科学基础的前提下,注重培养学生的工程实践能力、表达交流沟通能力与团队合作精神、终身学习能力、职业道德及社会责任、社会人文和经济管理、环境保护等知识[16]。改革开放以来,土建业产业背景已经发生根本的变化[17],这种变化对土木工程师的培养提出了新的要求。
三、土木工程专业教育技术的对策
1.培养目标的定位我国土木工程教育以四年学制为主,受培养模式、学制和就业率要求的支配,培养的学生一般为熟悉传统专业技能,略知相关知识,能够较快地从事专业技术工作的人才。现代工程的特点是将科学、技术、经济、社会、环境生态、文化以及审美艺术、伦理道德等价值观整合起来,指导工程实践,创造出一个人工的实体。如果我们培养的工程师仅关注自身的技术层面,那么正如美国北卡罗来纳大学Okun教授所言,恐怕未来的工程师将会成为服务于那些来自其他专业的受过良好教育的人手下的一名技术员而巳[18]。在科技飞速发展、社会问题日趋复杂的实践环境下,四年学制培养出现代土木工程师已经不可能,这就需要对培养目标重新定位,例如培养具有现代土木工程师基本素质的毛坯工程师或能够较快从事某些技术工作的操作型工程师。一项对近百名工程师的调查对此有参考价值[19]:88%的被调查者认为“工程意识比熟悉一个局部的工作更具有意义”;96%的被调查者认为“学校教育应注重基础和素质,过于专业化的内容应在企业内加以训练”;100%的被调查者认为“进行思想品德和职业道德教育是大学的重要任务”。具有大工程观素质的现代土木工程师的缺失是土木工程水平不高的主要原因之一。用系统的宽广的视野定位未来土木工程师的培养是我们必须做的工作。
2.培养现代土木工程师的知识与能力随着产业背景的改变,以经济利益为核心、以合同为当事人之间行为和关系准则的运行模式已普及到土建业的每一个基层。土木工程师的职能迅速扩大,除了传统技术层面的能力外,综合财政、社会、经济和政策的考虑问题方法与沟通、协调和管理能力已成为现代土木工程师的重要专业职能。现代土木工程师的知识与能力归纳为具备工程实践能力、多学科的背景以及多方面的能力、职业道德和社会责任感[20]。在四年时间内即使初步完成上述三方面知识与能力的培养也是一项新的课题,需要用系统的视野确定专业的知识组成,将孤立分散的多学科知识揉合成整体,并在长期的实践中不断改善。
3.改变教学模式我国土木工程教育与其他工科教育一样,长期采用科学导向,模式单一,工程教育的特色不明显[21]。教学上普遍采用传递─接受模式。该模式源于赫尔巴特的四段教学法,后由前苏联凯洛夫等人进行改造传入我国[22]。该模式着眼于充分挖掘人的记忆力、推理能力与间接经验的作用,使学生比较快速有效地掌握更多的信息量。强调教师的指导作用,认为学习是教师到学生的一种知识的单向传递,注重教师的权威性。运用该模式传授知识的效率高,能培养学生的纪律性和抽象思维能力,并且办学硬件条件要求低,但易培养出单一化、模式化的人格,不利于创新性、分析性学生的发展以及创新思维和解决实际问题能力的培养。现代土木工程具有个性化与建造技术综合性的特点[23],因此土木工程教育有实践性、创新性等要求,科学家培养模式并不能很好地满足这些要求。由于种种原因,现在土木工程教育必须的一些实践性环节被弱化或课程化了,例如以模拟、虚拟化、演示、观摩等课程形式的实践来代替。立即改变现有培养模式的条件尚不成熟,可先在相关课程教学上考虑工程特点,加强工程训练,培养工程素质。例如设置包括多学科内容的综合性大作业、大案例分析(如阿斯旺大坝)、设计、实习,体现土木工程高度综合性、创新性的特点。此外,利用分组专题讨论形式,对学生进行表达能力、合作精神和自信心等非专业综合能力的训练。
4.培养求精务实的工程精神从士农工商的排序就可看出中国古代社会一直没有认识工程技术对提升人类生活质量、社会文明程度以及国家的富强的重要作用。改革开放以来,我国的工业制造能力得到了极大的发展,但产品质量总体上不高,土木工程也一样。这与社会伦理以及整个社会长期不重视工程技术有关,大多数不是能力问题。要改变这种状况,全社会都要倡导尊重工程的文化、建立正确的社会伦理观,从孩子开始,长期坚持。大学期间注重培养崇尚求精、务实、求真、求新,精于设计、精于制作的工程精神,将这种理念融入学生平时的作业、实验、设计中去,逐步树立求精务实的工程精神。
