发布时间:2023-09-28 08:50:34
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇电力电子技术及其应用,期待它们能激发您的灵感。
随着科技不断发展,人类生活水平不断提高,电子电力技术得到推广应用。电子电力技术应用范围扩大,使得我国国民经济发展得到推动。文章分析了电力电子技术发展,以及应用的领域。
【关键词】电子电力 发展应用 应用领域
1 电力电子技术的应用
1.1 一般工业
工业生产中,一般都会使用到各种交流电动机,这些动力设备性能比较好,在,可以提供直流斩波电源,或者提供可控整流电源。但是提供的主体是电力电子装备。众所周知,交流电机变频调速技术是整个电气节能最关键之技术,相对于传统的大型机器而言,使用的是电力电子交流节能技术,将其作为电力驱动电源,可以节能电能达到30%。近年来,随着电力电子技术得以发展,使得交流电性能得以发挥出来,随着社会不断发展,交流调速技术得到广泛应用,逐渐占据市场。
1.2 在电力系统中的应用
当电力系统离开了电力电子技术之后,电力现代化建设将很难实现。电力系统建设发展中,得到了电力电子技术支撑,现代化建设目的得以实现。高压输电是基于发电厂借助变压器,将发电机发出的电压将其升压之后再输出的一种全新方式。高压直流输电端位置以及受电端位置,一般都是使用晶闸管变流装置,这可以避免了大容量以及长距离输送导致电力系统出现损耗问题出现,为输电系统使用奠定技术基础,从而为良好输电提供保障。在配电网系统中,电力电子装置还可以被使用于电能质量控制,例如,使用于闪变、瞬间停电以及电压跌落等等电能质量控制中,更好的保障供电质量。
1.3 交通运输
电子电力技术交通中被广泛使用,DC/DC变换技术被大量使用于地铁、动车以及无轨电车中。在使用中,可以更好的控制无极变速,提升控制质量。在使用中,最常表现在于电气机车中的直流机车选择了整流装置将其作为供电设备。但是,交流机车如果采用了变频装置进行供电,那么需要借助电力电子装置做好电力驱动和和电力控制。例如:直流斩波器被广泛使用于轨道车辆中,常见的磁悬浮列车中电力电子技术使用,这是一项技术要求较好,关键之技术使用案例。其中借助电动汽车将其作为蓄电池,提供能源,需要做好电力驱动控制工作。那么使用蓄电池进行充电,不能离开电源。因此,航海、航空也离不开电子技术。
2 电力电子技术未来的发展
观看技术发展进程中看出,半导体器件使用推动了电子技术得以快速发展。当前晶闸管等电力半导体器件有着重要的角色,尤其是在电力电子技术使用过程中。进入的到79年代之后,半控型晶闸管使用开始有新的改变。之前从低压的小电流逐渐向高压大电流方向发展,而且还研究出大量的电子产品。这些产品被成为电子器件,随着电子技术不断发展,这些产品被广泛使用。因此,被称为第一代电力电子器件,随着电力电子技术不断发展,该技术使用范围不断扩大,将其使用于电子技术理论研究和半导体制造使用,使得工艺水平逐渐提高。我国随后研究出了GTR、GTO、功率MOSFE等等电子器件,这些器件都是全控制型的电子器件,被成为第二代电力电子器件。近年来,随着技术水平不断发展,研究出了绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,逐渐向响应快、高频率方向发展,这是一个质的飞跃,在我国国民经济发展中具有重要作用,它推动了我国经济不断发展,使得我国电子自动化进程迈进一部。进入90年代之后,电子电力器件发展更快速,逐渐朝复杂化、模块化、智能化、功率集成的方向发展,以此形成了电力电子技术的理论研究、器件开发研制、应用的高新技术领域等,在国际上形成了新的技术热门。目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。我国国产的电力半导体器件研究水平相对于西方国家,我国的电力电子技术水平相对较低,我国应该不断创新技术,不断进行研究,提升科研水平,更好的保障经济建设。我国电力半导体器件如果没有跟上社会发展步伐,将会影响我国经济发展水平。因此,我国的电力半导体产业发展任务艰巨。在未来发展中,应该进一步研究使用新材料,提升器件功率以及温度范围,之间降低器件价格,使得器件被使用的范围更广。系统实现集成化,当获得更好的集成化之后,才更好保障系统可靠性和安全性。
3 结束语
综上所述,电力电子技术是一门信息、智力、知识密集型的技术,对该技术掌握对提升我国经济可持续发展有重要作用。从当前的发展前景上看,将半导体器件作为核心技术的电力电子行业,在我国政策支撑下,科研工作深度加深,相信在不久的将来,该技术发展水平会得以提升,更加推动我国经济发展。
参考文献
[1]赵阳,谢少军.高性能传导EMI噪声分离网络及其在电力电子电磁兼容中的应用[J].南京航空航天大学学报,2010(1) .
[2]王成山,高菲.电力电子装置典型模型的适应性分析[D] .中国电机工程学会电力系统自动化专业委员会三届一次会议暨2011年学术交流会议.2011.
[3]王柯,王跃,李明,方雄.电力电子电感的研究[D] .中国电工技术学会电力电子学会第十二届学术年会.
【关键词】 电力电子;应用;趋势
一、电力电子技术应用概况
1.用电领域中的电力电子技术。(1)电动机的优化运行。全世界的用电量中约有60%左右是通过电动机来消耗的。采用计算机―电力电子技术结合的智能变频控制技术,使电动机经常处于高效状态,可以节约大量电能,具有巨大的效益。(2)高能量密度的电源应用。电化学电源广泛应用在作为国民经济的铜、铝、锌、镍等有色金属以及氯碱等电解产业中;体积小、重量轻、效率高的各种开关电源应用也是十分广泛;新世纪中,随着电力电子技术的发展,变频电源应用也日益广泛;还有不间断电源(UPS)、稳压稳流电源、高精度洁净电源等特种电源,采用电力电子技术后,各方面指标均大大改善。
2.信息领域中的电力电子技术。电力电子技术为信息技术提供先进的电源和运动控制系统,日益成为信息产品中不可缺少的一部分。在信息产品的主电路中,正在用MOS场效应管取代双极晶体管来完成各种变换,其用量越来越多。FAX机、计算机、VCD、DVD等许多整机中都装备着多种电动机。尤其在各种打印机中,离开对电动机运动的高精度控制,其打印效果是不可想象。信息产品和其他产品中用VDMOS、IGBT做无触点开关的市场更大,程控交换机的每条线都至少用1个VDMOS管。为此,我国目前每年要进口几千万只。
3.发电领域中的电力电子技术。(1)发电机的直流励磁。常规发电机中励磁的建立已经由传统的直流磁励机转变为由中频交流励磁机加电力电子整流的方法,并已取得良好的经济效益,可靠性较高。(2)水轮发电机的变频励磁。发电频率取决于发电机的转速,采用了电力电子技术后,将水轮发电机直流励磁转变为低频交流变频励磁。当水流量减少时,提高励磁频率,可以把发电频率补偿到额定,延长水轮发电机的发电周期,解决了水力发电中发电机工作时间受季节性水流量影响而导致的频率无法调节、浪费较多水能的问题。这对大型水力发电设施来说,可带来巨大的经济效益。(3)环保型能源发电。利用太阳能、风能、潮汐能、地热能等新能源发电,是解决一次能源危机(煤、石油、天然气等石化类能源日趋匮乏)的重要途径,它们是可再生的绿色能源。这些能源转换的电能,其电压、频率难免波动,无法并网应用,只有通过电力电子变换装置,才能使这些波动的电能以恒压恒频方式输出,实现这些新能源的实用化。
4.储能领域中的电力电子技术。(1)蓄电池与电容器组储能。把夜间电网提供的多余交流电整流成直流电,储存在建筑物地下室内的“蓄电池―电容器组”;白天,再把这些储存的电能逆变成交流电供给整个建筑物内的用电,已经成为某些地方的时尚。(2)抽水储能发电。白天,水库泄水发电;晚间,利用多余的电网电能使发电机转变成电动机运行,驱动水泵把下游水库的水抽进上游水库,增加上游水库蓄水,使白天可以更多地发电,这种电能量变换过程效率较低。(3)超导线圈的磁场储能。在超导体线圈中,数十万安培的直流电流在其中流动是不会损耗的,这种储能器体积小,转换效率高。当前还没有妥善解决如何实现交流电能同该低电压超大电流的直流电能的互相转换的问题。
二、电力电子器件发展趋势
纵观几十年的发展历史,半导体器件起到了推动电子技术发展的作用,晶闸管等电力半导体器件扮演了电力电子发展中的主要角色。进入70年代,半控型晶闸管开始形成由低电压小电流到高电压大电流的系列产品,被称为第一代电力电子器件,随着电力电子技术理论研究和半导体制造工艺水平的不断提高,先后研制出GTR、GTO、功率MOSFET等自关断全控型第二代电力电子器件。近期研制的以绝缘栅双极晶体管(IGBT)为代表的第三代电力电子器件,开始向大容量高频率、响应快、低损耗方向发展,这又是一个飞跃。步入90年代后,电力电子器件正朝着复杂化、模块化、智能化、功率集成的方向发展,以此形成了电力电子技术的理论研究、器件开发研制、应用的高新技术领域等,在国际上形成了新的技术热门。目前世界上许多大公司已开发出IPM智能化功率模块,日本三菱、东芝及美国的国际整流器公司已有成熟的产品推出。国产电力半导体器件研发生产能力还落后于世界电力电子器件的发展水平,在新世纪国际电力电子崛起之时,中国电力半导体器件的落后状态将会影响中国经济的发展,国产电力半导体器件产业任重而道远。
电力电子技术是智力、信息、知识密集型技术,也是我国经济与社会可持续发展项目之一,对促进国民经济发展,特别是电子工业发展极具价值。从发展前景看,以电力半导体器件及“变频技术”为核心的电力电子行业,在国家政策的强持下将会走向更加辉煌的明天。
参考文献
【关键词】电力电子技术 电气控制 应用 计算机技术
当今社会正在处在一个信息技术不断更新发展的时期,电子科技技术的飞速发展给人们的日常生活带来了很大的便利,同时广泛应用于电气控制中,电气自动化控制系统是电气控制的一个主要系统,其对电气设备的正常运行可以进行有效的控制。随着科学技术的发展,各种新型的控制元件和应用软件不断应用于电气控制系统中,提升了整个系统的可靠性,精简了作业流程,提高了企业的生产效益。
1 电力电子技术概念和发展现状
1.1 电力电子技术概念
