当前位置: 首页 精选范文 生命科学领域的新技术范文

生命科学领域的新技术精选(五篇)

发布时间:2023-09-18 16:39:06

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇生命科学领域的新技术,期待它们能激发您的灵感。

篇1

Jeff Hawkins原本是PDA厂商利用时间信息的学习系统HTM(hierarchical temporal memory),目前正在进行技术验证。JeffHawkins强调说:“HTM的算法现在还处于研究阶段,还将不断地变化,进入电路实现阶段的时期尚早。但是,HTM和大脑新皮质都是并行工作。这种并行处理的应用软件最适于在多内核的环境中工作,并且能点的CMOS传感器,已拥有实际成果的可植入视觉障碍患者眼球内的CMOS传感器,以实现可视化的人类生活规律为目标的系统,可测定细菌种类的传感器,可测定不明分子种类的超小型核磁共振(NMR)设备等。”

“今后芯片的一个发展方向,可能会是用于实现直观用户界面的传Palm公司及Handspring公司的创始人,但他现在却在只有15名职员的Numenta公司里研究如何能将人脑的智能结构有效地应用于电脑中。他于2004年在美国出版了其著作“On Intelligence”(中文版译名:人工智能的未来),成为使人脑的智能研究再次引人注目的人物。他参考人脑新皮质的分层结构,提出了可充分利用数量众多的晶体管。”

在被称为“半导体奥运会”的ISSCC上,从事智能研究的Hawkins登台演讲的事实表明,半导体的开发正迎来一个转折点:半导体器件的应用不再仅限于传统的电脑及数字家电产品中,一些在全新应用中使用半导体器件的论文受到了广泛的关注。比如,能检测出人的注视感器。苹果公司iPhone的问世导致人们更加关注用户界面,今后将会有更多的设计方案致力于获得以前没有被利用到的信号及信息。

本文将聚焦于涉及半导体发展新方向并正处于萌芽状态的九个话题,介绍其主要内容及对未来的影响。

英特尔公司制作的几百mW的x86处理器立足于SoC,重复利用基于单元的设计

英特尔公司的低功耗x86处理器Silverthorne(开发代码名称)是面向重量为300g~1kg的UMPC(超级移动PC)以及MID(移动互联网设备)而推出的。其平均功耗为几百mW,热设计功耗小于2W,和以前面向PC的x86处理器相比,功耗得到了大幅降低。在电源电压为+1.0V的情况下,最大工作频率是2GHz,其晶体管总数是4700万个。

Silverthorne采用45nm CMOS工艺制造。晶体管的栅极绝缘膜采用高k材料,栅电极采用金属栅,从而削减了栅极漏电流。而且,处理器采用了被称为C6的功耗管理模式,进一步降低了功耗。在使用C6模式时,不仅是内核的内部时钟会停止工作,而且也会关断对PLL和1级/2级高速缓存等的供电。

便于实现多内核及SoC

Silverthome的低功耗技术颇为引人注目,而且,从其电路结构中可以看出,其布局已经考虑到了今后多内核和SoC的应用以及CPU内核的重复利用。

Silverthome的最大特点是芯片为长方形,而大部分处理器芯片通常为正方形。英特尔公司Silverthorne的设计工程师Gianfranco Gerosa表示:“将芯片制作成长方形的原因是为了便于今后实现多内核。”当PC处理器要与最新的GPU集成在单芯片上时,这样的长方形也是很有效的。这种长方形不仅适用于PC的独立处理器,对于面向家电产品的CPU内核也同样适用。

Silverthorne的另一个特点是,为了缩短处理器的设计周期以尽快投入市场,这款处理器中广泛利用了在ASIC中频繁使用的设计方法――基于单元的设计。在处理器内的205个功能单元块(FuB,functional unit block)中,有相当于91%的187个FUB应用了基于单元的设计方法。和ASIC一样,在这些基于单元设计的FUB中,有50%的功能单元块是根据RTL描述进行逻辑综合得到的电路。

一般来说,在处理器的设计中,ALU(算术逻辑单元)等要求高速或低功耗的电路块大多采用全定制设计,就是由设计工程师通过手工作业依照要求确定晶体管的尺寸及版图设计。但是,在这款Silverthorne中采用全定制设计的部分只占全部FUB中的9%,即只包括2级高速缓存、PLL电路及输入,输出电路。Gerosa解释说:“为了尽量缩短设计周期,我们选择了这样的方法。虽然是处理器产品,但如果不能及时投入市场,那也就没有任何意义。”

Gerosa表示,为了缩短设计周期,Silverthorne也采用了并行设计方法,同时并行地推进逻辑设计和版图设计两个方面。具体来说,就是在各个功能块大致的电路设计信息的基础上,并行开展了版图设计。

利用相邻像素的局部并行模拟运算高速识别视线

韩国延世大学开发出能检测出人眼注视点的CMOS传感器,它可以拍摄人眼附近的图像,并在芯片上进行图像识别处理,以确定用户正在注视哪个位置。

通常,这一类图像识别处理往往是在读出来自CMOS传感器并经过AD转换的图像数据之后,利用软件在传感器外部实现的。但此次的新技术则是在CMOS传感器上集成了对瞳孔位置进行计算处理的硬件,就是连接了附近像素的局部并行模拟运算电路。因为采用的是模拟处理,因此其应用仅限于检测出人眼的注视点。但是,通过该技术,单独使用CMOS传感器就可以进行图像识别处理,而不再像以前那样需要外置PC和图像识别处理器等。

如果进一步发挥利用单芯片检测用户视线的特点,该技术就可以有效应用于检测汽车司机的注视点等用途上。另外,还可以在机器人和游戏机以及HMD(头盔显示系统)等各种数字设备中集成识别用户视线的功能。这样一来,就能够体察用户的意图并实现更加直观的用户界面。对于在用户界面中应用视线识别技术的研究一直都非常流行,这项单独使用传感器而无需外置元器件就能实现此类处理的技术,将有可能大幅度降低成本。这款传感器在使用+3,3V电源电压工作时的功耗是100mW。

识别结果是1500S/s

这款传感器的另一个特点是速度极高,原理上最高识别速度可达到5000S/s。这一特性对于要求延迟时间短而实时性高的游戏或者用户界面非常有用。延世大学的KimDongsoo表示,在以前使用CMOS传 感器和图像识别处理器相结合的方式中,由于受限于CMOS传感器中ADC的带宽以及图像识别处理器的处理性能等,因此识别速度一直停留在60S/s左右。但是,这款CMOS传感器是利用模拟电路进行图像识别处理的,因此从原理上说没有上述限制。

