当前位置: 首页 精选范文 高层建筑结构设计论文范文

高层建筑结构设计论文精选(五篇)

发布时间:2023-09-27 10:22:49

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇高层建筑结构设计论文,期待它们能激发您的灵感。

高层建筑结构设计论文

篇1

1.1高层建筑结构受力特征

高层建筑结构在模型上一般可以假想为一个从地基出发并不断上升的悬臂构件。高层建筑主要承受水平作用效应和竖向作用效应,水平作用效应一般指风荷载,在抗震设防地区还包括水平地震作用。竖向作用效应则一般由结构自重荷载产生,在抗震设防烈度为8、9度时的大跨度和长悬臂结构及9度时的高层建筑,还应考虑竖向地震作用。在这些作用效应下,结构整体及主体构件均需具有足够的承载能力、刚度和延性,整体的设计注重概念,应符合相关规定中对于建筑形体的规则性要求,包括平面布置的规则性及竖向布置的规则性。结构在抵抗弯曲方面来说,结构体系务必满足:不能使建筑物产生倾覆;在承受荷载时,它的支撑体系的某些部位不应被压屈、压碎或者直接被拉伸破坏;同时弯曲侧移不能超出弹性极限的范围。而结构在抵抗剪力方面来说,结构体系务必满足:建筑物不至于发生剪切破坏;同时结构的整体剪切侧移不能超过弹性极限的范围。最后对于结构的地基和基础来说,由于高层建筑一般是高次不静定结构,所以结构体系在支承点处应避免较大的不均匀变形,从而可以防止出现较大的二次内力。

1.2高层建筑结构的传力路线

高层建筑的竖向平面结构和水平平面结构都必须有明确的传力路线。以某个作用在楼面上的重力荷载为例,它要通过楼盖构件的弯曲传递给竖向结构的某个构件,直到建筑物的基础和地基。传力路线的模式根据结构的类别和布置而异。高层建筑的底层往往只允许有少量的立柱,以便有足够的空间可以设置宽敞的入口、前厅或广场。这时,有较密柱间距的上层结构的重力荷载,就要通过另一种结构体系传给底层立柱以及底层立柱基础。当高层建筑的楼层平面有突变时(如楼层有收进,或由矩形平面变成其他形状的平面时),或结构体系有变化时,它们的传力路线也会发生改变,这时往往既要有竖向的转换结构,也要有水平方向的转换结构。在高层建筑结构传力路线中还有一个区别于底层建筑结构的特殊问题,那就是高层建筑的每个立柱都承受着上层传来的重力荷载,要考虑它们各自在施工和使用过程中竖向压缩量的差异。这既要在设计中加以考虑,也要在施工过程中及时加以调整,以保证各层楼面的水平度,减小因不同柱的压缩量有过大差异而引起的结构内力。

2概念设计

2.1抗关于侧力构件合理布置规定

对于一个单独的结构单元,在设计上的通常做法是,一般会尽力避免设计出应力集中的缩颈和凹角部位;而且尽量不要在这些部位设置楼、电梯间。整个结构外形也要避免外挑,尺寸内收也不宜过急,避免在结构上形成薄弱部位。最大限度地防止因局部结构或构件破坏,而出现全部结构失去承载力的情况。

2.2关于高宽比的规定

高宽比的规定是对结构整体刚度、整体稳定、抗倾覆能力、承载能力以及经济合理性的综合考虑,是长期工程经验的总结,根据当前的实际工程来看,这一限值是比较经济合理与实用。但随着目前高层建筑的快速发展,设计师们发现其实高宽比并不是必须要满足的。实际工程已有一些超过高宽比限制的例子(如深圳京基100大厦高441.8m,共100层,高宽比为9.5,天津117大厦,高597m,共117层,高宽比为9.7),当然高宽比超过限值时,应对结构进行更加准确的受力分析,并施加可靠的构造措施。