电力电子技术是一门广泛应用于电力系统的电子技术,其目的就是对电力系统中的电子元件进行有效的转换和控制,从而达到提高电力系统工作效率的目的。电力电子技术主要分为电力电子器件制造技术和变流技术两部分,在电气控制的过程中电力电子技术充当重要的角色。电力电子技术依靠电子学、电工原理和自动化控制技术三个领域的相互合作,在工业生产中对电气设备进行有效的控制,电力电子技术对电气系统中的电路进行数据检测、信息记录和故障预警等功能,对不同生产工艺的电力设备的运行情况进行监控。
1.2 电力电子技术的发展现状
电力电子技术的发展主要分为两个方面,分别为电子器件制造和电力电子电路应用,随着科学技术的不断发展,电力电子技术在这两方面有了很大的发展,电子器件的发展过程经过了不可控制性、半控制型和全控制型三个阶段,时至今日电力电子技术在电气控制中已实现了自动化控制,这不仅体现了电力电子技术的快速发展,还能在一定程度上促进电力电子技术的发展。现在出现一种智能化技术,其在电气控制中已逐渐得到应用,智能化技术的运用可以实现电气系统自动化控制,智能化技术通过对下降时间、鲁性棒变化和响应时间系统的控制,维持电气系统的顺利进行,智能化技术还可以对电气自动化系统进行数据监测和调节,在电气自动化系统中设立反馈机制,在故障发生时,电力设备可以进行自我调节,实现自我控制、自我调节,同时还减少了人力资源的消耗。目前电力电子技术已经形成了先进的功率集成电力,虽然以当前的技术水平使功率还处于一个较小值,但是随着电力电子技术的不断发展,提高电力功率只是一个时间问题。
2 电力电子技术在电气控制中的应用分析
电力电子技术在电气控制中的应用主要有软开关控制装置、电路保护装置、静止无功补偿装置、有源电力滤波器和高压直流输电技术等方面的应用,可以运用电力电子技术对电路进行有效控制并对电子元件的运行进行监控,提高电力系统的可靠度。
2.1 软开关控制装置
随着电子技术和电力系统的发展,电力系统对电磁兼容和效率的需求越来越大,这就要求电力装置满足轻便和小型的要求,传统的电力系统中通过开关控制来节省变压器和电容等元件的占用空间,但是这样高频率的开关转换会使其损耗过大,并会对电路的效率产生不利的影响,同时也会产生一些额外的电磁干扰。软开关控制装置很好地解决了这一缺陷,特别是在减少噪音和降低开关损耗上有很大的帮助,目前软开关控制装置用于很多电力系统中,研究表明在开关频率大于1Mhz的情况下,其性能也会达到理想的状态。将多个简单的电路通过串并联成一个组合电路的方法在很多情况下会提高电力系统的性能,软开关装置的应用越来越广泛。
2.2 电路保护装置
电气控制系统中电路保护装置占有重要的比例,当电力电子电路中的元件方式故障时可以对电路作出保o措施,常有的电路保护装置有电流继电器、快速熔断器等,但是随着电子技术的发展,电力电子元件趋向小型化和高功率化,传统的电路保护装置已经不能满足电力电子电路保护的需求。电力电子技术可以在电路中加入过电流保护电路,结合电路检测装置反馈的信息,在检测到电路中存在过电流时可以自动对电子元件进行断电处理,达到保护电路和电子元件的作用。
2.3 静止无功补偿装置
随着用电需求的增加,对电网功率变化的需求也不断增加,电网中功率的频繁变化和一些冲击性负荷的增加对电网的稳定性产生了很大的影响,不利于电网电路中低频振荡的有效控制,而通过静止无功补偿装置可以增大电力系统和负载的相关因数,降低电力系统中功率损耗值,同时还可以控制电路中电压的稳定性,提升电力使用质量。
2.4 有源电力滤波器
有源电力滤波器的工作原理是对电路中的补偿元件进行检测,从而得到一些等分量的谐波电流,然后再利用补偿装置产生一个与谐波电流分量相等极性相反的电流分量,使其与检测的谐波分量相抵消,使电网中的电流没有谐波电流只存在基波电流。有源电力滤波器以其响应速度快和补偿功能多样性的特点,可以有效地减少电网阻抗的影响。有源电力滤波器由两部分组成,分别为补偿电路发生装置和指令电流运算电路,通过电力电子技术对电路中的补偿电流进行检测,然后得出电路中无功电流和谐波的分量。
2.5 高压直流输电技术
现电厂输出的都是交流电压,但是交流输电过程会产生大量的电量损耗,并且不易控制,造价也很高,因此现在选用的都是直流输电,在高电压大容量和远距离的输电的情况下要选用直流输电,直流输电技术通过高压直流输电技术可以将交流电压转变为直流电压,然后直流电输送到各地的变电站内,再通过直流电逆变过程,转变为交流电,最后再供用户使用。
3 结束语
电力电子技术随着科学技术的进步不断发展变化,其在电气控制中的应用越来越广泛,并占有重要的作用,我们要深入研究电力电子技术在电气控制中的应用情况,查找电力电子技术应用的不足之处,充分发挥电力电子技术的优势,促进电气控制行业的发展。
参考文献
[1]浦仕琳.电力电子技术在电气控制领域中的应用[J].科技创新导报,2012(05):78.
[2]李敏.电力电子技术在电气工程中的应用[J].通讯世界,2015(23):124-125.
[3]胡欣然,张海涛,刘洋.电力电子技术在电气工程中的应用[J].山东工业技术,2016(13):178.
[4]樊清山.电力电子技术在电气工程中的应用[J].电子技术与软件工程,2014(12):197.
[5]侯晓辉.关于电力电子技术在电气工程中的应用的思考[J].商业故事,2015(08):99.
1电力电子技术
电力电子技术作为一种现代化技术,在电气工程中应用,可以实现电力电子元器件的有效控制,大大提升电能转化效率。电力电子器件类型多样,其中包括高斯型轨道和闸管等,电能转换范围较广,小则1W,多则千兆瓦。与此同时,作为电气工程中的一项重要内容,电力电子技术在高素质人才培养方面要求更高,需要学习包括自动控制学和电子学等多学科内容。近些年来,电力电子技术不断发展和完善,应用范围随之扩大,除了应用在电气工程中,在国防和工业等领域同样有所应用,在提高生产效率的同时,有效降低电能损耗,保证电气系统安全稳定地运行。
2电力电子技术的优势剖析
在电气工程中应用电力电子技术,其优势较为突出,主要表现在以下几点:其一,推动电气工程发展。电力电子技术在不断发展和创新过程中,应用范围不断扩大,在整合资源的同时,可以有效降低电气工程的人力、物力和财力投入,在缩短电气系统运行周期同时,创造更大的经济效益和社会效益。其二,应用操作便捷。随着社会经济的持续增长,电能需求不断增长,各个行业领域生产规模不断扩大,不可避免地会产生电能供应矛盾。电力系统覆盖面较广,内部结构复杂,各个环节联系较为密切,任何一个环节出现故障,都可能影响到电力系统安全稳定运行,不利于社会生产生活正常用电。而在电气工程中应用电力电子技术,在优化操作流程的同时,为电气系统营造安全稳定运行环境,切实提升电气工程运行水平。其三,提升电气工程性能。在电气系统运行中,通过电力电子技术的应用,综合分析影响电气系统运行因素,与其他技术之间的协调控制,发现问题后第一时间上报和解决。通过电力电子技术应用,优化系统设计,在降低电气工程运行故障概率的同时,提升整体运行效率。因此,在电气工程中应充分发挥电力电子技术的优势,对现有电气工程结构优化和完善,改善电气工程运行性能,为电气工程稳定运行奠定基础。
3电气工程中电力电子技术应用路径
3.1软开关控制装置
在电气工程施工过程中,施工技术水平滞后,由于不合理的施工技术和设备应用,严重影响到电气工程运行性能。通过系统开关装置的应用,可以有效降低电容,减少变压器元件占据的空间面积,但是高频开关转换会在一定程度上增加电能损耗,影响电能生产效率。在这个过程中,可能产生电磁干扰,影响到电气系统稳定运行。通过软开关控制装置的应用,可以最大程度地降低系统开关装置电能损耗,避免噪声干扰。如果采用串联方式将多个电路联系在一起,则可以有效提升电力系统性能,有助于软开关装置更大范围应用。
3.2静止无功补偿装置
社会经济持续增长下,社会生产力水平显著提升,对于电能需求度不断增长,静止无功补偿装置的应用,可以为电网运行稳定性和安全性提供坚实保障,将功率变化控制在合理范围内。静止无功补偿装置具有较强的抗干扰性能,对冲击性负荷无功补偿,提升电力系统运行效率,为电力输送系统稳定运行提供保障。与此同时,静止无功补偿装置的应用,有助于提升电力系统的运行性能和功率因数,最大程度地降低电力系统功率损害,减少不良干扰,保证电网输电压安全稳定性。当前静止无功补偿装置包括晶闸管投切电容器、静止同步补偿器、晶闸管控制电抗器和可控串联补偿装置等。静止同步补偿器与电网并联在一起,输出电压调节来吸收无功电流,满足无功补偿需要。晶闸管投切电容器自身具有无机磨损和快速响应的优势,具有良好的无功补偿效果,最大程度地降低对电网的冲击电流。可控串联补偿装置的应用,电容器和电控器并联在一起,调节电抗器电流,可以有效提升补偿装置基频等效电抗特性。
3.3有源电力滤波器
有源电力滤波器的应用,适用于动态抑制谐波需要,将电力装置划分为补偿电流发生电路和指令电流检测电路两部分。根据相应指令电流检测电路,可以将谐波电流分量和基波分量电流分离开,发挥反极性作用来抵消负载电力,电网最后仅存基波电流。与此同时,源电力谐波器是由PWM逆变器构成的,尽管结构较为复杂,但是具有多样补偿和动态相应特点,改善电网组抗力和功率补偿不良影响,最大程度地抑制谐波电流的出现。
3.4高压直流输电技术
高压直流输电技术是借助电子换流器来转变输出电流,转换为直流电,将直流电传输到各个受电端,并借助电子换流器转化为交流电,输送到千家万户。在高压直流输电过程中,传输功率高于直流电,传输过程中具有较强的稳定性和安全性,对于输电线路的要求不高,受到相关工作者的高度关注和重视。需要注意的是,高压直流输电技术输电过程在保证线路安全稳定运行的同时,最大程度地降低电能损耗,满足不同额定频率电网联结需要。从当前电气工程中高压直流输电技术的应用情况来看,多为直流联络线。
3.5电路保护装置
电路保护装置同样是电力电子技术中的重要组成部分,在电气工程中应用,可以有效避免电路装置损坏和电能损耗。如果电路出现故障问题,依托于快速熔断器或电流继电器等电路保护装置,可以为电路装置起到保护作用,最大程度地减少故障问题和损坏程度。随着电力工程的发展,传统电路保护装置暴露出一系列弊端和不足,电路保护作用缺失。基于此,应该充分发挥电力电子技术优势,通过检测装置来反馈电路运行情况,如果出现过电流、过电压故障,可以第一时间断电,保护电子元件安全。此外,在配电系统中应用电力电子技术,可以实现配电系统的实时监管和控制,促使工作人员制定规范化措施,避免由于不必要的失误影响到配电系统的稳定运行。
