当前位置: 首页 精选范文 电子电源技术范文

电子电源技术精选(十四篇)

发布时间:2023-09-26 08:27:18

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇电子电源技术,期待它们能激发您的灵感。

电子电源技术

篇1

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在

六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在

八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

篇2

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

篇3

首先,直击雷在经过接闪器之后泄放入地,促使地网电位提高,通过相应的线路侵入电子设备中,进而导致其出现地电位反击的现象。其次,在雷电流沿着引下线进入地面的时候,就会在周边形成一定的磁场,就会导致其附近的金属物体上出现感应电流,进而出现过电压的情况。最后,当室外的通信线与电源线受到直击雷或者感应雷之后,出现的雷电流或者过电压就会沿着相应的线路入侵,进而传输到电子设备上,对其产生一定的破坏。

2防雷技术的三级保护

在对通信电源及其电子设备进行防雷保护的时候,根据《建筑物防雷设计规范》GB50057-2010标准中有关雷击概率计算环境参数的选用,以及根据《通信局防雷与接地工程设计规范》YD5098-2005标准中关于波能量换算计算公式,可以对电源系统低压侧采取不同级别的防雷保护,通常情况下将其分为一级、二级、三级三个保护等级,在实际工作中,按照不同的保护等级选择具有适合电压保护水平以及额定通流容量的电源避雷器,并且确保避雷器具有一定耐雷击的性能。从原则上而言,每一级交流电源之间的连接导线都不可以大于15米,在实际安装过程中,一定要严格按照相关设计要求开展施工,加强相应的防雷保护措施。

2.1一级保护

通常情况下,一级保护主要针对的就是直击雷,防止其沿着相应的线路侵入室内对相应的电子设备产生一定的破坏,主要就是泄放雷能量。作为一级保护技术,一定要选用25kA/线、10/350s的额定通流容量,对从总电源前端侵入的高压脉冲进行吸收,避免建筑物内大型电子设备或者内部感应电磁脉冲出现瞬间的尖锋脉冲或者高压,进而对配电系统产生一定的影响。一级保护作为配电系统防雷的总保护措施,对配电系统中电子设备免受雷击起到了非常重要的保护措施。

2.2二级保护

根据防雷设计的机理与雷区划分的内容,可以在电源柜上设置一个三相防雷器,选用20kA/线、8/20s的额定通流容量,进而对从配电前端侵入的高压脉冲进行吸收,同时对内部的过电压也要进行相应的吸收,除此之外,对电磁脉冲产生的高压瞬时脉冲进行相应的吸收。

2.3直流电源保护

在直流电源柜里设置一个直流电源防雷器,选用10kA/线、8/20s的额定通流容量,视其为设备的精细防护,对内部的过电压进行一定的吸收,同时也要吸收电磁脉冲产生的高压瞬时脉冲,进而降低配电前端传来的雷电流,使其达到电子设备可以承受的安全范围以下,确保直流电源的安全。

3结束语

篇4

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经 济、实用,实现高效率和高品质用电相结合。

1. 电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1 整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2 逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显着而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3 变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2. 现代电力电子的应用领域

2.1 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2 通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3 直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4 不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,

另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。 现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5 变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6 高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7 大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8 电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流; (2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9 分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3. 高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1 高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的 5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合 闸用等各种直流电源也可以根据这一原理进行改造, 成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显着节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2 模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块,它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、 机械方面的设计,达到优化完美的境地。它类似于微

电子中的用户专用集成电路。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量, 在有限的器件容量的情况下满足了大电流输出的要求, 而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。 3.3 数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC) 问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4 绿色化