2.3短肢剪力墙的设置问题

在新的规范中,将墙肢截面高度与厚度比为5-8的剪力墙定义为短肢剪力墙,且根据试验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制。比如在剪力墙设计等级为四级,短肢剪力墙的配筋率要求是1%以上,而普通剪力墙则为0.2%。高厚比较小的构件的脆性破坏较大,不利于抗震。所以,在具体的高层结构设计里,设计师们应该充分利用其它现有构造形式来代替短肢剪力墙,减少不必要的麻烦。

2.4嵌固端的设置问题

在结构计算模型的选择上,如何准确地确定嵌固端位置是一个十分关键的问题,这直接关系到实际的受力状态与选择的计算模型是否符合以及内力等相应计算结果是否无误。因为现在高层结构通常会设有一层或者是二层的地下室(可以当作人防工程来使用),而嵌固端的选择,可以结合各层的刚度变化,再根据它的实际布置状况,可以选择在一层顶板的位置,也可以是二层顶板的位置,同时在地下室其他楼层等部位也是有很大可能的。但是在这个问题上,结构设计师们往往会忽略了一系列需要注意的问题,例如嵌固端的设置和刚度比的限制等问题,忽视这些问题将会对工程的质量和后期数据的分析造成很大的隐患。

3地基与基础结构设计

在基础的具体设计中,应根据地基复杂程度、建筑物规模和功能特征以及由于地基问题可能造成建筑破坏或影响正常使用的程度来确定基础设计等级。首先,地基计算应满足承载力计算的有关规定;其次,由于高层建筑的基础设计等级均为甲级或乙级,因此均应按地基变形设计;若地下室存在上浮问题时,还应进行抗浮验算。下面就高层建筑中不同的基础类型分别阐述在设计计算中应注意的事项:在对箱基和筏基的梁板进行配筋计算时,务必相应地扣除底板上直接作用的梁板荷载和自重,当出现箱筏的四边区格和地基反力过大的情况,这时要对梁板进行加强配筋;而在进行箱基结构设计时,要考虑洞口上下的连梁的影响,验算其截面面积,若洞口的位置或者大小有变动,要复核连梁的抗剪强度和抗弯强度;若是进行整体箱基和筏基的设计,必须考虑桩土的因素,其共同工作会对结构造成一定程度的影响。

4结构计算与分析

4.1结构整体计算的软件选择

当前比较常用的计算软件一般包括:建科院PKPM其中的SAT-WE,MIDAS,ANYSYS,ETABS,SAP等。由于各个软件使用的计算模型有一定区别,所以在各个软件计算结果上就会有或大或小的差异。实际工程中,务必考虑结构类型和计算模型的具体特点,在进行整体分析时选择最恰当的软件,并使用不同软件进行对比分析计算,从不同软件计算的相差较大的结果中,选择最接近工程实际情况的数据。若不能选择合适的计算软件,不但会消耗大量的时间和精力,更重要的是会对结构埋下安全隐患,造成日后的工程问题。所以为了保险起见,通常在布置复杂的高层设计中,宜使用不少于两种不同的模型来进行内力分析和计算。

4.2剪力墙底部加强部位墙厚的确定

在进行抗震设计时,剪力墙的底部加强部位一般采取增加边缘构件箍筋和墙体的布筋来防止地震荷载的影响,预防结构出现脆性破坏,从而能够比较有效的改善结构的抗震性能,在现行的规范中,明确指出剪力墙结构底部加强部位的高度可以参考墙肢的1/8和底部两层二者中的较大值;而部分框支剪力墙结构底部的取值,可考虑以上两层的高度及墙肢总高度1/8中的较大值。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度bw的取法按照以下规定,按照一、二级级抗震标准的情况,bw宜选择剪力墙无支长度的1/16或层高;按照三、四级抗震标准的情况,bw宜选择剪力墙无支长度的1/20或层高。但在墙底受力较小且结构层高相对较高的情况下,其厚度还按上述要求取值,就显得很不经济。所以,根据具体的工程实践,厚度可以适当减小,而且必须按照下面的公式计算稳定性。

5结束语

篇2

Abstract: At present, the high-rise building occupies larger and larger proportion in our city’s construction, and due to the variety of the building structure design, there are many new structure design scheme presented in our city construction of the fast speed. With the more and more complicated building types and functions, and the increasing number of high-rise building, the structure systems of the high-rise building is also more and more diverse. Thus, the high-rise building structure design has become the diffecult and key point. Facing with the situation, we should put the high-rise building structural design on the first place, and do some study. And there puts forward higher request for engineering design personnel. This paper discusses a few matters needing attention of the structure design.