现代社会经济发展速度较快,科学技术也得以进一步发展,电子技术被应用于各个领域并得到广泛认可,尤其是在电气工程中应用较多,极大的促进了电气工程发展,为满足社会发展,还需要进一步优化电力电子技术,将其作用发展得更好,以便为人们带来更多方便,获得人民的满意度与认可度。
1电力电子技术概述
所谓的电力电子技术就是将电子器件与技术应用其中,以此控制电能变化情况,在这一技术中涵盖了电力、电子以及控制等三个领域的内容,通过三者的结合有效实现了通过弱电子完成了对强电力的控制能力,同时该技术被广泛应用于各个领域,如工业、国防等。将电力电子技术应用到发电机中,明显提高了电能生产,强化了电能利用,尤其是对能源节约与生产效率提升有显著的促进作用。不仅如此,当电力电子技术应用语(于)电气工程以后,电力系统操作更加灵活,实现了安全稳定运行。
2将电力电子技术应用到电气工程的意义
2.1便于相关工作人员开展工作
随着人们用电量需求的增加,传统电力系统在应用中存在较多弊病,导致电力系统运行容易出现故障。为确保电力系统安全运行,应做好技术管理工作,将先进电力电子技术应用到电气工程中促进电力企业发展。经过长期实践研究得知,电力电子技术不仅可以提高工作人员的工作效率,还可以简化操作步骤,便于工作人员开展工作,因此,需要将电力电子技术应用到电气工程中。
2.2电力电子技术自身性能相对较好
电力电子技术更具优越性,技术构造也更带有科学性,性能也十分良好,因其具有这些优点在电子技术被应用以后就获得了社会各界的普遍认可,尤其是在电气工程中享有盛誉。现阶段,社会发展较为迅速,将先进的电力电子技术应用到电气工程中更可以满足社会发展需要,推动电气工程发展。
2.3强化电子技术系统适应能力
电力电子技术具有较强的适应能力,便于操作,并不像传统电气技术一样操作困难、适应范围狭小,影响工作人员工作进程。当电力电子技术应用以后,工作效率明显提高,工作人员压力显著减少,很少出现电气运行故障,也为电力企业获得了良好口碑。
3电力电子技术在电气工程中的应用
3.1电力电子技术在变电站中的应用
将电力电子技术应用到变电站中,不仅提高了变电站的工作效率,还大大减少了人工数量,更有效避免了工作失误,实现高质量、高效率工作。同时,电力电子技术的应用有助于变电站工作人员开展监管工作,及早发现工作中存在的问题,尽快将问题解决,确保变电站安全稳定运行。近年来,社会发展较为迅速,电力电子技术也得以完善,电力电子技术在变电站中的应用帮助变电站实现了科学化管理[1]。所以,变电站应注重电力电力技术的应用,并进行创新与完善,减少变电站安全事故的发展,将电力电子技术作用全部发挥出来。随着电力电子技术的发展,静止无功补偿装置也被应用到变电站中,显著提高了电力系统安全稳定运行,为用户提供高质量电能。无功率补偿可以提升电力系统与负载的功率因数,降低功率损耗,确保电压安全稳定运行,这样也就提高了供电质量。一般来讲,静止无功补偿装置主要有以下几种:①对于晶匣管控制电控器来说主要有两部分构成:a.反并联晶匣管;b.电抗器。它们之间是串联关系,只要改变晶匣管的延迟角就可以控制电抗器电流,这样就可以不断调节电抗器基波。②对于晶匣管投切电容器来说,它属于一种单相结构,存在于结构中的小电感主要是抑制电容器在投网时发生的冲击电流,这种装置鲜有磨损发生,能够快速响应,实现平滑投切,同时可以实现综合补偿。③对于静止同步补偿器来说,主要是利用电力半导体桥式变流器完成补偿,但这种无功补偿以动态补偿为主,它具有快速调节、适用于多种范畴的特点,通常情况下,静止同步补偿器还具有多重性,并拥有PWM技术,也正是由于其具有该技术使其能够将电流中存在的谐波消除,减少其对装置的损害。静止同步补偿器基本原理是在并联的作用下,将自换相桥式电流与电网连接在一起,以便完成电压调节等共走,实现无功补偿目标。④对于可控串联补偿装置来说,主要控制者是晶匣管,将电容器和电控门器并联在一起,而晶匣管主要是引导与改变电抗器电流,进而完成补偿装置的等效电抗变化。通过研究发现,这种装置可以实现参数补偿,并通过阻尼控制环境,以此来改善阻尼实际情况,这样也可以减少低频振荡的情况,确保系统在运行上更具安全性与稳定性。
3.2电力电子技术在发电厂中的应用
电力电子技术还具有全面监控的能力,将其应用到发电厂中可以保障发电厂工作顺利进行。电力电力技术能够构成完整的网络系统,实现全面监测,在确保工作人员正常工作的同时,也便于其操作,这样就可以提升电气工程工作效率。发电厂工作人员通过监控系统就能发现其中存在的问题,采取措施排除安全隐患,防止事故的发生,这样既可以保证发电厂安全运行,还可以使供电工作更加安全[2]。如在发电厂中高压直流输电技术的应用,就是电力电子技术的典型代表。高压直流输电是将发电厂输送出来的交流电在换流器的帮助下转化为直流电,然后将直流电在输电线路的作用下送至受电终端,经过受电终端后将直流电会逆变成交流电,然后再将这部分电能送到用电用户手中,供其使用。对于高压直流输电来说,其传输功率相对较大,在电能传输中所用到的线路造价也很低,十分便于控制,它是现阶段最常用的输电方法。同时,直流输电的架空线路具有成本小,损耗小的特点,将直流输电方法应用其中可以保证输电更加安全稳定。
3.3电力电子技术在配电系统中的应用
现阶段,将电力电子技术应用到配电系统中还处于初级发展阶段,并未实现普及目标,但随着科技的发展,在不久的将来一定会在配电系统中得以广泛使用。将电力电子技术应用到配电系统中,主要用于监控与管理,防止工作人员在工作中出现失误操作情况,使配电系统工作更加稳定,实现高效率与高质量工作。通过监控管理者就能了解到工作人员的工作情况,同时也能发现在工作中是否有不正确操作的存在,一旦发现问题,可以当即指出与纠正,因此,需要应大力推行电力电子技术在配电系统中的应用,实现普及目标。在智能技术的影响下,电力电子技术也将朝着新的方向发展,使配电系统呈现智能化,为用电用户提供更为人性化的服务。
4结论
关键词:电力企业;电气自动化;影响因素;发展趋势
1 引言
随着现在高科技的不断发展,以及电气自动化的日益普及,电气自动化占据的地位也越来越重要,由于它涉及到广泛的领域,使得自动化技术更新会越来越频繁以及复杂,因此对电气自动化的优化仍是任重道远,电力企业中应用自动化技术给企业的发展提供了强大的动力,电气自动化将起的作用也越来越重要,自动化的应用不仅大大降低了劳动强度,在很大程度上提高了工作的效率,可见加大对自动化的研究具有重要的现实意义。
2 电气自动化的发展过程
自动化概念的首次提出是在二十世纪的五十年代,电气自动化的出现是由于电力电机等产片的出现,以及继电器和接触器的发明和广泛应用,使机器可以根据人的意志进行设置,并完成预先安排的逻辑功能,促进电气自动化革命的发展;在20世纪60年代,提出的现论结合先进的计算机技术,可以优化生产工艺,实现控制和管理的有效性,使得电气自动化在很多方面都有了比较高的飞跃;到了20世纪70年代,通讯技术得到了快速的发展,微电子技术以及IT技术都得到了很大的发展,自动化对象逐步运用到大型,复杂的系统中,通过一些难度比较大的现代控制理论来解决一些比较复杂的问题,在对这些问题的研究过程当中,逐渐实现了对自动化理论知识以及技术手段的一些创新,中间产生了一些高科技技术,像系统工程,计算机,人工智能,通信技术,这些技术在自动化技术的应用,使得电气自动化技术得到了飞快的发展;在上个实际的八十年代,电气化的发展已经相当成熟,被应用到了许多方面,这极大地推动了人工智能的发展,涉及到了航空航天,运输,制造工艺技术等诸多领域,对国民经济的发展起着重要的作用。
3 电气自动化技术在电力企业中的影响因素
(1)设备元件的质量影响。市面上存在很多的电气设备器件的生产商,造成销售的产品各不相同,一般情况系生产设备组件,没有健全的质量管理体系较小的制造商,其组件的质量难以合格;此外,由于不同厂商之间存在的竞争,使得在生产过程中,往往只在乎产品的销售价格,不注重自动化设备的质量,严重影响了设备的安全性。
(2)工作环境、以及操作不当的影响。第一是机械力的原因。主要是指电气自动化设备在不同的车辆将经受各种机械力,如冲击,振动和离心加速力,这些因素使得电气自动化设备的参数会发生改变,使设备发生断裂或者形状发生改变,严重的甚至报废。第二是气候的原因,周围环境的湿度、温度以及气压和大气的污染程度都会对电气自动化设备产生影响,是设备的灵活程度得到降低,损害设备的结构,使其不能正常工作。再就是受到电磁干扰的原因。这个影响因素是不被人所看到的,对于电气设备来说然而却是影响非常大的,在电气自动化设备的周围,许多电磁波会存在着,使得电气自动化设备在运行的过程中会发出很大刺耳的声音,设备不能稳定的进行工作,甚至对安全设备产生影响。除了上面所说的影响因素外,员工在使用的过程中也会对设备产生影响,由于电气自动化设备具有复杂的结构,具有很大的困难在设备的使用上,所以员工的使用方法不当可能会使电气自动化设备发生毁坏。
4 电气自动化技术在电力企业中的发展趋势
(1)更加综合化的监控系统。因为电气自动化设备越来越常见,也越来越趋近于模块化和系列化,这使得电气自动化设备的组织能力越来越灵活。和电脑的所有功能选择按钮可以直接通过屏幕监控软件集成系统,提供了必要的基础,无论电气系统的要求,单一的单一控制系统将逐步过渡到全面的监控系统。将双重或多重保护功能,为了提高系统的可靠性是积极的。
(2)逐渐由低频转向高频。在以前的电气自动化上往往都是依靠单一频率,属于低频阶段。随着科学技术的不断进步,智能化的不断普及,我们已经逐渐的进入了高频生产阶段,提高电力自动化产品加速市场份额的频率,提高产品质量起着重要的作用。因此,在未来的电力自动化从现在的发展趋势会朝着高频,使开发高科技产品更上一层楼。
(3)电气自动化的产品会越来越创新。电力企业在发展电气自动化的过程中,可以根据国家制定的计划设立一些目标来进行技术上的创新,不断的提高自主研发能力。达到对设备的集成创新,在对一些引进设备上要逐渐的进行吸收,进行在创新的过程,从而研发出新的电气自动化产品来,不断的增加自己的创新能力,是电气自动化符合现在科学的发展,为实现经济转型提供助力。
参考文献:
[1]张伟林,宋修臣.浅谈电气自动化控制设备可靠性测试的方法[J]. 中小企业管理与科技(下旬刊),2009(07).