不过,上述5000S/s的数值是只考虑每帧200μs的识别处理时间时的速度,并没有包含曝光时间。这款传感器的照明光源设定为红外线,实验时的曝光时间为500gs,因此其有效速度应在1500S/s以下。KimDongsoo解释说:“曝光时间的长短取决于照明条件。如果照明光源比较暗,速度也会变慢。”

这款传感器还增加了提高测量精度的结构。在识别瞳孔的位置时,照明光在瞳孔的角膜上反射后再映射到图像中的这一现象是导致误差的主要原因。对于这种误差,反复进行在图像识别领域中普通的膨胀/收缩处理可予以去除。中的n表示膨胀/收缩处理的重复次数。把附近像素的输出连接到几个相关像素中的晶体管浮栅上,换算成电流值,再将其连接到光电二极管的阴极侧。另外,膨胀/收缩处理就是从附近的8个像素中选择最大或最小亮度时进行的滤波器运算。图3b中的WTA(winner takes a11)电路用于检测出每一列,行的最大值。

已埋入患者眼球内的人造眼利用人体植入型CMOS传感器让患者恢复部分视力

德国的非营利性研究机构IMS发表的是供人造眼(也称人造视网膜或人造视觉)使用的CMOS传感器,可以埋入人类眼球的视网膜内,该技术已经应用于某些患者,并使其恢复了部分视力。

2006年,德国Ttibingen眼科医院大学的眼科医生Eberhart Zrenner为了让7位因患视网膜色素变性而导致视觉障碍的患者恢复视力,曾经把这款CMOS传感器芯片植入他们的视网膜下面。当他通过外科手术把这款3mm2、1450像素的CMOS传感器植入患者的视网膜下面之后,有3位患者部分地恢复了视觉。据介绍,这些芯片在大约5个星期以后摘除,没有发现它对视网膜造成任何损伤。

50μm的超薄CMOS传感器

用于恢复视觉的人造眼通常会将传感器所拍摄的图像传递给人体的神经系统,其中采用的传递方式各有不同。这款新型传感器采用了被称为“视网膜下(subretinal)”的方式,它是利用电极刺激视网膜下面的神经节细胞,并取代视细胞层(椎体细胞及杆体细胞)的功能。此外,还有刺激视网膜细胞表面的“视网膜上(epiretinal)”方式,以及直接利用电极刺激大脑视觉区域的“大脑刺激”方式等。由于视网膜下的方式在植入时损伤视网膜的可能性比较小,因此其被认为是用作人造眼的最佳方式。

但是,为了能将传感器植入视网膜下边的狭窄区域里,传感器就必须很薄。此次发表的芯片在制成以后首先进行图像读出测试,然后使用芯片切割机切下用于测试的电路,只取出传感器部分。再将其厚度减薄到50μm,并安装在用于供电的带状柔性印制板上。芯片表面设置有用于刺激神经节细胞的TiN电极。为了不损伤神经节细胞,电刺激被规定为10μA~100μA,脉冲间隔500μS,脉冲频率20Hz,幅度小于+2V。据介绍,利用3mm2的传感器至少能实现12度的视角。传感器的平均功耗大约是5mW。

去除了直流分量的第2代产品

在IMS CHIPS发表演讲以后,德国Retina Implant公司和德国乌尔姆大学等了上述人体植入型CMOS传感器的第2代产品。RetinaImplant公司和IMS CHIPS是协作关系,并且也参与了上述传感器的设计工作。

虽然第2代传感器还没有进行实际应用,但其对上一代产品进行了若干改进。首先,芯片上的电极去除了一切直流分量。对于视网膜的电刺激也从以前的直流+2V改为交流2V,电源也从以前的直流+3V改为交流2V。这样一来,在传感器周围的细胞中将难以引发化学反应。用于向传感器供电的带状物体采用了由聚酰胺制成的柔性印制板,并从眼球内的传感器通过人体内部连接到耳朵附近的电源盒上。第1代产品是在人体外部使用接触型电源供电,但第2代产品则支持无线供电。

基于新原理的CMOS片上温度传感器利用硅的热扩散率测量温度,误差大幅提高为±0.5摄氏度

荷兰德尔夫特科技大学开发出可集成在芯片上的新型CMOS片上温度传感器。以前,用于测量处理器工作温度等的片上温度传感器主要是带隙型产品,但这款新型传感器的测量原理和以前的全然不同。具体来说,新产品的温度测量是利用芯片衬底硅中的热扩散率实现的,热扩散率是与温度相关的函数。

随着制造工艺的发展,工艺变异性的问题越发严重,而硅的热扩散率不会受到制造工艺变异性的影响。因此,可以很容易地实现批次偏差很小的片上温度传感器,并具有取代传统片上温度传感器的可能性。这款新型传感器的工作温度范围是-55℃~+125℃,功耗约为5mW。

利用脉冲驱动测量加热器

新型传感器的测量原理主要在于,利用脉冲驱动传感器中加热器的相位差来检测热扩散率。在这所大学以前的研究中,检测时主要利用和1/T(T:温度)成正比的传感器的输出频率,该变化是非线性的。但是,利用一定的频率驱动传感器里的加热器,并在距离一定的位置上进行测量时得到的相位差,是和T成正比,且大体上呈线性变化。

传感器采用被称为ETF(电热滤波器)的结构。首先,在传感器中央设置由电阻构成的加热器,并在其周围配置8个阵列状排列的热电偶。8个热电偶以串联方式连接,并在其两端输出8个热电偶中因来自加热器的热量而发生的电位差的总和。当使用一定的频率脉冲驱动加热器时,根据加热器与位于周围的热电偶产生的电位(V)之间的相位差,以及加热器和热电偶之间的距离(S)就可以求出温度。

另外,为了由相位差计算出温度,就有必要精确保持加热器和热电偶之间的距离精度。不过,据德尔夫特科技大学的casparvanVroonhoven表示:“这款传感器的奥妙就在于,利用光刻技术很容易地确保了水平方向的精度。”