Keywords: high-rise building; structure design

中图分类号:TU761.6 文献标识码:A文章编号:2095-2104(2012)

1 高层建筑结构设计方面的原则 1.1 选用适当的计算简图:结构计算式在计算简图的基础上进行的,计算简图选用不当则会导致结构安全的事故常常发生,所以选择适当的计算简图是保证结构安全的重要条件。计算简图还应有相应的构造措施来保证。实际结构的节点不可能是纯粹的铰结点和刚结点,但与计算简图的误差应在设计允许范围之内。 1.2 选择合适的基础方案:基础设计应根据工程地质条件,上部结构类型与载荷分布,相邻建筑物影响及施工条件等多种因素进行综合分析,选择经济合理的基础方案,设计时宜最大限度地发挥地基的潜力,必要时应进行地基变形验算。基础设计应有详尽的地质勘察报告,对一些缺少地质报告的建筑应进行现场查看和参考临近建筑资料。通常情况下,同一结构单元不宜采用两种不同的基础类型。 1.3 合理选择结构方案:一个合理的设计必须选择一个经济合理的结构方案,也就是要选择一个切实可行的结构形式和结构体系。结构体系应受力、传力明确。同一结构单元不宜采用不同结构体系,地震区应力求平面和竖向规则。总而言之,必须对工程的设计要求、材料供应、地理环境、施工条件等情况进行综合分析,并与建筑、电气、给排水、暖通等专业充分协商,在此基础上进行结构选型,确定结构方案,必要时应进行多方案比较,择优选用。 1.4 正确分析计算结果:在结构设计中普遍采用计算机技术,但是由于目前软件种类繁多,不同软件往往会导致不同的计算结果。因此设计师应对程序的适用范围、条件等进行全面了解。在计算机辅助设计时,由于结构实际情况与程序不相符合,或人工输入有误,或软件本身有缺陷均会导致错误的计算结果,因而要求结构工程师在拿到电算结果时应认真分析,慎重校核,做出合理判断。 1.5 采取相应的构造措施:结构设计始终要牢记“强柱弱梁、强剪弱弯、强压弱拉” 原则,注意构件的延性性能;加强薄弱部位;注意钢筋的锚固长度,尤其是钢筋的直段锚固长度;考虑温度应力的影响力等等。 2 高层建筑结构设计的特点 2.1 轴向变形不容忽视:高层建筑中,竖向载荷很大,能在柱中引起较大的轴向变形,对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩减小,跨中正弯矩和端支座负弯矩值增大;此外还会对预测构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响,与考虑构件竖向变形比较,会得出偏于不安全的结果。 2.2 结构延性是重要设计指标:相对于底层建筑而言,高层建筑的结构更柔和一些,在地震作用下的变形更大一些。为了使高层建筑结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。 2.3 水平荷载成为决定因素:一方面,因为高层建筑楼房自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖向构件中引起的轴力,是与楼房高度的两次方成正比;另一方面,对某一定高度楼房来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度变化。

3 高层建筑结构的相关问题分析3.1 结构的超高问题:在抗震规范和高层规程中,对结构的总高度有着严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度以外,增加了B级高度,处理措施与设计方法都有较大改变。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。 转贴于 中国论文下载中心 h3.2 短肢剪力墙的设置问题:在新规范中,对墙肢截面高厚比为4~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。 3.3 嵌固端的设置问题:

由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。 3.4 结构的规则性问题:新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“高层建筑不应采用严重不规则的结构体系。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。