[2]廖志凌,刘贤兴,刘国海,杨泽斌.基于电气工程及其自动化国家特色专业的高质量创新型人才的培养[J].中国电力教育,2011(01).
关键词:电气自动化技术;电力系统;运用
中图分类号:F407.6 文献标识码:A 文章编号:
0 引言
随着信息技术及计算机技术的不断发展,自动化、数字化技术开始逐步应用在电力系统建设中,自动化的系统如何进行设计,也就是电气自动化技术的设计是其中非常重要的技术环节,是电力系统自动化技术改造中和建设中需要解决的一个课题。正是基于此,本文主要对电气自动化的系统设计的研究方向、以及电器自动化的应用等几个方面进行探讨,并希望通过对此的研究来提高电网的安全运行水平。
1 电力系统自动化技术
1.1 电网调度自动化
现代的电网自动化调度系统是以计算机为核心的控制系统,包括实时信息收集和显示系统,以及供实时计算、分析、控制用的软件系统。信息收集和显示系统具有数据采集、屏幕显示、安全检测、运行工况计算分析和实时控制的功能。在发电厂和变电站的收集信息部分称为远动端,位于调度中心的部分称为调度端。软件系统由静态状态估计、自动发电控制、最优潮流、自动电压与无功控制、负荷预测、最优机组开停计划、安全监视与安全分析、紧急控制和电路恢复等程序组成。
1.2 变电站自动化
电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。发电厂分散控制系(DCS)一般采用分层分布式结构,由过程控制单元(PCU)、运行员工作站(OS)、工程师工作站(ES)和冗余的高速数据通讯网络(以太网)组成。
2 电力系统自动化的研究方向
2.1 智能保护与变电站综合自动化
在智能化发展突飞猛进的今天,在很多的高等学府都开设了人工智能化电气专业以及很多的科研机构也对其开展了全面的研究工作,譬如,故障的诊断、设计的优化、智能控制等领域都在使用人工智能化。在设计电气设备类的工作是一个极为复杂性的工作,不单单要会专业的电气、电路等专业的知识内容,还要将设计中的知识运用在里面。最为传统化的方式,最早是采用了简易的实验方式方法和具有经验的老师傅用手工方式来完成的,从某种意义上来说很难达到最优的效果。随着我们智能化发展以及计算机领域的发展,设计的方式也在有简单的手工操作到电脑辅助设计(AUTO CAD),从很大的程度上节约了时间和研发周期人工智能化的出现,使得电脑设计(CAD)系统也在不断的更新,整体产品无论从研发、设计到成品都等到了全面的提高。人工智能技术采用优化设计的方式方法主要有遗传算法和专家系统。遗传算法是一种比较先进的优化算法,对于产品的优化设计是很适合的。为此对于此类设计往往都是采用这样的方式方法或加以改进。
2.2 变电站自动化技术的应用
可以说,变电站的自动化的实现又是依托计算机技术的发展实现的,要实现电力生产的现代化,一个不可缺少的、重要的环节就是实现变电站的自动化。变电站依赖计算机技术实现自动化,在实现的过程中计算机也得到了充分利用,二次设备也随之实现集成化、网络化、数字化,完全是采用计算机电缆或光纤代替电力信号电缆。变电站实现自动化,实现计算机屏幕化以及运行管理和记录统计实现自动化,另外两个组成部分是操纵以及监视,变电站的整体自动化才得以实现,正是如此多的组成部分实现了计算机的自动化管理。为了联系发电厂与电力用户,变电站以及与之相关的输配电线路必不可少。变电站自动化的实现,不仅组成电网调度自动化的一个重要组成部分,更是为了满足变电站的运行操作任务。
3 现代电力电子技术在电力系统中的应用
现如今,计算机技术已经成为全球最普及的信息技术,计算机编程软件技术不断的进步,已经带动了人们经济生活的水平。人类的大脑是最为发达的机器,计算机所有的编程都是效仿人类的电脑,对其信息进行采集、分析、处理、反馈等,所以计算机程序以效仿人类大脑为主要目的来实现我们自动化发展。对于电气自动化的整个控制流程都是通过自动化设备来完成整个生产、分配等过程,这样就从很大的程度上降低了人间费,并且提高了工作效率。
3.1 电力系统自动化实时仿真系统的应用
该仿真系统在可提供大量实验数据的前提下,还可多种电力系统的暂态及稳态实验同步进行,还能用以协助科研人员测试新装置,且多种控制装置都能与其构成闭环系统,从而为灵活输电系统及研究智能保护的控制策略提供了一流的实验条件。电力系统数字模拟实时仿真系统的引进,方便了对电力系统负荷动态特性监测、电力系统实时仿真建模等方面进行深入研究,从而建成具备混合实时仿真
3.2综合自动化技术与智能保护的应用
现在国内的自动化技术水平已达到发达国家的技术水平,许多方面已处于国际领先水平,将国内外最新的人工智能、网络通信、微机新技术、自适应理论、综合自动控制理论等应用于电气自动化保护装置中,对电力系统自动化保护的新原理进行了研究,可以大大提高电力系统的安全水平,使得新型保护装置具有智能控制的特点。
4 电气自动化技术在电力系统中的应用
4.1 计算机技术在电力系统自动化应用
计算机控制技术在电力系统中起到了至关重要的作用。这是由于随着计算机技术的飞速发展,电力系统中用电等重要环节以及输电、发电、配电、变电环节都需要计算机技术的支撑,这样就会使得电力系统自动化技术同时得到了快速地发展。
4.2智能电网技术的应用
信息管理系统作为计算机技术中应用最为广泛的技术之一,电力系统自动化技术与计算机技术结合所形成针对整个全局进行智能控制的技术,也就是智能电网技术,是一个最具典型性的技术,涵盖了配电、输变电和用户以及调度、发电的各个环节。其中变电站自动化系统、稳定控制系统等被广泛应用到计算机技术的系统中,同时一样的还有诸如调度柔流输电以及自动化系统等。目前这种数字化电网建设,一定程度上可以说是智能电网的雏形,实际上也为我国建设智能电网做着准备工作。智能电网中较为典型的有智能电网的通信技术,同时在建设的过程中需要很多依托计算机的技术,需要具备实时性、双向性、可靠性的特征,需要先进的现代网络通信技术的应用,而且该系统也是完全依托计算机技术而存在的,同时具有信息管理系统计算机控制技术在电力系统中起到了至关重要的作用。这是由于随着计算机技术的飞速发展,电力系统中用电等重要环节以及输电、发电、配电、变电环节都需要计算机技术的支撑,这样就会使得电力系统自动化技术同时得到了快速地发展。
5 电力系统电气自动化技术的检查方法
电力系统电气自动化技术的检查方法有系统分析法、排除法、电源检查法和信号追踪法。
6 结语
伴随着微电子信息技术和电力电子技术的飞速发展,电力拖动的控制业已走出了工厂,现代生产自动化系统当中所承担流水线工作的全部控制设备在传统的电子拖动(电力传动)控制下显得很吃力。因此,运用电子技术及自动化技术,提高电力系统电气自动化技术的不断发展和变化。
参 考 文 献
[1]罗宇杰.浅谈电气自动化在电力系统中的应用[J].广东科技,2009
关键词:电力系统;自动化:技术应用
Abstract: The rapid development of China's science and technology, automation systems has become more perfect, visible in the power industry in the future play a greater role. In this paper, a brief description of the power automation technology related issues,
Keywords: power system; automation: eechnology.