利用∑ADC检测相位差

通过ETF得到的相位差,再通过采样率为2.67kSPS的相位域型∑ADC进行数字化。在加热器功率为1mW的情况下,ETF的输出幅度很小,只有几百μV,所以要先用前置放大器进行放大,再使用相位比较器转换为电压信号,然后用40pF的片上电容器进行积分。ETF的驱动频率是85kHz,由 外部的石英振荡器进行驱动。由于这款温度传感器利用的是相位差,石英振荡器的频率精度±100ppm就可以直接支持温度传感器的最小分辨率±0.05℃。同时制造16个传感器时的性能不一致性(30)为±0.5℃,这一数值和已经完成校准的双极晶体管传感器相当。

利用电子技术追求幸福测量人体周围的环境温度,实现生活规律的可视化

日立制造所开发的可穿戴式系统“Life Thermoscope”可以连续3年随时测量人体周围的环境温度。其目标是实现通常难以了解的人的生活规律的可视化。

承担Life Thermoscope主要功能的超小型模块叫做LT模块,其体积只有30cm3。在LT模块中,除了温度传感器(用于检测人体的环境温度)、处理器(对于检测数据进行压缩等)和RF芯片(具有通过无线方式向外部发送检测数据的功能等)以外,还集成有锂离子电池、液晶显示器(分辨率为128×64)、扬声器,以及3按键用户界面等。LT模块的外形尺寸很小,只有55mm×90mm×6mm,可以装入手表等设备内随身携带。

减少发送数据量

Life Thermoscope可以约20秒一次的测量周期持续地测量人体周围的环境温度,电池寿命约为3年。日立制造所表示,选择这种测量人体周围环境温度的方式,是因为人的行为大部分是结合环境温度的变化来考虑的。该公司认为:“这其中最重要的问题是温度变化的规律,而不是环境温度本身的变化量。就是说,通过测量在短期内环境温度变化是否频繁,或者环境温度是否在比较长的时间内都保持一定数值等情况,来把握人的生活规律。”比如,人工作时去见上司或进入会议室时,环境温度都会发生变化。在公司职员里,有喜欢频繁移动的人,也有适合于停留在一个地方认真工作的人。

为了实现人生活规律的可视化,LT模块会对温度数据进行如下处理。首先,以大约5分钟作为一个时段,将每20秒测量一次的温度数据作为基础,去除低通滤波器带来的高频噪声等,并最终将人的行为分为四种规律(状态)。即:温度梯度在10分钟内发生变化的状态(T1)、温度梯度在30分钟内发生变化的状态(T2)、温度梯度在60分钟内发生变化的状态(T3)、温度梯度在60分钟以上没有发生变化的状态(T4)。然后,导出温度数据所符合的T1~T4中的一种状态。计算得到的数据通过无线方式大约每5分钟一次发送到跟服务器连通的基站。这个阶段的数据量是当初测量得到的温度数据量的1/3000。当数据量减少时,可缩短通过无线方式向基站发送数据的时间,从而降低功耗。

为了使这样导出的生活规律具有意义,系统引入了由温度的被测量者对自己的状态进行评分的方式,每日评分一次,满分是5分,评分的项目分为以下5种:Physical(身体状态)、Spiritual(精神状态)、Intellectual(智力)、Executive(执行力)、Social(人际关系)。

研究这些评分结果和上述的T1-T4温度规律之间的相互关系,就可以知道如何行动才能充实精神状态及身体状态。日立制造所谈到开发目标时表示:“我们认为该系统可以告诉大家,如何能够幸福地生活。”

采用CMOS工艺使体积缩小为1/40,重量减轻为1/60

哈佛大学和美国马萨诸塞州综合医院试制出全球最小的核磁共振(NMR)设备。该设备的体积为2500cm3,同已实现商品化的最小型NMR设备相比,体积缩小到约1140。新试制设备的长度仅27cm,重量2kg,只有以前产品的1/60,是便于移动的NMR设备。

NMR是位于静磁场里的原子核和特定频率的电磁波之间相互作用的现象。这一特定频率利用分子内因为原子环境而发生的变化等进行物质的分析。此次开发的NMR设备的工作原理如下。首先,把测量对象的试样放置于静磁场中,构成试样原子的原子核自旋全部会朝向施加磁场的方向。在这种状态下向试样发送特定频率的RF信号时,原子核的磁化将以静磁场方向为轴作前向运动。然后,当停止发送RF信号时,原子核会渐渐恢复到原来的状态。测量其恢复到原来状态所需的时间(张弛时间:T2),就可以知道试样定物质的含量(见图7b)。此次开发的NMR设备主要适用于检测不明分子。具体来说,其目标是检测人体内的病毒和细菌以及人体癌细胞产生的蛋白质等。利用半导体工艺实现小型化

哈佛大学等开发的NMR设备的体积能显著缩小的原因在于,其引入了以前几乎没有应用过的半导体集成技术。哈佛大学解释说:“以前的NMR设备全部都是由物理专业的工程师参与研发工作。而我们则将物理专业的知识和以半导体为中心的工程知识一起带进研究工作中,开发出NMR设备。”

作为这两种知识相结合的代表,此次的设备中利用CMOS工艺实现了RF收发器。在以前的NMR设备中,低噪声放大器(LNA)、可变增益放大器(VGA)和混频器以及数字脉冲发生器等各种电路采用的都是分立元器件。针对这一点,哈佛大学等利用CMOS工艺将这些电路全部集成在单芯片上。

引入半导体技术的优点不仅限于电路的集成化方面。由于采用了丰富的半导体噪声对策技术,因此,构成NMR设备的磁铁等成功地大幅度缩小了体积。哈佛大学等此次使用的磁铁的体积大约是以前的1/10。当采用小型磁铁时,NMR设备的读出信号值会变小,并且对噪声非常敏感。为了解决这一问题,开发团队对CMOS收发器接收单元中的电路进行了改进。将接收单元的信号布线改为差分结构,以减轻共态噪声的影响,并且改变了接收单元中LNA的晶体管结构,以提高对于印制板噪声的耐受性。

全球首个面向认知无线电的接收器可动态检测出UHF频段的空闲频带并应用于通信

美国乔治亚州科技学院和韩国三星电机公司等开发出面向认知无线电的接收器,可以动态地检测出空闲的频带,并在避免与其他的通信/广播服务干扰的同时,共享频带。

现在,认知无线电在美国是特别引人注目的技术。美国有望于2009年2月以前完成地面电视广播的数字化工作,并试图相应地引入认知无线电方式,在UHF频段实现无需授权的高速无线通信WRAN(无线区域网)。数字电视广播是分别为每个地区分配频道的,而且,在不同的地区都还有未经分配的没有利用的频道。这样的空闲频带,即所谓的白区,可供通信使用。

