发布时间:2023-09-28 10:11:42
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇人工智能在教学的应用,期待它们能激发您的灵感。
【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统
人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。
1传统的诊断学教学方法存在的问题
诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。
2人工智能应用于诊断学教学的重要意义
2.1教师方面
将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。
2.2学生方面
将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。
2.3教学过程
针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。
3人工智能在诊断学教学中的应用
3.1智能教学系统
智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。
3.2智能网络组卷阅卷系统
诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。
3.3智能仿真教学系统
诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。
4总结及展望
在人工智能技术应用上,教育领域也深受影响,如何更好的迎合现实需求,对此,我认为
一、人工智能技术要在促进学生学习理解上体现价值。
技术是有成本的。如果技术应用只是提高了训练的效益,其价值便只在低层次认知能力,这些成本是否值当?人工智能技术之应用须在促进学生高层次认知能力的发展上发挥作用,帮助学生从解答习题为主走向解决问题为主。我们应该依托人工智能技术在情境创设与人机互动等方面的优势,促使学生基于理解的学习,促使学生面向应用的学习。
二、人工智能技术要在促进学生个别化学习中发挥作用。
人工智能技术的出现,打破了教育的知识传播平衡,加强了“以学生为中心”的学习关系,使对每一个学习个体的尊重有了可能。而这恰是当前教育实践的薄弱之处。因而,在学校层面应用大数据与人工智能技术的关键,未必在统计意义的归因,而是关于学习个体的过程信息的采集,这是促进学生个别化学习的技术凭借。
关键词:隐喻;认知功能;外语教学
中图分类号:G4241
文献标志码:A
文章编号:1002-0845(2007)06-0046-02
收稿日期:2006-12-12
作者简介:孙厌舒(1979-),女,山东聊城人,副教授,硕士,从事语言习得及英语教学研究。
一、隐喻的认知功能
对隐喻认知功能的研究最早可追溯至亚里士多德时代。亚氏把隐喻看做是一个概念对另一个概念的替换,并且指出,诗歌中隐喻的运用有一定的语境(Mahon,1999)。隐喻的认知功能在17和18世纪再次被Vico和Teasaoro提及,只是进入20世纪以后,隐喻的认知功能才被贬低,隐喻被当成了一种静态的形式逻辑的符号。例如Searle(1977)从语言学的观点出发,把隐喻仅仅看做是一种语用现象。为此,莱科夫和约翰逊一针见血地指出,“典型的看法都认为隐喻仅仅是一种语言特点,是语言的问题而不是思想或行为问题”(Lakoff & Johnson, 1980)。他们以《我们赖以生存的隐喻》一书大张旗鼓地提出了隐喻的认知功能,从而把对隐喻的认知功能的研究推向前所未有的高度。他们认为,隐喻的本质是通过甲事物来理解和体验乙事物,人的概念系统就是通过隐喻建构起来的,即所谓“我们的思想和行为本质上都是隐喻的” (Lakoff,1980)。自此,对隐喻的认知功能的研究逐渐发展起来。卡梅伦(1999)也指出,隐喻具有语言修辞功能、认知功能和语用功能。国内学者束定芳在《隐喻学研究》一书中,把隐喻功能划分为修辞功能、语言学功能、诗歌功能、认知功能、社会功能和文字游戏功能。其中隐喻的认知功能主要指隐喻是人类认识概念系统的基础和组织经验的工具,为人类认识世界提供了新的视角。一般认为,隐喻的认知机制主要体现为从源领域到目标域的映射,表现为人的思维中存在的系统的概念隐喻。在特定语境中,这种概念隐喻常常意味着信息的筛选和整合,而且根据Lakoff的“不变原则”,这种认知映射具有系统性特点,即源领域的结构系统映射到目标域时,原有的基本图式结构不变。