中图分类号:F407.61文献标识码:A 文章编号:
如今现代计算机技术、功率电子技术、通信技术和控制技术日新月异,而且这些新技术渐渐由实验及理论过程进入运用领域,其都对电力自动化技术产生了较大的影响。部分新的观点和理论适应时机而产生,电力电气自动化技术也将进入了新时代。
1自动化发展趋势
自动控制技术正趋向于智能化、最优化、协调化、适应化、区域化发展。在设计分析上日益要求面对多机系统模型来处理问题。在理论工具上越来越多地借助于现代控制理论。在控制手段上日益增多了微机、电力电子器件和远程通信的应用,保证了控制操作的高可靠性。在研究人员的构成上益需要多“兵种”的联合作战。
自动化的发展则趋向于;①由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。②由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。③由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。④由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。⑤装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。⑥追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。⑦由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如管理信息系统在电力系统中的应用。
2影响电力系统自动化的三项新技术
2.1电力系统的智能控制
电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有:
(1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。
(2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。
(3)不仅需要本地不同控制器问协调,也需要异地不同控制器间协调控制。
智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。
智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的新型静止无功发生器的自学习功能等。
2.2FACTS和DFACTS
2.2.1FACTS概念的提出
在电力系统的发展迫切需要先进的输配电技术来提高电压质量和系统稳定性的时候,一种改变传统输电能力的新技术——柔流输电系统(FACTS)技术悄然兴起。
柔流输电系统是F1exible AC Transmission Systems中文翻译,英文简称FACTS,指应用于交流输电系统的电力电子装置。利用大功率电力电子元器件构成的装置来控制调节交流电力系统的运行参数或网络参数,优化电力系统运行状态,提高交流电力系统线路的输电能力。其中”柔性”是指对电压电流的可控性;如装置与系统并联可以对系统电压和无功功率进行控制,装置与系统串联可以对电流和潮流进行控制;FACTS通过增加输电网络的传输容量,从而提高输电网络的价值,FACTS控制装置动作速度快,因而能够扩大输电网络的安全运行区域;在电力电子装置最早用于直流输电系统中并实现了对输送功率的快速控制,由此人们想在交流系统中加装电力电子装置,寻求对潮流的可控,以获得最大的安全裕度和最小的输电成本,FACTS技术应运而生,静止无功补偿器(SVC),静止同步补偿器(STATCOM)又称作ASVG,晶闸管投切串联电容器(TCSC),静止同步串联补偿器(Static Synchonous Series Com pensator)以及统一潮流控制器(UPFC)就是基于FACTS装置家族的成员这是一种将电力电子技术、微机处理技术、控制技术等高新技术应用于高压输电系统,以提高系统可靠性、可控性、运行性能和电能质量,并可获取大量节电效益的新型综合技术。
2.2.2对ASVC的研究现状
各种FACTS装置的共同特点是:基于大功率电力电子器件的快速开关作用和所组成逆变器的逆变作用。ASVC是包含了FAC1's装置的各种核心技术且结构比较简单的一种新型静止无功发生器。
ASVC由二相逆变器和并联电容器构成,其输出的三相交流电压与所接电网的三相电压同步。它不仅可校正稳态运行电压,而且可以在故障后的恢复期间稳定电压,因此对电网电压的控制能力很强与旋转同步调相机相比,ASVC的调节范围大,反应速度快,不会发生响应迟缓,没有转动设各的机械惯性、机械损耗和旋转噪声,并且因为ASvC是一种固态装置,所以能响应网络中的暂态也能响应稳态变化,因此其控制能力大大优于同步调相机。
2.2.3DFACTS的研究态势
随着高科技产业和信息化的发展,电力用户对供电质量和可靠性越来越敏感,电器设备的正常运行甚至使用寿命也与之越来越息息相关。
可以说,信息时代对电能质量提出了越来越高的要求。DFACTS是指应用于配电系统中的灵活交流技术,它是Hingorani于1988年针对配电网中供电质量提出的新概念。其主要内容是:对供电质量的各种问题采用综合的解决办法,在配电网和大量商业用户的供电端使用新型电力电子控制器。
2.3新一代EMS和动态安全监控系统
2.3.1基于GPS统一时钟的新一代EMS
目前应用的电力系统监测手段主要有侧重于记录电磁暂态过程的各种故障录波仪和侧重于系统稳态运行情况的监视控制与数据采集(SCADA)系统。前者记录数据冗余,记录时间较短,不同记录仪之向缺乏通信,使得对于系统整体动态特性分析困难:后者数据刷新间隔较长,只能用于分析系统的稳态特性。两者还具有一个共同的不足,即不同地点之间缺乏准确的共同时间标记,记录数据只是局部有效,难以用于对全系统动态行为的分析。
2.3.2基于GPS的新一代动态安全监控系统
基于GPS的新一代动态安全监控系统,是新动态安全监测系统与原有SCADA的结合。电力系统新一代动态安全监测系统,主要由同步定时系统,动态相量测量系统、通信系统和中央信号处理机四部分组成采用GPS实现的同步相量测量技术和光纤通信技术,为相量控制提供了实现的条件。GPS技术与相量测量技术结合的产物——相量测量单元设备,正逐步取代RTU设备实现电压、电流相量测量。
电力系统调度监测从稳态/准稳态监测向动态监测发展是必然趋势GPS技术和相量测量技术的结合标志着电力系统动态安全监测和实时控制时代的来临。
关键词 电力系统;电气自动化;应用
前 言
电气自动化专业在我国最早开设于 50 年代, 名称为工业企业电气自动化。虽经历了几次重大的专业调整, 但由于其专业面宽, 适用性厂, 一直到现在仍然焕发着勃勃生机。 据教育部最新公布的本科专业设置目录, 它属于工科电气信息类。新名称为电气二程及其自动化或自动化。
随着电力电子技术、 微电子技术沟迅猛发展, 原有的电力传动 ( 电子拖动) 控制的概念已经不能充分概抓现代生产自动化系流中承担第一线任务的全部控制设备。而且, 电力拖动控制已经走出工厂, 在交通、 农场、 办公室以及家用电器等领域获得了广泛运用。它的研究对象已经发展为运动控制系统。
变换器电路从低频向高频
随着电力电子器件的更新, 由它组成的变换器电路也必然要换代。应用普通晶闸管时, 直流传功的变换器主要是相控整流, 而交流变频动则是交一直一交变频器。当电力电子器件进人第二代后, 更多早采用 PWM 变换器了、 采用 PWM 方式后,提高了功率因数, 减少了高次谐波对电网的影响, 解决了电动机在低频区的转矩脉动问题。
但是 PWM 逆变器中的电压、 电流的谐波分量产生的转矩脉动作用在定转子上, 使电机绕组产生振动而发出噪声。为了解决这个问题, 一种方法是提高开关频率, 使之超过人耳能感受的范围, 但是电力电子器件在高电压大电流的情况下导通或关断, 开关损耗很大。开关损耗的存在限制了逆变器工作频率的提高。
通用变频器开始大量投入实用
一般把系列化、批员化、占市场量最大的中小功率如400KVA以下的变频器称为通用变频器。 从产品来看, 第一代是普通功能型 U/F 控制型, 多彩用 16 位 CPU, 第二代为高功能型 U/F 型, 采用 32 位 DSP, 或双 16 位 CPU 进行控制, 采用了磁通补偿器、转差补偿器和电流限制拄制器. 具有挖上机和“无跳闸” 能力, 也称为 “无跳闸变频器” 。这类变频器目前占市场份额最大、 第三代为高动态性能矢量控制型。它采用全数字控制, 可通过软件实现参数自动设定, 实现变结构控制和自适应控制, 可选择 U/F 左频率开环控制、 无速度传感器矢幼控制和有速度传感器矢量控制, 实现了闭环控制的自优化。从技术发展看, 电力半导体器件有 GTO、 GTR、IGBT, 但以后两种为主, 尤以 IGBT为发展趋势: 支频器的可靠性、可维修性、可操作性即所谓的 RAS 功能也由于采用单片机控制动技术而得以提高。
单片机、 集成电路及工业控制计算机
以MCS- 51 代表的 8 位机虽然仍占主导地位, 但功能简单, 指令集短小, 可靠性高, 保密性高, 适于大批量生产的 PIC系列单片机及 GMS97C ( 二系列单片机等正在推广, 而且单片机的应用范围已开始扩展至智能仪器仪表或不太复杂的工业控制场合以充分发挥单片机的优势另外, 单片机的开发手段也更加丰富, 除用汇编语言外, 更多地是采用模块化的 C 语言、PL/M 语言。
在集成电路方面, 需要重点说明的是集成模拟乘法器和集成锁相环路及集成时基电路在自动控制系统中运用很广。在电机控制方面, 还有专用于产生 PWM 控制信号的 HEF4752、TL494、 SLE4520 和 MA818 等应用也相当广泛。
在逻辑电路方面, 值得注意的是用专用芯片 ( ASIC) 进行逻辑设计ASIC(Appilca- tion Specificl , Int egrated Circuit 中有编程逻辑阵列 PLD(Programmable Logic Device) 。PLD 现有四种类型的器件: PROM、 FPLA、 PAL、 GAL。GAL是 PAL了的第二代产品, 它可以在线电擦洗, 与 TTL兼容, 有较高的响应速度, 有可编程的保密位等优点。这些特点使得 GAL在降低系统
造价, 减少产品体积和功耗, 提高可靠性和稳定性及简化系统设计, 增强应用的保密性方面有广阔的发展产景, 特别适合新产品研制及 DMA控制和高速图表处理, 其上述交流的控制最终用工业控制计算机完成。
电气二次系统
要分析电气主结线的可靠性定量指标,完成电气结线的选型工作。
4.1可靠性定量指标计算式
电气主结线可视为由可修复元件组成的系统,有2 个工作状态:正常与故障,按两态马尔柯夫过程,可得出以下近似
算式:
f c= ∑λji