作为面向认知无线电的通信技术规范,IEEE委员会目前正在制定IEEE 802.22标准。预计通信频带宽度是6MHz左右,调制方式有望采 用OFDMA方式,并有可能成为接近WiMAX的物理层。据熟悉认知无线电发展动向的新泻大学助教佐佐木重信表示,此次该款芯片的这些单位在IEEE 802.22标准制定中,在决定物理层的技术规格时起到了主导作用。在标准公布之前就抢先发表面向IEEE 802.22标准的芯片,其目的可能是为了在标准竞争中掌握更大的主导权。

采用组合式的检测方式

认知无线电中检测其他无线服务的频率利用状况的方式主要有3种,即利用匹配滤波器的方式,检测频谱功率的能量检测(Energy Detection)方式,以及利用循环平稳(cyclostationary)的方式。利用匹配滤波器的方式需要事先了解将要检测的无线服务的调制方式等相关知识,要检测出各种各样的无线服务是很困难的。能量检测方式可利用FFT得到频谱,但很难分辨出调制方式等。循环平稳方式会对每种调制方式及符号速度取特定的值,可以辨别出调制方式,但其缺点在于计算过程很复杂。

乔治亚州科技学院等提出了结合能量检测和循环平稳的方法,并将前者称为MRSS(多分辨率频谱感知,multi・resolution spectrumsensing)方式,将后者称为AAC(模拟自相关,analog auto-correlation)方式。这种组合方法分为两个阶段工作,先利用MRSS得到的频谱进行大致的检测,然后再利用AAC进行更详细的无线方式的判断。此次发表的芯片中只采用了结构简单的MRSS方式,采用0.18μmCMOS工艺制造,在采用+1.8V电压工作时功耗是180mW。

篇2

中关村大健康产业联盟目前已汇聚100亿元的投资,并在海外六个国家和地区建立第一批中关村昌平园驻海外联络办公室,以打通国外先进技术和项目进入中国的通道。

昌平园大健康产业“星光熠熠”

作为中关村国家自主创新示范区核心区的重要组成,中关村昌平园的政策区范围为51.4平方公里,入园高新技术企业2400余家。园区内集聚了生命科学医疗健康产业相关的国家级研究机构、行业龙头企业及中小创新型高新技术企业400余家,并拥有世界知名的国家级生命科学园区“中关村生命科学园”。

昌平园目前已成为中国生命科学与医疗健康产业创新要素和产业资源最集聚的区域之一,既有中粮集团、新时代健康产业集团、北大医疗产业集团、瑞士诺华制药、修正药业集团、扬子江药业集团等多家大型领军企业,也有乐普医疗、万泰生物、北陆药业、亚东制药等一大批业内知名的科技型中小企业,覆盖了创新药物、医疗器械、保健用品、新型生物医药材料等各个领域。

此外,园区内还聚集了北京生命科学研究所、蛋白质药物国家工程研究中心、生物芯片国家工程研究中心、瑞士先正达研发中心、丹麦诺和诺德研发中心、国家蛋白质重大基础设施北京基地等多家顶级科研机构,初步形成了涵盖研发创新、生产制造、市场销售和服务外包等各个环节、较为完善的大健康产业链条。

为推动昌平区以生命科学、生物医药产业为核心的大健康产业的快速发展,在中关村科技园区管委会与昌平区人民政府的支持下,中关村昌平园发起成立了“中关村昌平园大健康产业联盟”,联盟由中关村昌平园内50多家大健康领域的核心企业及机构组成,包括5家国家级研究机构、3家跨国公司、5家上市公司、2家大型综合性三甲医院、5名院士、5家海外合作机构以及多家金融服务机构。

六家海外联络办公室将整合全球资源

昌平区区长张燕友说,大健康产业作为当今世界的朝阳产业,不仅有利于提高人民群众的生活质量和健康水平,而且对于转变发展方式、调整产业结构具有重要意义。中关村昌平园大健康产业联盟的成立既是一个里程碑,也是一个新起点,必将为全区乃至全国大健康产业发展注入强大动力和新的活力。作为属地政府,将充分依托产业联盟这个有效载体,切实加大协调服务力度,着力创新体制机制,从审批服务、金融支持、产学研合作、科技成果产业化等关键环节入手,进一步完善相关配套政策体系,积极搭建产业支撑服务平台,为大健康产业的发展创造一流的环境。

在“中关村昌平园大健康产业联盟”成立会上,昌平区副区长、中关村科技园区昌平园管委会主任苏贵光代表中关村昌平园管委会与“美中医药协会”、“美中硅谷协会”、加中创新园等5家海外机构授权代表签署了战略合作协议,将在美国硅谷、美国新泽西、美国波士顿,加拿大多伦多,瑞典斯德哥尔摩,韩国江原道等国家和地区建立第一批6家中关村昌平园驻海外联络办公室。联络办公室将成为国外先进技术和项目进入中国的重要通道,为中关村昌平园整合全球资源、推动园区高新技术企业国际化发展提供资源支持,为海外人才、项目来京发展提供良好的创业服务环境。

为支持昌平区大健康产业的发展,在会上,中关村昌平园管委会与北京银行签署了战略合作协议,将共同搭建政府引导、市场主导、银企联动、多方参与的科技金融服务平台。在未来三年内,北京银行将为中关村昌平园的企业成长、产业发展和园区建设提供200亿元人民币的授信额度,将把中关村昌平园推荐的高新技术企业选定为重点企业群体服务,建立企业贷款的“绿色通道”。

中关村科技园区管委会主任郭洪认为,大健康产业是首都构建“高精尖”产业结构的重要支撑,中关村科技园区昌平园产业集聚效应明显,具备了发展大健康产业联盟的良好基础,他希望大健康产业联盟充分发挥好协同创新的桥梁纽带作用,促进产学研用各类资源密切合作,进一步完善中关村创新创业生态环境。

中关村大健康产业联盟汇聚100亿元投资

如今,一批在行业内具有影响力的重大投资项目已经落户中关村昌平园,未来3年内将陆续建设完成,包括北大医疗城、生命园医药科技中心、泰康健康管理中心、迈瑞北京研究院等10个项目,总投资额超过100亿元。