二、外语教学中隐喻的应用研究回顾
卡梅伦较早地探讨了具有认知功能的隐喻的应用。她认为,隐喻首先是一种语言使用现象,语言的认知性与社会性相互作用产生了语言行为。因为语言是一个复杂的、动态的系统,语言资源只有在特定的语境中被应用、加工,才能达到互动的目的。作为语言学者,应当揭示种种语言行为的内在过程。因此,研究隐喻,要把隐喻的社会层面和认知层面都包括进来。在此基础上,卡梅伦建构了隐喻的应用框架:1)理论层面;2)加工层面;3)神经层面(Cameron, 1999)。近年来,第一层面主要研究隐喻的认定和分类,第二层面主要指隐喻在特定文化语境下的作用和解释,第三层面研究处理隐喻时的神经活动。国外对隐喻的认知功能的应用研究已逐渐扩展到很多领域,例如Gwyn(1999)有关隐喻的认知功能在医疗中的应用研究,Clarke (1999)对儿童话语中隐喻的分析,Forceville(2000)对广告中隐喻的认知作用的研究,等等。
相比之下,在外语教学领域里,有关隐喻认知功能的应用研究要少得多,仅有零星的研究散见在认知语言学著作里。在首届全国认知语言学研讨会上,庞继贤和丁展平(2002)曾撰文讨论过隐喻的应用语言学研究,尝试把卡梅伦的三个层面应用于外语教学。王寅(2004)提出了在外语教学中培养学生的隐喻能力的问题,蔡龙权(2005)也提出了把隐喻性表达作为一项外语交际能力的设想。但是隐喻的研究成果仍未在外语教学领域里引起足够的重视。国外的相关研究亦很少,且多为母语为英语的二语习得研究。例如Cameron(2003)对英语国家课堂中出现的隐喻的分析,Cortazzi(1999)对本族语教师与学生有关“教学”、“教师”等概念的隐喻性理解和表达的研究。另外,这些研究也都没有直接探讨外语教学和隐喻的关系。
鉴于此,本文拟在前人研究的基础上探讨隐喻在外语教学中的主要应用层面,分析外语教学中隐喻应用的可能性,以期为隐喻的认知功能在外语教学中的进一步应用探索路径。
三、隐喻的认知功能在外语教学中的应用
隐喻作为一种认知模式,出现在政治、经济等各类语篇中(孙厌舒,2004)。我们的外语教材中也有大量的隐喻。隐喻在外语教学中的作用不容忽视。
基于卡梅伦的应用框架理论,在中国文化语境下,隐喻在外语教学中的应用也可分为三个层面:1)语言层面;2)交际层面;3)文化层面。语言层面主要包括隐喻的认知功能在外语教学中对各种语言现象的提炼和组织的作用。隐喻在交际层面上的应用是培养学生语言能力的重要方面,也是外语教学中经常涉及的问题。文化层面上,隐喻的认知功能在外语教学中主要涉及到文化教学与语篇理解。
1.语言层面
语言层面上,隐喻的认知功能主要表现在三个方面:(1)隐喻能有效地明确教学中的概念。Cortazzi总结隐喻的认知功能对外语教学的借鉴之处时指出,“隐喻能有效地明确教学中的概念,系统地组织概念”(Cortazzi,1999)。隐喻在从一个领域向另一个领域的投射中,一些特征在被形象化、具体化的同时也系统地被提炼。在语言学研究中,不同的隐喻用来明确不同的概念。例如,Saussure认为,Language is a game of chess.Chomsky提出 Language is growth,而Halliday则认为Language is a resource。在外语教学中,一些较抽象或较陌生的概念可以借助隐喻来明确。写作教学中的“大纲”(outline),阅读教学中的“框架”(scaffolding)等,都是利用隐喻来明确概念的。(2)隐喻性的映射可以用来解释一词多义现象,可以说明词的具体义项和抽象义项之间的联系,可以使学生了解词的演变机制,从而更好地理解、记忆词汇。认知语义学认为,支配着一词多义现象的不同意义之间关系的原则是由具体到抽象的隐喻性映射。隐喻的认知功能正是很多词汇产生多义的原因。Lakoff举过“foot”的例子:the foot of a mountain,the foot of a list中的foot正是将人们对人体的认知投射到其他事物上产生的意义。再比如通过了解表示空间概念的词,如“up”、“down”等在语义扩展中的意义就可以深刻理解英语中介词意义的多元性和抽象性(赵艳芳,2000)。(3)借助语言的隐喻本质及其隐喻概念,学生可以更好地理解教材中的隐喻性语言。