上式中,fc――主结线系统事故导致主变压器停运事件发生的频次,次/a;λji――相关结线元件故障率(i=1,2, ……n)
4.2其他相关计算式
主结线故障元件强迫停运时间Tjgi
Tjgi=fcTcg
无备用电源自动投入装置的事故限电量Akqi
A kqi =Sqin1Tkqi
有备用电源自动投入装置的事故限电量Akqi
A kqi =(Sqiz n1-Sy n2)
Tkqi 限电经济损失U
U = A kqi K
上式中,Tcg――故障元件的修复时间,h/次;Sqi――事故停运主变的容量,万 KVA;z――主变负载率,%;n1――同时事故停运的主变台数;Sy,n2――分别为仍在运行的主变热备容量及台数,万KVA;Tkqi――主变事故强迫停运的时间,h ,若经切换操作可恢复供电时,它等于判明事故及处理事故的时间,取1 h ;若需等待故障元件修复,才恢复供电,则Tkqi = Tjqi;K――单位电度损失计算系数,若按限电减少的国民纯收入计,根据研究资料取 1.5 元/kWh ,若按停电综合损失计,参考国外资料取10~30倍电价。
因此,综上所述,在选择主结线时,一定要根据上面的可靠性定量指标,经过计算之后,才可以确定主结线的。
4.3 控制方式
传统大中型变电站采用强电一对一控制方式,这种控制方式得到了广泛的应用。90年代中期,在传统变电站控制系统的基础上进行有益的改进,如选用码赛克控制屏,装设微机型闪光报警器,选用进口或合资厂强电小开关等,改进后的控制系统虽然在性能上优于老式系统,但从根本上没有大的改进。
随计算机及网络技术发展,微机监控方式在大中型变电站中开始应用。初期的应用,由于计算机监控尚处于试验探索阶段,设计、运行单位对其不大放心,往往是常规控制和计算机监控 2 种方式并存,这样做的结果是,由于保留了规控制设备,运行人员不去钻研新设备,仍使用较熟悉的常规控制方式,使计算机监控系统变成了变电站中的摆设。随着计算机及网络通信技术飞速发展,伴随设计制造、运行部门认识提高和经验积累,对于变电站,尤其是大型变电站,应当广泛采用计算机监控方式。通过工业以太网络实现远程对电气二次系统的各个设备的工况进行监控,建立远程报警和干预机制, 能够对于各种突发事故进行有效的干预和报警,真正的实现了计算机网络化管理监控的优势。
4.4与一次设备的连接问题
电气二次系统的设备与一次设备之间的连接问题,也是值得电气工程人员充分重视的问题,常常有因为连接不当或是连接错误而导致一些重大事故的发生。
在一些高压断路器的机构内,常常带有电气防跳回路,而这个并联防跳回路与微机保护回路是相冲突的。接上后,会出现微机保护的跳位、合闸监视灯同时亮的情况,因此,必须将机构防跳回路断开,防跳功能由微机保护装置实现。
综合自动化变电站中的电气主设备往往也是高档次的,GIS 设备经常被采用,GIS 主结线设计的原则是简化结线,利用可靠性,取消可以节省的元件,以降低成本。电压互感器的隔离开关在运行中不起任何作用, 在检修电压互感器TV或现场耐压试验时,用它来将电压互感器TV与主回路分开,对GIS来讲,没有必要将电压互感器TV 与GIS分离检修与测量。
自动化技术在电力系统中的应用越来越广泛而深入,这也使电网管理方式产生翻天覆地的变化新技术新理论的应用使一些概念不断被更新和修正,传统的技术界线逐渐模糊,各种原来看似不相关联的技术会彼此融合和渗透,这些推动着电力自动化系统的不断发展和变化。
[参考文献]
关键词:电气自动化;电力系统;电气工程
中图分类号:TM76 文献标识码:A
1 自动监控技术在电气工程中的应用
1.1 远程性监控技术
在电气工程中,使用适合条件的远程监控可以提升电气工业的运行模式,节约生产及使用成本,例如电缆成本、耗材成本、人工费等。通过远程监控还可以使得我们在监控电气工程设备上没有了地域上的限制,大大减少了工作人员的工作量,提升我们的工作效率。但是在正常应用过程中,会因为地形的复杂、传输信号距离过远等因素,导致信号接收状态并不理想,很大程度上会降低远程监控所实现的部分功能。
1.2 监控技术的集中及现场应用
监控技术的集中应用能够在电气工程中应用的最主要因素是因为它本身设计比较容易,操作简单,安装使用之后可以节省一部分购买机械设备的资金,并且更方便进行日常维护。
在电力系统之中使用最为广泛的是现场总线监控技术,它使用的是一种串行的通信线路,可以对在生产过程中的基础设施进行统一的进行远距离控制。这种方式的监控方法,可以对不同的电气工程进行有针对性的监控,而且各个设施之间没有相互影响和干涉,都是通过网络信号进行与总监控室进行直接的联系,具有较强的灵活性和独立性能。通过监控技术手段在电力系统中的应用,不仅可以降低生产使用成本,还能够增加系统运行的安全性和可靠性。
2 电气自动化技术的发展
2.1 变换器电路从低频向高频方向发展
变换器电路是电力系统中的主要构成成分之一,其发展变化过程与电力电子技术的发展变化紧密相连,可以说,电子元器件的更新换代速度直接影响着电气自动化的发展速度。
在以前使用晶闸管时,电力系统中的直流电路运行模式无法避免的出现交流变频情况出现,随着电子元器件的发展迅猛,PWM交换器逐步替换了普通的晶闸管,这使得电力行业解决了电动机在低频工作状态下出现的额转矩脉动现象,另外电动机的有效功率也得到了显著地提升。可是,使用PWM交换器带来了较大的振动噪音。直到美国威斯康星大学研发出直流环逆变器,它可以实现电气元器件功能的灵活转变,不仅能够在零电流下进行转化,又完全消除了开关损耗。这个研发成果的使用,有效的降低了电力系统运行成本,提升了逆变器的集成化程度,还使得电气自动化技术得到了很大的提升。
2.2 交流调速控制理论
利用对异步电动机定子电流矢量进行测量进而控制,从而达到控制异步电动机励磁、转矩两电流的目的,最终实现对异步电动机转矩的控制,这一控制过程称为矢量控制,也即交流调速控制。在该理论的支持下,对三相异步电动机的控制基本上相当于滞留电动机,可以使三相异步电动机具有等同于直流调速系统的静态性能和动态性能,很大幅度上提升了交流调速的竞争力,并最终可以提升电力系统的自动化水平程度。
2.3 智能保护与综合自动化技术
上世纪九十年代以来,电力系统自动化技术的研究一直很热门。我国电力领域的科研工作者也先后对电力系统智能保护与综合自动化技术进行了大量的开发与研究,并根据我国国情将最新的理论成果和实践技术应用到国内各电力系统的继电保护装置中。从而使新型保护装置进入了智能化时代,也极大地提高了电力系统的安全性和可靠性。截止2011年统计结果显示,我国自产产品已经实际应用于220kV及以下电压等级变电站的自动化中,而330kV及以上电压等级变电站也有不少选择试用。目前,我国研究工作人员针对我国电力系统研究开发的分层分布式综合自动化装置已经先后投入到我国大约两万余所 35kV~500kV各种电压等级的变电站中以及每年新建的千百所变电站中运行。
2.4 电气自动化的实时仿真系统
为了能够实时监测到电力系统的符合情况,科研人员对电力系统进行了仿真建模,通过建立的电力系统数字模拟实时仿真系统,可以在不同环境下对模拟电力系统的进行稳态和暂态实验,为科学研究提供大量的试验数据的同时,还能够与多种控制装置组成闭环回路,对整个电力系统装置进行监控。使用实时仿真系统还能够为电力系统提供智能保护和新型的输电系统研究提供实验条件。
2.5 电力系统配电网自动化技术
我国的电力系统由发电、输电和配电三部分组成,其中发电部分全部在发电厂运行过程中,输电部分包括高压输电和变电站部分,配电直接服务于各个电力用户。配电自动化技术是服务于城乡配电网改造的重要技术,主要利用电力电子技术、网络通信技术等与电力设备相结合,通过配电网来进行潮流计算之后,应用人工智能来进行负荷预测。
2.6 人工智能在电力系统中的应用
随着人工智能的发展越来越完善,研究人员也开始将神经网络、支持向量机、模糊逻辑和进化理论等应用到电力系统的故障诊断、设计规划、运行分析等方面,
从而使电力系统运行和控制逐步实现智能化成为可能。
结语
电力系统是一个国家的能源调度控制中心,其发展水平是衡量一个国家经济发展水平的重要标志。应用电气自动化技术对电力系统进行全面改造,是达到电力系统高效运行的捷径之一。同时,现在是计算机网络时代,电气自动化的应用能更好地满足时代的需求。我国的电力系统综合自动化技术起步较晚,与国外相比,在某些技术方面存在着一定的差距。所以,我们不仅要学习和借鉴国外的先进技术,同时注重自主研发适合我国国情的电气自动化系统,为我国电力系统发展做出贡献。
参考文献
[1]姚建国,杨胜春,高宗和等.电网调度自动化系统发展趋势展望[J].电力系统自动化,2007,31(13):7-11.
社会生产的提速和人们生活水平的提高,使能源需求量不断增加,电力作为最主要的能源,在社会生产和人们生活中起着重要的作用,更是生产生活的基本保障,电力运行的好坏,直接影响到社会发展与经济建设。只有全面创新工作,强化技术导向,通过电力电气自动化改善,才能全面提高电能质量,进一步促进电力系统高效运行。基于此,文章主要通过对电气自动化技术概况进行简析,重点探讨了电气自动化技术在电力工程中的核心作用,在此基础上,提出电气自动化技术在电力工程中的应用措施与方法,全面提升电力运行能力。
关键词:
电气自动化技术;电力工程;技术应用
1概述
电气管理越来越重要,随着用电量的增加,需要管理精细化,才能稳定用电市场,维护用户利益,电气管理项目繁多,任务艰巨,单纯依靠人力不可能完成管理任务,就需要不断创新,引进智能化、自动化技术,才能实现管理科学化系统化。电气自动化管理越来越受到重视。电气管理主要是集合了信息处理技术、网络通信技术及现代电子技术内容,通过协调一体的配合,完成电能管理,电气自动化管理是一门现代化的综合技术,越来越多的应用到各项管理工作中。通过电力电气自动化流程控制,取代了传统意义上的电气系统手工操作程序,使电力控制更加有效,监测更加精准,推动了电力系统高效运行,保证了电力系统安全稳定运行。
2电气自动化技术对电力工程的重要作用
电力自动化技术作为现代化技术,在电力工程建设中均起到重要的作用,主要表现如下:
2.1全面提升技术运用能力
保证电力设备运行时更加高效、经济和安全,实现优质供电能力。能够从根本上提升电力体系自动化水平,电气自动化技术自身隶属先进科学技术,在电力运用过程中,主要是电力设备和技术升级,当然也可以提升电力项目网络化管理控制能力,促进了电气自动化技术水平的不断创新与提升。
2.2满足安全要求
自动化技术运用到电力项目中,具备良好的优势,特别是与计算机联合使用,确保了设备运行的安全,要想对设备进行维护与保养,只需通过电脑操作便可以达到维护要求。工作人员联系相关数值,依托电脑运行来实现对有关设施运行养护,使生产故障不断降低,维护好人身安全,保证了用电供电稳定性。
2.3保证了电气系统的稳定运行
电力系统运行中产生大量的数据,需要对各类数据及时进行整理与分析处理,提前预知系统问题,有效解决,解决运行稳定性的问题,可以显著提升管理成效,顺应电气自动化运用需求,电力设备和技术管控均需进行不断的持续改进,不断提升流程再造能力。