篇3

身处中关村国家自主创新示范区核心区的生命园,在十年历练的基础上放眼未来,提出要向世界生物产业创新中心迈进。

十年磨一剑

中关村生命科学园于2000年由北京市政府批准建园,并于2001年3月全面开始园区建设,目标是以我国生命科学和生物技术研发以及产业化重大项目为依托,建成集生命科学研发中试、生物技术创新和产业化、企业孵化、产业聚集、风险投资、国际合作、人才培养于一体的世界一流的高科技园区。

生命园规划占地总面积为249公顷。一期为中关村生命科学园,项目用地130公顷,定位于生物技术的研发、中试与生产,二期为中关村国际生命医疗园,规划用地面积119公顷,定位于医疗服务产业。

经过十年积累,生命园成为生物产业专业园区的品牌已经建立,强大的产业聚集效应和整体竞争优势逐步显现,吸引了一批国际国内著名生物医药以及生物农业、生物环保领域的企业入驻。

截至2010年6月,入驻生命园的各类单位已达85家,至今,生命园已聚集了7家国家级研究机构、1家医疗机构、21家国际国内著名企业研发生产中心、12家生物医药服务外包企业、40余家中小型创新科技企业。目前园区内工作人员已近6000人。

谈及生命园十年发展历程,中关村生命科学园总经理郭利感慨良多:“中关村生命科学园在政府的关心和支持下,在入园企业的不懈努力下,已经从默默无闻发展到名声鹊起,园区建设已经由一片荒芜到如今生机勃勃。过去的十年,生命园走过了艰难的历程,今天已经站到了一个新的台阶上。”

生命园十年所取得的成绩可以用几组数据来说明。

截至2009年底,生命园工业总产值21.3亿元,同比增长24.6%;总收入31.96亿元,同比增长41%;利润总额5.5亿元,同比增长323%;进出口总额3997.7万美元,同比增长139%;研发投入4.4亿元,同比增长175%。园区以研发创新为主,整体经济总量呈现快速增长态势。

此外,园区在自主创新方面的爆发力逐步显现。据不完全统计,目前园区共有在研的国际国内开发项目146项,在国际著名刊物上66篇,园区内企业拥有600余项各种专利,自主知识产权技术167项,承担国家863、973和国家自然基金委等项目25项。这种创新能力优势正逐步向产业化优势方向转化,一批创新成果正逐步进入产业化阶段,一些尖端产品填补了国内空白并出口到美国等发达国家。

2009年,园区专利申请85项,其中发明专利70项,授权专利143项,授权发明专利111项,有效专利170项,注册商标59项。2009年发表科技论文27篇,获得国家级科技成果10项,再次创下新高。

从人才聚集效益上看,生命科学园共聚集了3名中国科学院院士,占园区从业人口的万分之五,400多个博士,占园区从业人口的7,3%,硕士1700余人,占园区从业人口的14%,作为专业化园区来讲,生命园聚集人才的数量和水准与目前国内领先的生物产业基地上海张江科技园区不相上下。

郭利认为,上述数据是生命园十年所取得成绩的最好注释,“经历了十年发展,中关村生命科学园已经发展成为以拥有自主知识产权为主的专业园区,形成了高端成果的研发基地,并成为国内外高端人才的聚集地。”

依据国家发展和改革委员会在《生物产业发展“十一五”规划》中对生物产业的领域划分,中关村生命科学园生物产业领域涵盖了生物医药制造业和医疗器械产业、生物技术服务业、生物农业、生物环保、生物保健品、医疗健康六大特色产业,其中,生物医药产业已初步形成了从上游研发到产业化到终端医疗市场的一个完整产业链条,并不断向下游产业链延伸。

在源头创新上,生命园汇集了中国科学院、中国军事医学科学院、中国医学科学院、北京大学、清华大学等国家顶尖研究机构,以及由北京市与国家有关部委合作共建的国际一流的北京生命科学研究所;在产业化资源上,汇集了国家爱滋病检验试剂生产示范基地、扬子江集团、江中制药、迈瑞医疗、博晖创新、华邦制药颖泰嘉和等国内知名企业,吸引了美国健赞、瑞士先正达研发生产中心、诺和诺德(中国)研发中心、日本TAKARA、德国贺利氏等著名跨国公司;在研发外包方面,发起组建生命园研发外包联盟,包括协和洛奇临床检测中心、863实验动物基地、PPD保诺、丹麦CCBR临床和基础试验中心等12家企业,系统建设包括药物化学研发、药物安全研发、临床试验研发等外包服务技术平台;在医疗终端市场方面,北大国际医院在为生物医药研发产企业的科技创新提供丰富的临床和市场资源的同时,将大大改善首都北部地区的医疗条件;生物农业方面,国际种业巨头瑞士先正达和国内种业三强之一的奥瑞金成为园区的龙头企业;生物环保方面,引进了污水资源化MBR(膜生物反应器)技术处于世界前三强的碧水源科技公司;北京市药品检验所的入园为园区专业化产业支撑要素建设奠定了坚实基础。高端项目的引进,使园区聚集了以美国科学院院士王晓东博士、中国科学院贺福初院士、中国工程院程京院士、韩庚辰博士、王保平博士等领军人物和一批世界一流的专家学者队伍。

2006年10月,生命园被国家发改委确定为“北京国家生物产业基地”,生命科学园成为产业基地的研发核心区,初步形成了从源头创新到临床科研、从现代制造到终端用户的较为完整的生物技术产业链条和有利于企业持续发展的产业生态环境,成为具有国内顶尖水准的高端生物技术产业化研发资源最密集的专业园区。

北京市发展和改革委员会委员张燕友认为:“经过十年发展,中关村生命科学园已经发展成为北京国家生物产业基地的创新中心。”

将迎来爆发增长的黄金期

有专家预测,生物产业是21世纪全球重要的主导产业,将以每3年增加5倍的速度发展。

从生物技术当前已经形成的产业领域可以看出,生物技术产业已基本形成了包括医药生物技术产业、农业生物技术产业、工业生物技术产业等几个产业群。在生物医药领域,2009年全球医药市场销售金额增长7.0%,达到8370亿美元。在生物农业领域,1996-2007年转基因作物累计种植面积第一次达到6.9亿公顷,以67倍的速度空前增长。在工业生物技术领域,全球工业生物技术发展

方兴未艾,已大规模应用于化学品生产。

虽然生物产业在我国的发展尚属起步阶段,但近年来其发展保持了较快增长势头。2009年,我国生物产业全年实现总产值11000亿元左右,同比增长25%以上,这是在全球金融危机背景下所不多见的。