篇3

传统的结构设计方法一个很大的局限在于所按照要求得到的截面并非是最佳截面,而且建设完成后的工程结构存在一些缺点,例如质量大、造价高等,这与其设计过程密不可分。一般而言,传统的结构设计遵循以下程序:参照——估计——分析——验算——调整。也就是所使用的设计方案是在已有工程设计实践经验的基础之上提出来的,之后,在从强度、刚度以及稳定性等多个方面采用力学分析的方式对其进行安全校核,如果验算结构不满足要求就要进行设计调整。然而该验算时所假定的计算模型难以保证合理,最后得到一组截面,在很大程度上取决于最初假定的误差程度,再者,设计时迫于时间及结构计算的复杂性往往决定了调整的次数是有限的,因而设计出的最终产品难以保证是最优的。而结构的优化设计虽然与传统的结构设计有一样的设计过程,但产品的良好性能、产品所具备的的高安全性以及高经济性是其设计的主要目的。并且产品的高经济性与高安全性是从结构的体积最小、质量最轻以及产品造价最低等三个方面进行衡量的。而且,结构优化设计的一个最大特点是对设计中出现的一系列问题按照数学规划的方式对其解决,然后再利用计算机,对众多方案进行比较,并从中选出最优的设计方案,这是传统设计过程所不能比拟的。框架一剪力墙结构以其良好的受力性和适用性在现代高层建筑领域中应用非常广泛。现阶段,随着建筑行业的快速发展,高层建筑物的数量只增不减,面对这种情况,框架—剪力墙结构的合理选择以及优化对降低造价、提高建筑质量有着重要的指导意义。然而目前在《高层建筑混凝土结构设计规程》中,对高层建筑的结构选型、合理布置等的相关规定尚未完善,存在一些不足,这就为高层框架结构的优化设计提供了充足的设计理由。

2.抗震性能的结构设计

首先,为了有效提高高层建筑的抗震性能,可以将剪力墙设计成四周有梁柱的并且带有边框的墙。主要是因为,边框墙可以使斜裂缝向相邻墙面扩展的现象得以避免,而且当墙板遭到破坏后,还看将其作为承重构件,起到承重的作用。除此之外,设计的边框还能够对因墙身通裂对边框梁柱而产生的附加剪力起到承载的作用。其次,对每肢墙的高宽比进行合理的控制。双肢墙或多肢墙的设计,可以使出现在结构竖缝和洞口连梁处的裂缝和屈服部位得到有效的控制,同时还能够降低其刚度,从而避免剪切破坏或者是底部墙体过早屈服现象的发生。最后,剪力墙的刚性连梁,其跨高比一般为1。当连梁的跨高比为5时,具有较好的延性和耗能,并且连梁两端相对竖向位移的延性系数都高于8,滞回曲线的饱满度也比较高;当跨高比降至1时,延性系数则也会随之降低,达到3,并且滞回曲线远远偏离饱满度,最终导致弯剪遭到破坏。因此,需要对其组成和构造进行相应的改进。即在梁高的一半位置处留一水平通缝,并在缝的上、下两侧各埋置一个开有椭圆形螺栓的钢板,最后用高强螺栓将两个钢板连结在一起,从而使连梁具有一定的“刚性”功能。如果在大震的作用下,导致两钢板有相对滑动现象的发生,此时就会使刚性桥梁工作时跨高比由1变为2,并且延性系数提高了3倍多。

3.高层框剪结构设计技术

在现阶段的高层建筑中,其结构设计大多采用高层框剪结构。该结构主要是由两部分组成,框架结构以及剪力墙结构。高层框剪结构在高层建筑结构中得到了广泛应用,主要是因为该种结构不仅具有较强的抗侧力刚度,还能为建筑的使用提供一个更大的平面空间。但是在对该结构进行设计的过程中出现的一些问题会导致结构方案存在缺陷,致使浪费现象严重。因此,在设计中应该对框剪结构的受力和变形特点引起高度的重视。高层框架结构主要是由梁柱线性杆件组成的。剪力墙和竖向悬臂弯曲结构相似,并且呈弯曲变形。在剪力墙结构中,所有抗侧力构件具有的抗弯曲刚度较大,并且侧移变形相同,其中水平力按其等效刚度EI比例进行分配。

4.高层建筑框剪结构的设计优化

篇4

【关键词】高层建筑结构;设计;特点

1、高层建筑结构设计的意义和特点

高层建筑结构设计的意义在于高层建筑能做到结构功能与外部条件相一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