特别是在文学作品阅读和欣赏中,对隐喻的正确理解和把握能有效地帮助学生提高阅读能力,理解作品的修辞及意境。教师可以通过讲解隐喻的认知模式,帮助学生理解隐喻的含义,达到举一反三的目的。例如,《新编英语教程》第6册15课“Teaching as Mountaineering”中,教师被喻为登山者。这里教学是源领域,登山为目标域。源领域和目标域之间基于相似性而成功地被映射,固然是因为两者都有艰难险阻,都能带来成功的喜悦,但更重要的原因却是,教师必须像登山者一样善于“结绳”,即帮学生串起一个个知识点,或把书本知识和学生的实际联系起来,把课堂教学和课外实践联系起来。通过对源领域和目标域的相似性的把握,教师可以比较顺利地把隐喻蕴涵的意义传达给学生,促进学生的阅读理解。
2.交际层面
① 选自Istvan Kecskes(1999)。语言的普遍隐喻化表现在词汇和语篇中,也表现在受情景制约的言语中。Lakoff(1980:4)说:“隐喻充满了我们的日常生活。”而Richards(1936:94)则指出:“我们的三句话里就有一句隐喻。”交际言语中出现大量的隐喻表达也是基于我们的隐喻认知机制。隐喻源于我们的隐喻概念系统,而这一系统又源于我们对外部世界的体验。我们可以想象,我们的祖先是从认知空间和自己开始认识世界的,所谓“远取诸物,近取诸身”。隐喻的认知基于身体体验,产生于一定的情境,并且必然受情景的制约(Lakoff & Johnson,1999:468)。例如“give me a break”①在特定情境中,它们意思并不是“让我休息一下”,而是表示一种拒绝或反对。当我们用“give me a break”表示拒绝时,所形成的并非仅仅是一个语言事实,而且是一个言语社区所共同认可的交际行为。再如,在某特定情境中,“get out of here”①的意思也许并不是“leave”,而是“don’t fool me”。可见,我们交际中使用的隐喻化表达方式不仅普遍,而且是与语境密切相关的语言现象。对外语学习者而言,隐喻化表达既是一种语言能力,也是一种交际能力。
面对交际中大量的隐喻化表达方式,我们认为,在外语教学中,培养学生的交际能力、隐喻性表达方式和思维方式是不可或缺的。但是目前我国外语教学中缺乏专门隐喻性表达的训练,外语教师甚至尚未建立起培养学生的隐喻化思维和隐喻化表达方式的意识。蔡龙权曾撰文指出,“隐喻性表达是外语交际能力的必要构成,应该把它设立为我们外语教学的一个高级性学习目标”(蔡龙权,2005)。王寅(2004)也提出在外语教学中要提高学生的“隐喻能力”。两位学者都提出要把隐喻确立为我们外语教学的一项内容,是很有见地的观点。
3.文化层面
隐喻的认知模式也有不同的文化意蕴。如上所述,隐喻产生于体验,产生于特定的文化情境,同时也是文化的组成部分。Lakoff指出,“我们所说的体验决不仅仅涉及某个个体,确切地说,每一种体验都是在一个广阔的文化背景前提下产生的……所有体验都完完全全是文化的产物”。隐喻本身的文化意蕴已是语言学界的共识。外语教学必须同时教授文化,这也已是外语工作者的共识。Swiderski(1999)详细讨论了如何通过阅读和写作来提高语言学习者的文化意识问题。
的确,讲授隐喻固有的文化意蕴是进行文化教学的一个方法。然而通过分析隐喻的认知功能,可以在更深的层面上达到文化教学的目的。通过考察隐喻的认知模式,考察隐喻对概念的整合功能和对信息的筛选作用,可以帮助学生更深刻地理解隐喻所传达的文化意蕴。
四、小结
本文讨论了隐喻的认知功能在语言层面、交际层面、文化层面上在外语教学中的应用问题。上述三个层面中,语言层面是基础,交际层面和文化层面在语言层面的基础上得以发展并与之相辅相成。
但是隐喻的认知功能并非仅限于这三个层面。外语教学中学生听、说、读、写几个方面的语言能力是相辅相成的,隐喻的认知功能对学生语言能力的影响也是多方面的。我们相信,通过提高学生对隐喻的认知功能的理解,能够提高学生的综合语言能力。在外语教学中,虽然目前尚不可能进行独立的隐喻教学,但我们可以从隐喻的认知功能这一角度对学生进行必要的训练,使学生透过表面的语言现象,捕捉其中蕴含的文化信息,逐步培养学生对隐喻的认知功能敏锐的捕捉力和隐喻化的表达能力。
参考文献:
[1]Forceville,C.Pictorial metaphor in advertising[M].London:Routledge.2000.