3电气自动化技术具体应用
电气自动化技术较为复杂,其应用较为广泛,需要根据不同的工程需要,选择不同的技术配合,只有这样,才能发挥最大效用,保证电气运行稳定安全。
3.1自动化补偿技术应用
在电力工程中,低压无功补偿技术是相对传统的补偿技术,主要是通过采集三项电容器和单一信号的方式进行补偿。但是这种传统补偿方式有一定的问题,特别是在对单相负荷用户进行补偿时,极容易出现三相负荷不平衡,导致欠补或过补问题,如果不加以解决,就会形成恶性循环,造成运行不稳定。而通过自动化补偿技术的实施,能够有效解决上述问题,将动态补偿与固定补偿相结合、将分相补偿与三相共补结合、将快速补偿与稳态补偿相结合,不断调整并能够适应负荷的变化,大大提高补偿精度,使运行更加稳定可靠。
3.2现场总线技术在电力工程中的应用
现场总线技术应用较为普遍,其兴起于20世纪80年代末、90年代初,这类技术的兴起与推广,在国际市场范围较广,是较为现代的电气自动化技术之一。通过现场总线技术的良好应用,可能把智能仪器仪表、控制器及电力执行系统有效进行连接,形成一个有机的整体,各部件能够相互配合,完成整体活动,使现场各控制设备能够保持交流与传递,实现信息间的流通,从而确定了电力工程系统的数字通信模式。现场总线技术是应用范围非常广泛的技术,具有运行安全、操作简单、维护方便的特点,整体优势非常明显,能够对电力工程系统主变器用电总量进行实时有效搜集,通过搜集得到相应数据,快速整理并汇总,及时将数据汇集到主控电脑内,然后启动计算系统,按通用格式形成数学计算模型,对所收集到的数据信息做最后的计算和判断,形成一系列可用信息资讯,向电力工程相关控制设备快速传递,得到维护指令后,对设备进行评估与修复,有效提高了系统维护效率,从根本上防止总电量过高造成电力系统短路、崩溃等现象,实现电力工程系统整体安全可靠的运行。通过现场总线技术应用,还能够极大的方便电力工程系统控制,实现系统分散管理的目的,依然是通过计算机实现对电力工程系统各部分相关控制数据的监控和搜集,保持随时连接、实时监控,对发现的问题快速实行反馈,并形成解决方案。现场总线技术导入和导出的数据,不仅能够提高安全性,更能对信息进行共享利用,使数据应用范围不断扩大,有效保证了系统维护与更新,为电力工程建设提供强有力的技术支持。
3.3主动对象数据库技术在电力工程中的应用
主动对象数据库技术应用较为广泛,是电力工程自动化技术的主要内容。电力工程数据非常重要,其统计、管理、共享和使用需要不断创新。主动对象数据库中的应用,需要面向对象提前设立出一个符合实际的条件,就是说,一定要在一个具体的时间内、设定条件下,而出现的一个事件、最后执行的行为是什么,通过一系列的反馈与评估,实现对数据自动化处理的结果。通过快速、简单、高效的处理过程,对事件进行最后评定。整个电网应用的均是主动对象数据库技术,这类技术涉及范围面大,对整个电网信息实现综合统计,设置条件信息包括面宽,也就是当电网在运行的时候,运行信息在一定的条件下,满足触发条件,执行了某个行为,这就从根本上解决了人力操作不精准的问题,大大提高了准确度,有效缓解了迟滞、缓慢的问题。
3.4光互连技术在电力工程中的应用
光互连技术组成部分较为复杂,按常规划分,可将光互连技术分为自由空间光互连技术、光纤互连技术和波导光互连技术等多种类型。光互连技术有着较好的优势,能够在使用过程中,全面达到抗干扰效果,能力大大得到提高,同时,也可以在较短反应时间内提供强大的带宽,这种技术被广泛应用,与其强大的优势是分不开的,在电气工程系统中实现普遍与推广。通过采用光互连技术,可以在根本上解决数据收集的问题,实现信息数据有效采集、对系统实时监控及相关数据快速精准分析等,对计算结果实现应用,也就是说,可以通过人机界面实现对系统的便利操作,实现网络系统重组,表现出实际、灵活、高效的状态。
3.5变电站及配电自动化技术在电力工程中的应用
变电站自动化技术包括的内容较为广泛,主要是指电子技术、网络技术、信息处置技术、电脑技术和现代通讯技术等。通过各种技术的合成与统一,形成综合型技术能力,使变电站二次设施实现整合设计、降低无谓消耗、减小变配电工作量、提升运行安全等。电力系统不断发展,未来的发展过程中,能够更加完善,使配电管理系统更加科学简便,建立起实用的网络基础平台,从而实现110kV以下配电系统自动管理,满足电力系统自动化需求,优化电气设备的保护,与此、自我调整。
4结束语
综上所述,电力工程关系着国计民生,是经济建设与社会发展的基础,只有不断总结经验,完善技术能力,才能有效做好技术布局,改善工作环境,切实保证运行整体安全。
作者:潘海涛 孙利华 单位:国网内蒙古东部科左中旗供电有限公司
参考文献
关键词:火力发电厂;电气自动化;技术创新;电力能源;电力系统
随着经济的迅猛发展、电能的需求量逐渐增加,火力发电是当前我国电力能源的主要供应方式,随着煤炭资源价格持续上升,火力发电成本的迅速增加,电气自动化技术的使用对于提高火电厂的运行管理效率,提升电网的安全性、稳定性有重要作用,能够有效降低火电厂发电的成本,因此火电厂相关管理及技术人员必须重视电气自动化技术的研究及应用。
1电气自动化技术在火力发电厂中的必要性及基本作用
传统的火力发电厂中主要通过集散控制系统(DCS)对机、炉系统进行控制,DCS系统只能实现简单控制,电气系统的自动励磁调节装置(AVR)、厂用电源切换装置(ATS)等保护及安全装置与DCS系统之间很少进行信息的互访及交换,也就是说它们之间基本上处于相互独立运行的状态,电气系统的操作人员很少能够通过DCS系统得到电气设备的相关参数信息,这对于工作人员的实际操作十分不便,火力发电厂电气系统发生故障之后也难以在短时间内迅速得到反馈及解决。火电厂在实际的工作中必须要改变以往电气系统电缆、变送器等装置的安装情况,转变电气信号的采集形式,将智能设备与现场总线相结合,建立一个电气系统通信网络,深入地挖掘电气系统相关的数据信息,促进火电厂电气系统的自动化,提高火力发电厂电气系统的运行水平及管理效率,为火力发电厂的发展奠定良好的基础。在火力发电厂中,电气自动化技术的主要作用是监测控制发电厂的相关设备的运行状态及数据信息,从而及时发现设备运行过程中的动作异常事件,发出告警信号,提醒相关工作人员对故障进行检查、处理,消除安全隐患,此外,电气自动化系统还能够提供许多高级功能,比如定值的远方修改在线自动效核、电动机状态检修、故障诊断、电量统计等。
2电气自动化技术在火力发电厂中的发展现状
随着科学技术的不断发展,电力自动化技术水平也在逐渐提高,这也为火力发电厂中的数据采集、信息通信等工作提供了技术基础。就目前来说,火力发电厂的自动化系统已经能够通过自身的监控装置对交流采样工作进行测量、保护以及监控,在新型计算机监控及保护功能基础之上,工业以太网络及现场总线技术得以形成。控制层、通信层以及间隔层共同组成了电气自动化系统,三个层级之间相互独立,在实际的运行中相互配合、共同作用,实现对系统的监控,控制层是整个电气自动化系统的核心,能够完成数据信息的监控、采集及整理工作,通信层是整个自动化系统正常运行的基础保障,系统间隔层与各站点之间的信息交流、转换、逻辑监视等功能都需要依靠通信层来完成,间隔层主要由智能设备以及保护监控装置组成,间隔层与系统上层功能的数据沟通及互访主要通过接口及网络实现。
3电气自动化技术在火力发电厂中的创新应用
电气自动化技术对于火力发电厂的发展十分重要,但就目前来说,我国火力发电厂的电气自动化系统还存在一定的局限性,因此相关技术研究人员必须不断的深入研究,充分利用计算机网络技术、信息技术、通信技术等科学技术手段,创新电气自动化技术,提升火电机组的运行效率,提升电网运行的安全性、稳定性,为火力发电厂的发展奠定良好的技术基础。下文从电气系统的控制保护手段、通用网络结构的构建、电气全通信控制等方面就创新电气自动化技术在火力发电中的应用进行简单的分析介绍。
3.1控制保护手段
以往的火力发电过程中,主要通过连锁及报警的手段实现系统控制及保护,这种保护方式存在着一定的局限性。信息技术高速发展的背景之下,火力发电厂可以借助计算机网络控制保护技术检测电气自动化系统的运营状态,诊断系统出现的各种故障,从而有效地消除系统的安全隐患,通过系统冗余等主动保护及控制方法自动控制系统故障的影响范围,确保系统无故障部位能够继续运行,为电网的安全奠定基础。此外,电气自动化技术创新之后,系统设备的运行维护方式也会发生改变,不再局限于以往被动的预防维护或者事后检修,能够将预防维护与设备维修结合起来,更有利于保障电力系统的安全。
3.2构建通用网络结构
想要实现电气自动化系统的顺利运行,必须要重视通用网络结构的构建,基于此,火力发电厂必须要创新电气自动化技术,选择网络通信产品时必须保证通信系统在整个电气自动化系统范围内都能够正常通信,确保电厂管理层能够实时监督电厂的现场控制设备,保证计算机监督系统、电厂控制设备等相关组织结构之间数据传输的安全性及畅通性,为全集成自动化的实现奠定良好的通信基础。
3.3统一单元炉机组
以往的火力发电厂电气自动化系统只能够实现机电控制一体化,随着相关技术的不断创新,火力发电厂的自动化系统的监控方式必然会转化为机、炉、电一体的单元制运行监控模式,电厂的DCS系统能够以单元制的运行方式汇总及分析整个火电机组的相关运行参数及状态信息,能够充分发挥系统的控制功能,信息的收集、处理更加高效,能够实现电网的统一管理及运行,使火电机组的运行效率达到最高。此外,火电厂的监控系统会明显被简化,控制室的占地面积也会减少,系统的建设成本会降低,对于火电厂而言十分有利。同时统一单元炉机组的应用,为发电厂信息管理系统的信息采集工作提供了便利,有利于火电网统一管理及运行的实现,能够有效提高电网的工作效率,提高火电机组的自动化水平及监控水平。
3.4实现电气的全通信控制
就现阶段来说,我国火力发电厂的自动化系统(ECS)还无法实现电气全通信控制功能,系统的可靠性及通信速度都还有提高的余地,ECS系统与DCS系统之间留有一部分硬接线,为了能够实现电气的全通信控制,相关研究人员必须重视热工工艺连锁问题,通过相关的技术手段增加更多的运行监视功能,提高后台系统的应用水平,最终实现电气自动化系统运行管理水平、控制水平以及自动化水平的提高。
4结语
电气自动化技术对于火力发电厂而言十分重要,有利于提高火力发电厂电气系统的运行水平及管理效率,保证电网的安全,火力发电厂相关管理人员必须重视电气自动化技术的研究及应用。现阶段,电气自动化系统已经广泛地应用于火电厂之中,有效地提高了火电机组的运行效率、自动化水平及控制水平,降低了电厂的生产成本,对于火力发电厂的发展做出了巨大的贡献。总体而言,火力发电厂电气自动化技术还有进步发展的余地,相关研究人员必须深入研究创新。
参考文献
[1]赵杨,丁宝峰,杜翠女,等.浅谈电气自动化技术在火力发电中的创新与应用[J].硅谷,2011,(2).