高层建筑结构设计的特点,就是将高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:

抗震设计要求更高。有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

水平力是设计主要因素。在低层和多层房屋结构中,是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。

侧移成为控制指标。与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下结构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

2、高层建筑的结构体系

高层建筑常用的结构体系有框架结构体系、剪力墙结构体系、框架D剪力墙结构体系和筒体结构体系等。

随着层数和高度的增加,水平作用对高层建筑结构安全的控制作用更加显著,包括地震作用和风荷载。高层建筑的承载能力、抗侧刚度、抗震性能、材料用量和造价高低,与其所采用的结构体系密切相关。不同的结构体系,适用于不同的层数、高度和功能。

3、高层建筑结构分析

3.1 高层建筑结构分析的基本假定。

3.1.1弹性假定。目前,工程上使用的高层建筑结构分析方法均采用弹性的计算方法。在垂直荷载或一般风力作用下,结构通常处于弹性工作阶段,这一假定基本符合结构的实际工作状况。但是,在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移而出现裂缝,进入到弹塑性工作阶段。

3.1.2 刚性楼板假定。许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法,并为采用空间薄壁杆件理论计算筒体结构提供了条件。

3.1.3 计算图形的假定。高层建筑结构体系整体分析采用的计算图形主要是三维空间分析。二维协同分析并未考虑抗侧力构件的公共节点在楼面外的位移协调(竖向位移和转角的协调),而且忽略了抗侧力构件平面外的刚度和扭转刚度,对于具有明显空间工作性能的筒体结构也是不妥的。

3.2 高层建筑结构静力分析方法。

3.2.1框架DDD剪力墙结构。框架DDD剪力墙结构内力与位移计算的方法很多,大多采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式也不相同。框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。

3.2.2 剪力墙结构。剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。按受力特性的不同,单片剪力墙可分为单肢墙、小开口整体墙、联肢墙、特殊开洞墙、框支墙等各种类型。剪力墙的类型不同,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。剪力墙结构的机算方法是平面有限单元法,此法较为精确,而且适用于各类剪力墙。但由于其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。

3.2.3 筒体结构。按照对计算模型处理手法的不同,筒体结构的分析方法可分为3 类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理。

4、提高建筑结构设计质量的措施

4.1重视概念设计概念是人们通过实践从理性认识上升到感性认识的结果,它反映了物体的本质特征。概念设计是一个结构工程师必备的一项基本素质。正确的概念设计可以指引设计者一个正确的方向,也是确保结构设计的合理性、安全性、经济性的前提,应该将概念设计贯穿于整个设计过程。概念设计必须依赖于深厚的理论知识基础以及对结构原理和力学性质的深入了解,只有具备了高质量的概念设计,才能完成高质量的结构设计任务。

4.2正确运用计算机辅助设计现代计算机技术已经普遍被应用于建筑结构辅助设计中,通常是利用计算机辅助完成结构分析,大部分的图纸设计,因此,正确的采用设计软件及对计算程序的充分了解也是确保结构设计质量的关键。现在,市场上的设计软件种类较多,采用不同的设计软件得到的结果也不一样。因此,要求对结果进行认真的分析复核。另外,所有的设计软件都是根据当时国家的规范要求、结合结构体系的特点进行模拟简化而得,因此,都有一定的使用范围和使用期限。随着建筑业的发展,建筑规模越来越大,结构形式也越来越复杂,这就使得建筑结构设计的难度越来越大,计算越来越复杂,因此,结构工程师必须采用合理的设计软件,准确的设置各项技术参数,确保计算结果的准确,从而提高结构设计的质量及效率。