我国政府高度重视生物产业发展。2009年6月,国务院常务会议讨论并原则通过《促进生物产业加快发展的若干政策》。会议认为,必须抓住世界生物科技革命和产业革命的机遇,将生物产业培育成为我国高技术领域的支柱产业。以生物医药、生物农业、生物能源、生物制造和生物环保产业为重点,大力发展现代生物产业。《促进生物产业加快发展的若干政策》的颁布,标志着我国生物产业已步入快速发展期。

国务院《促进生物产业加快发展的若干政策》之后。北京市委书记刘淇又明确提出要将北京生物医药产业发展成具有战略意义的支柱产业。2009年11月,北京市政府出台了《北京市调整振兴生物和医药产业实施方案》,实施方案的配套措施及跨越式发展方案目前正在讨论阶段,北京生物医药产业已迎来了难得的历史发展机遇。

前十年的发展,为生命园打下了良好基础。后五年,乃至后十年,生命园将进入一个爆发性增长阶段,有专家预计,生物医药产业的爆发点是今后8-10年,这也与生命园对未来的预测大致吻合。

“生物医药产业将迎来一个增长极的爆发阶段,生命园将紧紧抓住机遇,在未来几年内,实现新一轮跨越式发展。”郭利希望,在未来五到十年内,“至少在北京市,生命园能够站到生物医药产业最高端的战略台阶上。”

生命园目前的产值约为20亿元,预计到“十二五”末,园区产值将达到200亿元,2020年,预计达到500亿。

要扎扎实实地完成这一增长和跨越,除了坚持走自主研发、自主创新的道路之外,郭利认为还要从两个方面加大工作力度:一是加强科研成果就地转化力度,二是提升园区国际化水平。

“大家都知道搞研发对头,但往往搞不下去,其中很大原因就在于更关注GDP。”郭利认为,生物医药产业的研发过程比一般高新技术产业更加漫长,迅速产生效益不太现实,但又不能不重视产业化。特别是北京市,拥有国内一流的科技和人才资源优势,更适合搞研发,但又不能无视税收。

“需要有更好的政策来解决这一矛盾。”郭利建议,应在研发企业和地区之间达成一种类似于技术转让费的协议形式,既给不适合在本地大规模生产的企业放行,又能在企业落户当地上税,还可以通过技术转让费,鼓励研发企业的积极性,从而使生物医药产业的基础研究工作能有一个基本的良性循环。

“必须要迈出这一步,否则生物医药产业的创新动力、研发动力将消失。”郭利说。

目前,生命园正在开展国际化合作基地的建设。国际化以“引进来”为主,先期主要引进在行业内具有国际化背景和丰富经验的中介机构,通过其成熟的国外网络,为未来生命园引入更多国际知名生物医药企业做铺垫。因此在短期内,生命园国际企业业的入园数量将会有一个集中增长。

另外在生命园三期扩区的规划中,也特别规划出国际总部功能区,为国际大公司进驻预留一定的空间资源,希望更多的国际生物医药企业能在生命园迅速落地生根。

从国内外专业园区发展的成功经验来看,成熟园区若达到自我平衡点,至少需要的空间范围是8-10平方公里,其中,2-3平方公里摘研发创新,3-4平方公里做产业化转移,1-2平方公里提供公共配套。由此来看,为实现园区未来的爆发式增长,生命园在发展空间上至少还面临着3-4平方公里的拓展需求。

2009年3月,在中国改革开放30周年和中关村成立20周年的特殊时刻,中关村确定了新的战略定位,将建设成为具有全球影响力的科技创新中心。作为中关村国家自主创新示范区的一部分,作为北京国家生物产业基地,生命科学园提出,要打造成世界生物产业的创新中心,成为首都北部地区新的增长极,并为中国生物产业的发展作出贡献。

中关村发展集团董事长于军谈到:“作为中关村国家自主创新示范区的重要组成部分,生命园地处中关村国家自主创新示范区的核心区域,位于北京即将着力发展的北部核心地带,此次中关村发展集团成立,重组中关村各分园及专业园区,也把生命园纳入到中关村发展的大战略当中,因此,生命园将在中关村未来的发展中迎来更大的机遇,承担更重要的发展使命。生命园应当在物理空间、创新成果、成果转化等方面实现新的突破。”

昌平区委副书记、区长金树东也对中关村生命科学园的发展寄予了厚望:“在北京新一轮的城市发展战略中,昌平区处于北部高新技术产业带这一重点发展区域,迎来了大投入、大发展的战略机遇期。中关村生命科学园应当抓住机遇,努力打造成为中国第一、世界一流的高科技园区。”

篇4

大家好!

我叫*,是联合基因科技集团所属的*博星基因芯片有限公司首席芯片专家,是1999年从美国留学回国的“海归”学者。回国后,自从有了从事研究生命科学的舞台后,我的人生突然开始变得灿烂;我的生命也仿佛融入了新的内涵。我高兴的是,我用最短的时间,在生命科学领域取得了突破性的研究成果,不仅获得国际同行的认可,同时,这些科研成果用“中国速度”,跨入世界科学前沿的行列。

八年来,我主持和参加了具有国际一流水平的国内第一个基因芯片技术平台的创建,开发了寡核苷酸芯片等一系列基因芯片产品,生产出国内第一块基因芯片,4项技术成果通过*市科委成果鉴定委员会鉴定,4项成果被认定为*市高新技术成果转化项目,5项成果填补国内空白,在我国基因技术研究与应用方面起到了引领作用,为生命科学研究领域提供了有力的工具。虽然我只是做了一个科技工作者应该做的事情,可是党和政府却给了我许多荣誉:从*市十大工人发明家、到全国职工创新能手、国务院政府特殊津贴专家、*市劳动模范的崇高荣誉。为此,我衷心地感谢党和政府对我的关怀,感谢*人民对我的信任。

我出生在四川的一个教师家庭,曾是一个山里的女孩,1982年来到复旦大学遗传学专业学习,在党的教育培养下完成了本科、硕士和博士学业,当上了一名大学教师。为了提高自己的学术水平,更好地掌握现代生物学的一些尖端技术,我于1997年6月辞去复旦大学的教师工作,去美国纽约州立大学布法罗分校做博士后深造。在美留学期间,我专心致志学习,得到了指导老师的帮助和赞赏。当时国内正发大水,我参加了当地留学生团体组织的捐款赈灾活动,心灵受到了强烈震撼,我觉得身在异国他乡,就像浮萍一样,找不到根的感觉,只有回到祖国,回到亲人身边,心里才能有一种踏实感。我的内心总是在想,我真正的事业应该在祖国,在*这块热土。