[2]Lakoff,G.& M.Johnson,Metaphors We Live By[M].Chicago:The University of Chicago Press.
[3]蔡龙权.隐喻理论在二语习得中的应用[J].外国语,2003(6):38~42.
[4]蔡龙权.关于把隐喻性表达作为外语交际能力的思考[J].外国语,2005(6):21~26.
[5]孙厌舒.认知研究与外语教学[J].基础教育外语教学与研究,2004(5):50~53.
近两年,“AlphaGo”连胜全世界的围棋名将,被媒体广泛报道。人工智能开始成为社会关注的热点,引起人们的广泛兴趣,并令人深信不疑。
在刚刚结束的2017年高考,学霸君与准星云学两家企业的“高考机器人”分别拿出了 134 分和 105 分的高考文科数学成绩。在做题方面,机器可能已经超越了不少人类。正是这样一件事,同样引发了人们的深度讨论与思考。
的确,随着理论和技术的日益成熟,人工智能开始受到产业资本的热捧,语音识别、机器视觉、智能控制、智能检索、智能互联、专家系统、自动规划等应用步伐加速。金融、电商零售、医疗健康、交通、个人助理等多个领域都可以看到人工智能的应用,人工智能已然开始取代工厂工人、客户服务等重复性工作。人工智能在教育领域同样拥有巨大的应用潜力,随着知识表示方法、机器学习与深度学习、自然语言处理、智能、情感计算等关键技术的发展,人工智能将在学校管理、校园安全、课堂管理、智能助教、自动阅卷、自适应教学等方面发挥作用。
面向未来,我们不禁要问,人工智能是否能够改变教育?人工智能在教育领域将释放怎样的潜力?本期策划,我们邀请上海海事大学魏忠,探讨人工智能视角下的未来教育,从人工智能的教育本体、对学科的影响、对教育技术的改变、对教育价值的重新定位几个方面进行了系y思考与分析。江苏师范大学智慧教育学院周宝、杨现民结合人工智能在教育中的典型应用,探讨人工智能对学校管理及教学带来的革命性影响。华东师范大学第二附属中学刘党生,从技术与教育的关系延伸到人工智能,并对非生物智能介入教育的未来趋势进行了预测;重庆市江津区聚奎小学校刘春林、重庆市聚奎中学校张渝江从教育教学实际出发,介绍了人工智能软件如何温柔地改变教育。上海市位育中学陈凯从教育哲学的角度,探讨了人工智能如何作用于思维、认知、学习,并进行了反思。
“这是最好的时代,这是最坏的时代;这是智慧的时代,这是愚蠢的时代。”人工智能时代的钟声已经敲响,我们还在工业时代的迷梦中寻找教育的未来。谁曾想到,未来来得如此之快,我们是否准备好做出改变?未来,我们需要什么样的人才?我们需要什么样的教育?我们不妨想象一下,未来10年、20年的教育将发生怎样的改变?也许一个崭新的时代并不会留给我们那么长时间去形成新的教育生态系统。
关键词:人工智能;教育变革;智慧教育
近年来大数据、云计算等信息技术飞速发展,人工智能在一些特殊领域(如图像识别、语音识别、自然语言等)不断取得突破性进展。人工智能作为新的技术驱动力正引发第四次工业革命,为医疗、教育、能源、环境等关键领域带来新的发展机遇。人工智能专家预测,人工智能在通用技术领域可能尚不能替代人类,但在一些特殊领域,人工智能将会淘汰现有的劳动力。在国外,许多国家纷纷把人工智能作为国家发展的重要竞争战略,我国学者也密切关注着人工智能的最新理论进展和实践应用,国务院于2017年7月颁布《新一代人工智能发展规划》,明确人工智能发展的重点策略。“人工智能变革教育”的潮流,引发了教育研究领域的“人工智能热”。当前全球范围内,人工智能在教育领域的大量研究和应用催发形成了教育人工智能概念。目前梳理学术上关于研究人工智能与教育的文献主要集中于:
(一)教育理念的革新。“人机一体”将成为未来新的教育方式[1],由新技术和新手段的出现所应运而生的智慧教育[2],将对原有教育进行改进和完善。智能技术在改变教育的手段和环境的同时,还有利于构建出系统解决教育问题的教育新体系,从而真正触及教育的根本[3]。
(二)关注技术的革新。机器深度学习、智能学习的算法、视觉识别以及智能语言识别这些基础技术的突破,为人工智能的教育应用奠定了坚实的基础[4]。
(三)探究教育的应用。人工智能在学校教育中的学业测评、交叉学科、角色变化等应用领域具有巨大潜力,教师角色内涵也将在与人工智能的协同共存中发生改变。AI监课系统能够数据化、可视化评估教师的授课情况,将人工智能技术的运用渗透到整个教学过程中,教师可以根据评分实时调整授课内容,以促进个性化学习,从而提升教学效果。教育深受技术发展的影响,新技术融入教育并促进教育方式的转变已成为必然趋势。一方面技术为教育提供了新的、更加广阔的可能性;另一方面技术具有变革人类的教育方式与学习方式的能力。然而,技术是一把“双刃剑”,如何获取或实现以人工智能为代表的新兴信息技术所拥有的特征、优势与功能,使其在教育中最大限度地发挥其应有的价值呢?人工智能技术如何继续被安全使用到教育领域?如何通过教育变革来促进新兴信息技术在教育教学中的广泛与深入应用,实现教育深层次革命等问题,是目前需要关注和探讨的主要问题。
1人工智能时代下教育变革的背景
1.1人工智能的内涵及具备的强大能力
人工智能最早由美国达特茅斯学院于1956年提出,其研究主要包括机器人、图像识别、自然语言处理、语音识别等,实质是一种自动感知、学习思考并做出判断的程序。人工智能具有自主学习、推断与革新的能力,推动了图像识别、自然语言处理等方面的技术突破。人工智能同时具有理性判断力、超强的工作力,只要电力供应不断,几乎可以无限制地工作下去,而且适应不需要情感投入的工作。它的超强能力,源于三个重要的技术:深度学习、大数据和强算力。
1.2人工智能时代的机遇和挑战
人工智能在精力、记忆力、计算力、感知力以及进化力等方面与人类相比,具有突出优势。在医药领域,人工智能的出现使普通民众可以享受更为高效、稀缺的医疗资源,解决医疗诊断领域诊断质量不均衡、医生资源不足等问题。在教育领域,人工智能促进教学质量进一步提升、教师角色多样化、学生学习能力的提升;为教育研究提供新技术和数据支撑;极大拓展了教育研究新视域;使教育在立德树人方面、教育方法创新方面、教育手段和环境方面以及教育服务供给方式方面均发生改变。然而,看到人工智能以其强大的处理能力带来机遇的同时,也需要正视人工智能带来的新挑战。在人工智能浪潮冲击下,如何借助人工智能发展的机遇推进教育的变革与创新?人工智能技术如何继续被安全使用?首先,人工智能专家大都认为,人工智能将会淘汰大量现有的依靠非脑力劳动为生的劳动力,需要培养人工智能时代的新型劳动力。而且,人工智能技术本身的不太成熟使很多人工智能技术只是应用在儿童教育领域,再者,人工智能潜在的道德伦理问题缺乏法律制度规范。除此之外,人工智能时代将对社会结构以及人的地位构成挑战。综上所述,人工智能时代所带来的机遇是大于挑战的。教育需适应人工智能技术所带来的突破和飞跃,不断调整和更新教育的方向和目标,实现育人成人的发展目标。
2人工智能与教育变革
2.1人工智能与教育目的的变革