4.3加强抗震设计

我国是一个地震发生较多的地区,因此,要求建筑结构有很高的抗震性能,减少地震给人们带来的损失。我国的《建筑设计抗震规范》也经历了多次的修正与完善,最新的抗震设计规范是2010年版,因此,结构工程师在进行建筑结构设计时必须严格按照现行的规范要求进行抗震设计。只有提高建筑结构的抗震性能,才能有效的降低地震灾害给人们带来的伤害。发生在中国的汶川大地震、青海玉树地震造成了相当大的损失,大量的砌体结构房屋倒塌,其原因在于结构不合理、传力不明确、抗震构造不规范。而发生在智利的8.8级地震以及最近发生在日本的9.0级大地震,死亡人员的数量却较少,倒塌的建筑物较少,其原因也就是智利及日本的民用住宅建筑的抗震性能都很

5、结语

高层建筑结构设计中应根据实际情况做好结构分析,多做方案比较,根据使用功能和受力的合理性确定好结构的体系,在进行高层建筑结构设计时,只有综合考虑各项原则,结合建筑物的使用功能,对整体结构进行把握,对结构设计中的重点以及特殊部位进行重点优化设计,才能确保高层建筑的使用安全。

参考文献:

篇5

关键词:高层建筑结构;设计;对策

中图分类号:TU318 文献标识码:A 文章编号:

0 引言

科技在发展,社会在进步。自从19 世纪以来出现了现代高层建筑,高层建筑正逐渐广泛的应用于人们的生活中。作为一个庞大复杂的系统,高层建筑的结构设计,一方面要满足包括抗震,抗风等在内的安全性能的要求,另一方面,也要重视高层建筑结构的科学性和经济合理性。

1 高层建筑结构的特征

高层建筑结构同时承受着垂直方向的重力荷载,风产生的水平方向的荷载,并且对于地震的抵抗能力也有要求。一般情况下,低层建筑结构受到水平方向上的影响比较弱,然而在高层建筑中,外界地震的影响和外界风产生的水平方向的荷载的影响是主要的影响因素。随着建筑物高度的增加,高层建筑的水平位移增加较快,但是高层建筑过大的侧移不但影响人的舒适度,同时使得建筑物的使用受到影响,并且容易损坏结构构件以及非结构构件。在设计高层建筑结构时,首先控制侧移在规定的范围之内,所以,高层建筑结构设计的核心是抗侧力结构的设计。

2 高层建筑结构设计的原则

2.1 选择合理的高层建筑计算简图

在计算简图基础上进行高层建筑结构设计的计算,如果选择不合理的计算模型,那么就比较容易造成结构安全事故,基于此,高层建筑结构设计安全保证的前提是合理的计算简图的选择。同时,结构构件设计应该采用相应的构造方法保证安全。在实际的结构中,也要要确保和计算简图的误差在规范规定的范围内。

2.2 选择合理的高层建筑结构基础设计

按照高层建筑地质条件进行基础设计的选择。综合分析高层建筑上部的结构类型与荷载分布情况,考虑施工条件,相邻的建筑物的影响等各个因素,在此基础上选择科学合理的基础方案。基础方案的选择应该使得地基的潜力得到最大程度的发挥,必要的时候要求进行地基变形的检验。高层建筑设计要有详细的地质勘查报告,如果缺失,那么应该进行现场勘查并参考相邻建筑物的有关资料。一般情况下,相同结构单元应该采用相同的基础类型。

2.3 选择合理的高层建筑结构方案

合理的结构设计方案必须满足经济性的要求,并且要满足结构形式和结构体系的要求。结构体系的要求是受力明确,传力简单。在相同的结构单元当中,应该选择相同结构体系,如果高层建筑处于地震区,那么需要平面和竖向的规则性。在进行了地理条件,工程设计需求,施工条件,材料等的综合分析的基础上,并和建筑包括水,暖,电等各个专业的相协调的情况下,选择合理的结构,从而确定结构的方案。

2.4 对计算结果进行准确的分析

计算机技术被广泛的应用在建筑结构的设计中,使得设计工作效率大大提高。当前市场上存在着形形的计算软件,采用不同的软件得到的结果可能不同,所以,建筑结构设计人员在全面了解的软件使用的范围和条件的前提下,选择合适的软件进行计算。由于建筑结构的实际情况和计算机程序并不一定完全相符,所以进行计算机辅助设计的时候,出现人工输入误差或者因为软件本身存在着缺陷使得计算结果不准确的问题,基于此,结构设计工程师在得到了通过计算机软件得到的结果以后,应该进行校核,进行合理判断,得出准确结果。