1998年10月的一天,我接到了我先生的越洋电话,他告诉我复旦大学刚刚开始搞人类基因组研究,复旦的老师也希望我能回来,从事这项对我来说是全新的事业。这一夜,我失眠了。斗争了一夜,最后我决定回到祖国,接受这个生命科学的挑战!1999年1月,我毅然放弃了在美国获得工作签证、2万多美金年薪和可以申请到绿卡等优厚待遇的机会,回到了祖国母亲的怀抱,回到了*,为我国生命科学而探秘和攻坚!回国以后,出于对人类健康事业的追求,我在回到复旦大学的同时加入了联合基因科技集团。联合基因是一家民营高科技企业,成立于1997年,它以人类新基因为核心,通过研究具有自主知识产权的基因功能,并实现产业化,造福人类。

基因芯片技术是随着基因组计划而产生的新技术,已成为功能基因组研究中必不可少的手段。我一上任便受命负责基因芯片技术平台的组建和技术攻关,强烈的事业心和使命感,驱使我带领一群年轻技术人员风风火火地干开了。基因芯片技术平台的组建和研发是一项全新的工作,仅凭过去学到的知识是远远不够的,况且当时在国内又没有这方面的专业指导人员,一切都得从零开始,其间遇到的困难和坎坷是一般人难以想象的。我一面埋头于图书馆和资料室,废寝忘食地查阅文献资料,一面想方设法与国外同行建立联系,虚心向他们请教,经过一段时间的努力,芯片研发工作开始有了新的进展。然而,要想真正获得属于自己的东西光有文献和靠别人的介绍是远远不够的,必须得自己亲自去摸索和实践,走自主创新的道路。在那些日子里,早上我骑车带着女儿去上学,可我一路上还在想着“芯片”研究,最后竟然多次把女儿带到了我公司门口。

怀着对科学的一腔追求,我日以继夜,每天工作十多个小时,有时灵感上来了,半夜也会立即起身连夜研究。就这样,我边实验,边研究,边攻克难题,在吸收消化国外技术经验的基础上进行创新。一次次实验的失败,没能阻止我们研究的步伐;一次次难题的破解,增强了我掌握尖端芯片技术的信心。功夫不负有心人。经过半年的苦战,我们的研究工作终于取得了重大突破,一个国内首创、国际一流的基因芯片技术平台在我们手中建成了。一时间国内各大媒体都竞相报道了这一振奋人心的消息,中国人攻克基因芯片技术平台仅仅用了半年时间,在国外一般至少要一年以上时间才能完成。“*速度”,让国际同行也为之震动!美国cDNA微阵列基因芯片创始人之一MarkSchena博士曾先后两次到联合基因参观交流,对我们所取得的成果表示惊讶和赞赏,回国后,他立即向国际基因组织发出呼吁,要求即将召开的国际大会增加一个来自中国*女学者名额。*年11月我被邀请参加了在美国费城召开的“chiptohits*”国际大会。

如果说,基因芯片技术平台的建立为基因芯片的研究和产品开发提供了强有力的支持。那么,通过不断完善技术,我又开发了表达谱系列芯片等十多种基因芯片产品,这些科研成果,在人类重大疾病的发病机理、医学诊断、个性化治疗、疾病易感基因检测、药物开发等方面发挥了重要作用。我研究开发的基因芯片技术及衍生的产品不仅推动了基因技术产业发展,同时还为功能基因组学等生命科学研究领域提供了有力的研究工具,打破了高端科研试剂长期依赖进口的局面。为国家节省了大量的外汇。因为我们研究的成果有着科学的前瞻性,因此我们的两个项目分别获得*市优秀新产品一等奖、科技进步一等奖。博星基因芯片公司也由此成了国内生物技术领域里一颗耀眼的新星。

*年以来我又投身于全民健康系统工程,把基因技术直接用于普通百姓的疾病易感基因检测,促进了我国生物技术产业化发展。现在无论是生病的或是没病的,通过我们的基因“芯片”,即可检测出各人的身体健康状况,让每一个人都可以探知自己生命的全部奥秘。

作为一位知识女性,我有一个幸福和睦的家庭,家人对我的研究工作非常理解和支持。为了钟爱的事业,为了跟上生物技术发展的步伐,我放弃了个人的爱好,牺牲了大部分业余时间,一心一意地扑在科研工作上,丝毫不敢怠慢。近三年来,我完成了国家“十五”863计划等国家和省部级项目8项。申请国家基因发明专利3项,获得授权专利3项,获市科技进步二等奖1项(第六完成人)。由我负责开发的*市火炬计划成果转化项目——“表达谱基因芯片”的用户单位达到近千家,累计实现销售收入达到3000多万元。在*年的一次全球招标中,我们以过硬的技术赢得了挪威三文鱼基因组的合作项目,提高了公司的国际竞争力。几年来,我培养了一批博士生、硕士生,并走上了工作岗位,有不少成了公司的技术或管理骨干。

篇5

教学内容的与时俱进和不断更新是“概论”课程生命力的体现。每学期都要开设的“概论”课,一方面建立起相对稳定的教学大纲,是保证稳定教学质量的要求;另一方面,课程的教学内容却是需要“流动”的,不断有所增减。这是因为无论从学科的发展还是从课程的属性来看,都要求课程在教学过程中与时俱进地更新教学内容。(一)生命科学与生物技术飞速发展日新月异的必然要求日本学者伊东光在20世纪曾经预言:生命科学在20世纪90年代会取得创造性的突破,21世纪将是生命科学的世纪。如今这个预言应验了。从20世纪50年代到最近的诺贝尔奖获得者中可以看出,这个公认的最高科学奖项越来越青睐于生命科学领域。即便是化学奖的获得者,许多也是因为选择了与生命活动相关的研究对象或研究领域,才取得了突破性的成就。[4]进入21世纪以来,生命科学和生物技术的发展进入了黄金时代,给人类的生活和生产带来了天翻地覆的变化,依靠生命科学的新兴研究领域特别是分子生物学、系统生物学,以及合成生物学而发展起来的认识生命、改变自然生物为人工生物的高技术方法,正越来越显著地提高着人们的生活质量和工作效率。随着生命科学与生物技术的飞速发展,现有的教材及教学大纲的知识点已难以跟上科技发展的脚步,这也对该课程的教学方式提出了新的要求。[5,6](二)体现选修课传播先进科学技术和最新科学成果的必然要求高校开设选修课的目的之一,是介绍先进科学技术和最新科学成果,以培养大学生的综合素质,并提高他们的创新能力。这就要求“概论”在教学中必须紧跟学科发展前沿,密切关注学科领域发展的前沿技术和研究成果,及时地将其更新到教学内容中,这样才能体现选修课的课程属性,有助于拓宽学生的知识面,优化其知识结构,培养复合型的人才。