人工智能带来的巨变不仅影响人类未来如何发展,而且极大释放了人类的生产力,这些在一定程度上使得人类需要重新思考教育是何目的。人工智能影响教育目的的变革主要表现在:第一,人工智能可能会使人类陷入精神危机。这源于两方面的结果:一方面,人工智能将取代大部分人的工作岗位,工作的丧失将会导致人的价值和尊严丧失。另一方面,人工智能技术的发展将可能导致所有基于自由主义的想法破产,转而人类所拥有的价值和尊严可能转化为一种“算法”,人工智能带来的职业替代风险在教育领域同样存在,主要是对教师角色的挑战。第二,人工智能有利于培养人的学习能力。从某种角度上讲,人工智能剥夺人的就业机会,但同时,人工智能助教机器人将协助教师实现个性化指导,从而有利于将学习的过程视为寻求自我价值和意义的过程。除此之外,人工智能有利于使教育注重培养人的精神能力,这种精神能力大致包括实践动手能力、价值追求能力以及创造能力,从而有利于学生知识以便于更好地完善自我、丰富自我,使教育跳脱“知识为本”的陷阱,发挥“立德树人”的正向作用。
2.2人工智能与学习方式的变革
第一,深度学习。深度学习也称为深度结构学习或者深度机器学习,是一类算法的集合。深度学习概念的提出,一方面尊重了教学规律,另一方面也是应对人工智能时代下的挑战。深度学习在机器学习、专家系统、信息处理等领域取得了显著成就,提倡学教并重、认知重构、反思教学过程,进而达到解决问题的目的。第二,个性化学习。个性化学习区别以往传统班级课堂授课,尊重学生的个性发展,因材施教。人工智能技术与大数据的应用有利于学生享受个性化的学习服务,可提供个性化的学习内容,可视化分析学生的学习数据,快速提高学生的学习效率。第三,自适应学习。自适应学习是指人工智能基于对个体学习进行快速反馈的基础上,根据学习者特征,为其推荐个性化的学习资源和学习路径,从而最大程度上适应学生的学习状态,是实现个性化学习的重要手段。人工智能技术有利于快捷、科学地判断学生的学习状态,进行学习反馈;持续收集学生的学习数据,其中包括学习目标、学习内容;高效地为学生提供海量的学习资源。
2.3人工智能与学习环境的变革
首先,有利于搭建灵活创新的学校环境。不仅可以使空间规划更具弹性,而且可以调节性增强物理环境。其次,人工智能时代的教育区别于以往传统教育强调的统一秩序,更注重个体的用户体验。创客空间、创新实验室等学习环境的不断增加以及人工智能技术的不断发展,个性化的空间环境与学习支持将改变目前学习的学习空间环境。除此之外,随着对话交互技术的逐渐成熟与不断普及,有利于实现虚实结合的立体化实时交互。VR、AR等技术的同步协作也有利于搭建新的学习环境,满足学习者的一系列要求。脑机互动技术的突破有利于实现将人工智能植入人脑,从而改变人类自然语言的交流方式。最后,人工智能通过即时、准确、高效的大数据分析有利于进行精准且个性的学习评价与反馈。人工智能将综合收集所有同学的学习记录,互相比对、优化,从而进行综合提升。更为重要的是,人工智能的人脸识别以及语音识别技术可以运用到教师的教学过程中,进行学生的学习情绪感知,学习状况的了解,从而促进学生学习的科学化;智慧校园、智慧图书馆等的出现,为教学环境的建设提供重要参考。
3人工智能在教育领域的应用
人工智能被认为是最有潜力和影响力的教育信息化技术,将通过人工智能数据挖掘分析、3D打印、模拟仿真等技术的应用,实现人工智能与教育的深度融合,对计算机辅助教学、个性化教育服务、教育人工智能生态环境等产生根本影响。2018年《地平线报告》(高等教育版本)指出了教育领域的信息化发展,未来一段时间内将通过人工智能与信息技术的结合,进而影响教育阶段的不同过程。具体见表1所示。