2.5 高层建筑的结构设计要采用相应构造措施

高层建筑结构设计的原则是强剪切力弱弯变,强压力弱拉力,强柱弱梁。高层建筑结构设计过程中把握上述原则,加强薄弱部位,对钢筋的执行段锚固长度给予重视,并且要重点考虑构件延性的性能和温度应力对构件的影响。

3 高层建筑结构体系的选型

建筑的结构在抵抗来自于水平方向和竖直方向的荷载时,构件的组成形式和传力的路径就是高层建筑的结构体系。根据高层建筑结构的材料将高层建筑的结构体系分为钢筋混凝土结构体系,钢结构体系,钢-混凝土混合结构体系以及钢-混凝土组合结构体系。钢筋混凝土结构体系具有混凝土和钢筋两种材料的协同受力性能特征,耐久耐火,成本低,整体性能优良,但存在着自重大,延性差,施工慢等缺点;钢结构体系的强度高,抗震性能比较好,施工方便,用途多,但是存在着费用高,防火性能差,施工复杂等不足;钢-混凝土混合结构结合了钢筋混凝土构件和钢构件的长处,不但增加了钢构件的材料强度,同时具有较高的抗震性能,然而这两种材料构件的连接技术还存在着不足;钢-混凝土组合结构具有承载能力高,抗震性能强,比钢结构具有更优良的耐火性,但是存在着节点的构造比较复杂的缺点,一般被用于小偏心受压构件。根据结构形式可以将高层建筑结构分为框架结构体系,剪力墙结构体系,框架-剪力墙结构体系。

4 高层建筑结构设计问题分析及对策

4.1 高层建筑结构存在着超高的问题

基于高层建筑抗震的要求,我国的建筑规范对高层建筑的结构的高度有严格的规定,针对高层建筑的超高问题,在新规范中不但把原来限制的高度规定为A级高度,并且增加了B 级高度,使得高层建筑结构处理设计方法和措施都有了改进。实际工程设计中,对于建筑结构类型的改变对高层超高问题的忽略,在施工审图时将不予通过,应该重新进行设计或者进行专家会议的论证等。在这种情况下,整个建筑工程的造价和工期都会受到极大的影响。

4.2 高层建筑结构设计嵌固端的设置

一般情况下,高层建筑配有两层或者两层以上的地下室或者人防。高层建筑的嵌固端一般设置在地下室的顶板或者人防的顶板等位置。因此,结构工程设计人员应该考虑嵌固端设置会可能带来的问题。考虑嵌固端的楼板的设计;综合分析嵌固端上层和下层的刚度比,并且要求嵌固端上层和下层的抗震的等级是一致的;高层建筑的整体计算时充分考虑嵌固端的设置,综合分析嵌固端位置和高层建筑结构抗震缝隙设置的协调。

4.3高层建筑结构的规则性

在关于高层建筑的新规范中,对于高层建筑结构的规则性做出了很多限制,比如规定了结构嵌固端上层和下层的刚度比,平面规则性等等,并且硬性规定了“高层建筑不能采用严重不规则的设计方案。”因此,为了避免后期施工设计阶段的改动,高层建筑结构的设计必须严格遵循规范的限制条件。

5 结束语

高层建筑的结构设计是一项综合性的技术工作,对于建筑的设计有着非常重要的作用和意义。20世纪90年代以来,随着我国高层建筑的不断发展,钢筋混凝土结构体系、钢和混凝土的混合结构体系也0积累了很多工程经验和科研成果,因而对高层建筑的结构设计的要求越来越高,本文简要分析了高层建筑的结构特征,高层建筑结构设计的原则,阐述了高层建筑结构体系的选型问题,并重点分析了高层建筑结构设计问题及对策,可以为高层建筑结构设计提供参考和依据。

参考文献:

[1]何俊旭. 高层建筑结构设计及结构选型探讨[J].价值工程,2010.

[2]田龙. 浅谈高层建筑的结构设计[J].价值工程,2011.