5.积极采用现代教育技术土木工程正在进入信息化时代。土木工程项目的单件性、时代性、环境性、多要素性决定了项目信息的大规模性、变动性、多门类性,信息技术将使传统工程成为数字工程,传统的教育模式已不能适应,必须采用现代教育技术。
四、结语
一个由力学组成的王国
赵州桥之所以特别,最大的原因在于李春在传统的拱桥工艺上,对赵州桥的拱肩进行了重大改进,也就是课文所说的增加了四个小桥洞。这种大拱加小拱的敞肩拱,除了能增加泄洪能力,减轻桥身的自重外,还符合土木工程的结构力学理论,敞肩拱式结构在外荷作用下,拱主要产生压力,而桥的拱结构支座(也就是拱脚)产生水平推力,在桥两边的支座处的荷载可以传给基础,使构件摆脱了弯曲变形,桥就不会因为上面的荷载而变形导致损坏。说到赵州桥的材料,用密度比较大的砖石去做拱,正好发挥砖石材料受压性能好的特点。而且为了使相邻拱石紧紧贴合在一起,每块拱石的侧面都凿有细密斜纹,以增大摩擦力。这些措施的采用使整个大桥连成一个紧密整体,增强了整个大桥的稳定性和可靠性。就是在结构、材料、理论等力学的完美结合下,才使得赵州桥能屹立一千四百多年不被冲垮、不倒塌,并成为美国土木工程师学会选定的第12个“国际历史土木工程的里程碑”。
各位,从这里可以看出,力学的学习是贯穿于土木工程的学习中的。我在学习土木工程这个专业的过程中,学过的力学有理论力学、材料力学、结构力学、流体力学、土力学、结构动力学、弹性力学等。它们涉及土木工程这个大学科的方方面面。
理论、材料与结构创造出的奇迹
下面我们就来认识土木工程力学的三驾马车吧。
首先说理论力学,这个很简单,就是高中物理力学和运动学知识的延伸。我们现在高中物理书除了电磁学和量子力学的章节不在土木工程学习的理论力学的范畴里,其他的都可以想象成牛顿、拉格朗日、高斯等大家对你的再次鞭策。也就是说,你必须要有高中的力学基础。
材料力学则是伴随着土建材料的发展而形成的。人们在古代早期只能依靠泥土、木料或其他天然材料从事建造活动,像我们熟悉的黄鹤楼、岳阳楼、滕王阁,都是木材料建筑物。到砖和瓦等材料出现后,人工建筑材料开始广泛地被应用于各种建筑中。李冰父子修建的都江堰和一直修到明清时期的中国长城都是其中的佼佼者。19世纪后,钢材开始用于建造桥梁和房屋,最负盛名的埃菲尔铁塔便是一座建于1889年的钢结构建筑,位于法国巴黎战神广场上的镂空结构铁塔,高300米,天线高24米,总高324米。材料的发展使得材料力学发展迅猛,材料力学就是分析材料的几何性质和力学性质,计算出材料的强度,研究其是否能够承受其受到的荷载,以保证建筑的安全性能。
而说到结构力学,最典型的就是我国的木结构建筑。我国的木结构建筑有两大特点,一是木结构大多是榫卯连接,即将木件打造成凹凸结构,再把它们相互扣合,这种结构的建筑很容易按人的空间需求来改建、加建或是迁建,有利于“变”。另一个特点是地上立柱,柱上架梁枋,梁枋上建屋顶。顶部重量就由梁枋到柱,再由柱到地面,墙壁只是起到隔断作用而不承重。由于木结构各个构件之间榫卯连接富有韧性,即便墙倒也能“屋不塌”。这种技术一直流传至今,最有名的榫卯连接建筑要数 2010 年上海世博会的中国馆了。中国馆的整体造型似斗拱,是典型的榫卯结合构件,由斗与拱组合而成,从柱顶探出的弓形肘木叫拱,拱与拱之间的方形垫木叫斗,两者合称斗拱。作为力传递的中介,斗拱能把屋檐重量均匀地托住,起到了平衡稳定的作用。古时候没有力学理论,工匠们也只能口口相传。后人们通过总结将这些内容整理成一门科学,这就是结构力学。
实践是检验所学的第一标准
此外,土木工程专业的学生还必须熟练掌握基本的办公软件和AUTOCAD等绘图软件,掌握这些软件,是能够看懂和画出施工图、结构图的前提。而作为一门工科专业,土木工程自然也注重实验,只有在实验课上认真处理实验数据,把理论知识和实验知识有机地结合起来,才能将书本上缥渺的知识记录到脑子里。土木工程专业也很注重实践,我们每个学期的学习都会有实习安排,或是到工地施工放线,调经纬仪进行施工测量,将组织施工的顺序弄清楚;或是到设计院学习,熟练掌握CAD绘图软件等,这些实践活动往往是你今后工作的前奏。学习土木工程更需要耐心,特别是在数学和力学的知识上要懂得深究。这些都是你以后从事土木工程工作所必备的素质。