二、“概论”课程教学内容与时俱进的探索与实践

(一)密切关注学科发展前沿目前,生命科学已经成为世界科学前沿最活跃的学科,也是代表科学发展方向的学科之一。随着新理论、新技术和新方法不断涌现,“概论”课程的设置及内容显著落后于科学发展的速度,许多前沿知识难以及时走进课堂,学生缺乏对“高、新、尖”科技知识及发展历程的基本了解,缺乏对该领域发展对社会进步影响的认识,从而影响了他们的科学素养和科学价值观的形成。这种局面对“概论”课程的讲授内容和方式提出了新的要求。基于此,在遵循教学大纲的基础上,有选择性地穿插讲授部分与大纲内容相关的前沿技术,一方面能够加深学生对讲授知识点的理解,同时也使最新的科技进展进入课堂,激发学生的学习兴趣并促进他们修读该课程的学习热情。例如,在讲授“克隆技术”这一知识点时,我们一方面按照教学大纲内容,讲授“多利羊”的克隆过程及其中涉及的相关生物学原理;与此同时,结合最近刚刚兴起的合成生物学技术,选择其标志性事件作为讲授素材:即2010年,美国科学家克雷格·文特尔(Craig Venter)在其实验室用化学合成的基因组成功构建了一个细菌细胞,命名为“辛西娅”,从此宣告“人造生命”成为可能。[7]针对这一最新的生命科学前沿事件,讲授其诞生背景,相关技术水平,应用前景及舆论评价等方面的最新进展。在此基础上,采用启发式的教学方法,提出疑问。即:以“多利羊”诞生为代表的克隆技术和以“辛西娅”诞生为代表的合成生物技术有何区别与联系?通过让学生课后查阅资料及后续课程的及时跟进,我们将这一问题的答案贯穿在整个课程涉及克隆技术的内容中,使学生们深刻体会这二者之间的区别和联系。这二者的效果是类似的,均是通过无性繁殖的手段获得目标性状的生物个体;但克隆技术获得的“多利羊”只是一个母体的复制,也就是说它的遗传物质是来至于自然复制,而采用合成生物学人工合成的生命“辛西娅”的遗传物质来源于人工化学合成,这是二者的不同之处。(二)积极反映科技最新动态及时展示相关领域的最新科研成果是选修课程的基本属性之一,这就要求“概论”在讲授过程中,要突破传统按照教学大纲的思路,及时地补充生命科学和生物技术领域的科技最新动态,全面提高学生修读该课程的学习兴趣并拓宽其知识面。如每年10月份诺贝尔奖评选结果公布,每年年底世界主流媒体评出当年科技十大进展之际,我们通常会把其中反映生命科学和生物技术最新进展的内容及时移植到教学中去。非典和禽流感的到来,威胁人们健康,引起了全社会关注。于是,有关病毒、细菌等病原物及流行疾病的新内容被拿到“概论”课堂上来了,这些“时尚”的新内容很受学生欢迎。学生从中感受到热点前沿贴近自己,学习到对科研成果的评价,也更理解科技进展的人文涵义。例如,在讲授生命起源这一知识点时,针对“生命起源于地球之外的宇宙”这一假设,课堂内容中引入了最新的科技报道:火星上曾有生命?“蓝莓”状物质成为有力证据(2012年9月17日中国日报网)!学生在感受有关生命起源探索是在不断进行的同时,获悉了最新的科技进展。再比如,讲授“微生物基础”章节中关于“病毒”的知识点时,我们结合当时在我国长三角地区爆发的H7N9禽流感疫情,详细讲解禽流感病毒的不同亚型,以及H7N9亚型病毒的演变历程与其生物学特点、致病力、传播力;据此,再进一步详细介绍禽流感流感病毒的表面结构特征,以及其不同亚型的分类依据;并结合其不耐高温的属性,介绍在平时日常生活中应该如何防治,以及我国科学家如何及时进行针对性的研究,加快防治该病毒的疫苗研制的进展。(三)聚焦产业最新研究进展随着生命科学逐渐成为世界科学前沿最活跃的部分,作为与人类健康和自身发展密切相关的领域,在世界范围内,人们逐渐形成了这样一个认识:生物技术所主导的BT产业,与计算机技术所主导的IT产业一起,将成为21世纪主导社会发展的支柱产业。这意味着生物产业已成为全球各国关注的焦点。讲授“生物技术实践”这一章节时,我们向学生们解读我国基于对生物产业研发重视而颁布的《促进生物产业加快发展的若干政策》和《“十二五”生物技术发展专项规划》等最新规划文件,使学生们及时地了解到我国在该领域的战略部署。及时地跟进产业的最新研究进展,有望使学生们在领悟中学习,在实践中求知。每年6月份公布的美国总统绿色化学挑战奖中都会有涉及生物技术应用于绿色化学过程的实例。这些应用实例的穿插讲授,不仅可以使学生们领悟到生物技术的强大功能,而且可以使他们切身感受到生命科学和生物技术其实就在我们的日常生活中。再比如,讲授“生物能源”这一知识点时,在介绍最新的第二代燃料乙醇研发进展和产业化动态的同时,我们结合南京工业大学在另一种重要的生物能源———生物甲烷方面形成的研究方向和标志性成果进行讲解,包括主持的两项与生物甲烷相关的国家973项目“新一代生物催化与生物转化的科学基础”和“生物甲烷系统中若干过程高效转化的基础研究”,以及面向电动汽车的甲烷燃料电池的研发新进展。[8]通过这些内容的介绍,学生们在领悟到生物甲烷的优越性及其生产流程,以及其中亟须解决的关键科学问题的同时,可以获得这样一种体验:其实生物能源研究就在我们周围。在此基础上,我们进一步以南京工业大学的生物甲烷示范工程项目作为讲授素材,详细讲解生物甲烷的生产流程及其广泛应用和对节能减排的贡献。

三、教学改革的效果