[2]宋生麒.火力发电厂中电气自动化技术的创新与应用[J].科技创新与应用,2013,(10).
[3]张斌印,侯泽慧.火力发电厂中电气自动化技术的探索与思考[J].科技展望,2015,(6).
关键词:电力系统 自动化技术 应用
一、电力系统中电气自动化技术概述
电气自动化技术是在电力系统中实现远程监控以及监视管理的有效地途径,是将现代的电子技术、信息的处理技术以及网络通信技术融为一体的基础上,发展起来的综合技术。电气自动化技术,为电力系统的平稳运行提供了良好的条件,并且随着发展,电力系统也得到了更为优质的服务。电力系统自动化技术的要求主要有:①保证电力系统各部分的技术要求,以实现设备的安全以及经济,并以设备的实际运行为主要的依据,保证操作人员实际的控制和协调;②尽量的利用电气自动化技术进行安全性能的改善,从而可以减少事故,并能够节省人力,避免紧急事故的发生和发展;③还要对电力系统的整体数据以及参数进行检验、收集并对之进行处理,保证各系统的正常运行;④保证电力系统各部分的安全以及经济。
二、电力系统中的电气自动化技术
(一)变电站自动化。电力系统中变电站与输配电线路是联系发电厂与电力用户的主要环节。变电站自动化的目的是取代人工监视和电话人工操作,提高工作效率,扩大对变电站的监控功能,提高变电站的安全运行水平。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备;二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。
(二)电网调度自动化。现代的电网自动化调度系统是以计算机为核心的控制系统,包括实时信息收集和显示系统,以及供实时计算、分析、控制用的软件系统。信息收集和显示系统具有数据采集、屏幕显示、安全检测、运行工况计算分析和实时控制的功能。在发电厂和变电站的收集信息部分称为远动端,位于调度中心的部分称为调度端。软件系统由静态状态估计、自动发电控制、最优潮流、自动电压与无功控制、负荷预测、最优机组开停计划、安全监视与安全分析、紧急控制和电路恢复等程序组成。
(三)发电厂分散测控系统(DCS)。发电厂分散控制系统(DCS)-般采用分层分布式结构,由过程控制单元(PCU)、运行员工作站(os)、工程师工作站(ES)和冗余的高速数据通讯网络(以太网)组成。过程控制单元(PCU)由可冗余配置的主控模件(MCU)和智能1/0模件组成。MCU模件通过冗余的1/0总线与智能1/0模件通讯。PCU直接面向生产过程,接受现场变送器、热电偶、热电阻、电气量、开关量、脉冲量等信号,经运算处理后进行运行参数、设备状态的实时显示和打印以及输出信号直接驱动执行机构,完成生产过程的监测、控制和联锁保护等功能。运行员工作站(os)和工程师工作站(ES)提供了人机接口。运行员工作站接收PCU发来的信息和向PCU发出指令,为运行操作人员提供监视和控制机组运行的手段,工程师工作站为维护工程师提供系统组态设置和修改、系统诊断和维护等手段。
三、电力系统中电气自动化技术的应用
(一)主动对象数据库技术在电力系统中的应用。数据库技术在电力系统中的应用主要是用于电力系统的监视系统中,因此,这对系统的开发、继承、封装等都有很大的作用,引发了软件技术的变革。主动对象数据库技术在电力系统得到了广泛的应用和认可,并用来支持对象标准,因此与一般的关系数据库相比,主动对象数据库主要是对技术以及主动功能的技术支持,因此,在电力系统中也得到了广泛的应用。主动对象数据库是利用系统的监视功能,对对象函数进行利用,从而可以实现电力系统中电气自动化的应用,随着触发机制的使用,数据库监视得到了很好的控制与实现,从而节省了数据写入以及读出的时间,还对数据管理功能充分的进行利用,并得到了技术上的保证。当前,我国的数据库技术得到了很广泛的应用,并且监视系统也得到了很好的发展,电气自动化技术在电力系统以及日后的电力系统中并将得到更为完善的应用。
(二)现场总线技术在电力系统中的应用。现场总线技术是指在电力系统现场将智能的自动化装置以及仪表控制设备进行连接,形成一体化的多向、串行、多站和数字化的信息网络,从而可以将数字通信、控制、智能传感器以及计算机等融为一体而形成的综合性的技术。在电力系统中,现场总线技术被广泛的应用,通过现场总线技术可以将变送器所控制的总的用电量收集后,将信号进行控制后集中到主控计算机上,然后根据数学模型进行计算进而做出判断,并最终将指令发送到控制设备上,从而实现电气自动化技术的应用。
关键词:电气自动化;技术;应用;分析
就我国目前电气自动化技术的发展的情况来看,还不是很成熟的,因为在我国电气自动化技术的发展起步是相对比较晚的,所以发展的过程中已经逐渐的跟不上市场变化的需求,所以在自动化技术上是需要不断地优化升级的,只有这样才能够促进电气自动化技术的不断进步,电力企业取得长足的发展。
一、目前我国电力企业电气自动化技术的发展现状
目前我国的电力企业中应用电气自动化技术还是处于起步阶段,更多的的研究是基于理论的,在实际的应用中还不是很成熟。随着我国电力企业的不断增多,对电力系统自动化技术的发展有了更高的要求,适应不断变化的市场需求。电力企业对企业内部的电力系统自动化技术要不断地进行升级优化,确保系统运行的安全性和可靠性。对自动化设备技术及时的进行更新换代。
二、电气自动化技术的主要特征
(一)技术先进
电器自动化技术的应用范围越来越大,重要性也随之提高。不难发现,电气自动化技术是一项比较复杂的技术,而且其中运用到了许多先进的科学技术。其中最重要的两种技术就是计算机技术和网络技术。电气自动化技术就是以计算机技术为依托进行不断地完善和功能的升级。对于一些软件的设计要根据具体的情况进行编程,记录。
(二)以电子技术为主
针对目前电力企业的电气自动化技术来说,对电子信息技术的依赖是非常大的。大部分功能的实现和设备都是以电子信息技术为基础,对电力系统实现整体的控制。
三、电气自动化技术的优点
(一)系统控制智能化
传统的电气系统在运行的过程中需要制造一些控制模型。但是传统的控制过程是一个比较复杂的系统,所以模型的建立是比较困难的,很难控制模型能够准确的反应系统的真实情况,可能会导致出现一些无法预测的风险。而自动化技术在电力系统中的应用就可以不用建立控制模型,提高了工作的效率,也提高了电力系统的安全性。
(二)实现对电力系统的自主控制
传统的电力系统在运行的过程中是需要一个反应的时间的,而自动化技术的应用就可以有效的缩小这个时间,对系统能够自主控制。大幅度的提高工作的效率。自动化技术的应用还能够实现系统运行的安全性。对人工智能的发展也是有非常重要的推动作用。
(三)信息处理更加快速
电力系统运行过程中是有许多的数据需要处理的,这样工作人员的工作量是非常大的,而且在信息处理的准确性是得不到保证的。但是电气自动化技术的应用对信息的处理就能够自动的进行分类,提高对信息技术的处理速率,在准确性上也会有很大的提升。
四、对电气自动化技术的要求
(一)安全性必须要提高
安全问题一直是电气自动化系统中最重要的问题,所以在自动化技术上的应用上以安全为第一出发点。也是一切工作开展进行的基本准则,保证电力系统运行的可靠性。另外在系统的维护和故障检修方面的工作会进行的更加的顺利。
(二)要不断的提高信息化程度
电气自动化技术的应用最不可缺少的技术就是信息技术的应用。信息化的发展水平要求是比较高的,只有这样才能够对自动化设备的软硬件进行合理的管理,对软件要及时的升级。在技术人员的素质要求上也会有更高的标准,技术人员要定期的针对一些相关的知识进行学习,在出现问题的时候能够及时的发现,并且快速的采取补救措施,把损失降到最小。
五、电力企业中自动化技术的具体应用方向
(一)实现自动化控制
自动化技术在电力企业中的应用最重要的就是实现自动控制,减少人工的劳动量,只有这样才能够实现自动化控制技术的人工智能。通过远程监控设备,实时的检测电力系统的运行情况,采集信息并且传送到控制端,这样才能够使得总部对系统的信息随时掌握,对于出现的问题及时的解决,减少出现事故的概率。
(二)准确的发现存在的故障
电力企业中自动化技术的应用不可缺少的是电气设备,大量的电气设备在使用的过程中出现一些故障是在所难免的。而人工检查设备是否出现故障,或者确定可能出现问题的地方是比较困难的一项工作。自动化技术的应用就可以对设备的运行进行全方位的监控,任何一个地方出现故障都能够及时的反映到监控系统,并且能够自动的分析出产生故障的原因。维修人员就可以根据系统的提示找到产生故障的地方,及时的进行维修,避免造成更大的损失。
(三)更加的趋于智能化
智能化是未来电气自动化技术的发展趋势。人工智能完全的解放了工人的劳动力,在电力系统运行的各个方面都是自动化操作和控制。在故障的检修和系统维护方面有更好的工作效率。为电力企业员工减轻了工作的负担同时工作的质量也得到了很大的提升。
(四)保持系统正常的工作状态
智能电网在电力系统中也是一个非常重要的组成部分,在智能电网这一部分的工作中最重要的就是维持系统的稳定,保证电力系统在正常的工作状态进行工作。自动化技术的应用还可以减少一些对电力系统产生干扰的因素,保证其正常的运行。
六、总结
综上所述,电力企业中自动化技术的发展是非常快速的, 也推动了我国经济的快速发展。电力系统的发展关乎着国家的国计民生问题,其快速安全发展的重要性就不言而喻了。不久的将来,电气自动化技术的发展必将会朝着更加智能化的方向进步,而且在系统运行的安全性上也会有更有力的保障。
参考文献:
[1]胡正春.电气自动化技术在电力企业中的应用[J].通讯世界, 2013(18):147-148.