电源系统的绿色化有两层含义:首先是显着节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

篇5

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

1.1整流器时代

大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。

1.2逆变器时代

七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。

1.3变频器时代

进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。

2.现代电力电子的应用领域

2.1计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

2.2通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

2.3直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

2.4不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。

2.5变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

2.6高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

2.7大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

2.8电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

2.9分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

3.1高频化

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

3.2模块化

模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。

3.3数字化

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。

3.4绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

篇6

关键词:电源管理技术;便携式电子设备;应用

中图分类号:TN-9

文献标识码:A

一、电源管理的必要性

随着科技的发展和进步,越来越多的电子产品行业都在生产便携式电子设备。便携式电子设备与传统的电子设备相比,虽然他们性能相同,但无论是在携带方面还是使用方面,都要比传统电子设备方便和便捷,这也是便携式电子设备越来越受欢迎的主要原因。但是随着便携式电子设备的普及,其耗能过量的问题也逐渐突出,如何在保证便携式电子设备正常运行的前提下,减少过多的电能消耗已经成为现如今电子领域中要解决的主要问题。所以,科学有效的电源管理方式能够最大限度缓解此类问题,能够最大限度地利用有限的电能资源发展更加便捷的电子设备技术。

二、电源管理技术的发展趋势

1.集成趋势

便捷式电子设备是通过不同的电压和电路来对电子设备进行供电的,但是便捷式电子设备的电能储蓄是有限的,所以将电源管理技术的发展方向定位于集成趋势方面,将能最大限度解决这一难题。集成趋势的主要技术内涵就是将多个器件结合在一起,利用最少的器件和成本来进行更加精密的电源管理控制。

2.数字化控制

为了提升便携式电子设备的电源管理技术水平,需要将传统的动态控制转变成数字化电源控制,这种方式能够利用数字化内核的控制,对多个信息传输线路进行有效的控制和转换,从而使电压的控制更加灵活,最大限度优化便携式电子设备的电源管理。

3.精准化趋势

将便携式电子设备的电压进行有效的控制和调节,能使便携式电子设备的控制精准度得到显著提升,所以现如今大多数便携式电子设备的电源管理技术都逐渐向精准化方向发展。当集成电路中的电压过大时,可以通过更加精准化的电源管理技术,将电压一直维持在标准范围内,避免电能的过多消耗。

4.体积优化趋势

随着便携式电子设备的不断发展和进步,越来越多的电源管理技术厂家将技术的发展目标定在了体积优化方面,力求在保证便携式电子设备基本使用功能的前提下,最大限度缩小电源管理器件的体积,并且还非常注重提高电源管理的散热性能和降低产品成本。

三、电源管理技术在便携式电子设备中的具体应用措施

1.随时查看电源循环次数

将电源管理技术应用于便携式电子设备中,可以最大限度减少便携式电子设备的损耗,延长便携式电子设备的使用寿命。可利用电源管理技术随时查看便携式电子设备的使用情况,从而保证用户可以第一时间了解设备的使用情况。

2.优选电源管理方案

在选择电源管理方案时,一定要通过多项性能和功能的对比,选择出最适合便携式电子设备的电源管理方案,从而最大限度地提高便携式电子设备的使用性能。

3.自定义电源选择方案

电源管理技术能够通过利用自身系统的功能,自定义设定电源管理方案,通过便携式电子设备的实时数据和性能的比较,使电源管理方案能够满足用户的日常使用需求,还能够最大限度延长便携式电子设备的使用寿命。

4.定期检查电源健康情况

电源管理技术的主要作用就是能够使用户定期了解便携式电子设备的使用情况和健康情况,所以将电源管理技术应用于便携式电子设备中时,要利用电源管理技术的功能,对便携式电子设备进行定期检查,从而保证便携式电子设备的电源使用情况一直保持在标准之上。

5.定期对电源进行维护

将电源管理技术应用于便携式电子设备后,用户在使用过程中,还要定期对电源进行合理的维护,保证电源的使用性能一直平稳。

参考文献:

篇7

(北京中唐科华电力设备有限公司河北分公司 河北 邯郸 056003)

【摘要】电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。

关键词 电力电子技术;发展

现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。

当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。

1.电力电子技术的发展?

现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。

2.现代电力电子的应用领域?

2.1计算机高效率绿色电源。?

(1)高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。?

(2)计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星”计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。?

2.2通信用高频开关电源。?

(1)通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50~100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。?

(2)因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。?

2.3直流-直流(DC/DC)变换器。?

(1)DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。?

(2)通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。?

2.4不间断电源(UPS)。?

(1)不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。?

(2)现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。?

(3)目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。?

2.5变频器电源。?

(1)变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。?

(2)国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。?

2.6高频逆变式整流焊机电源。?

(1)高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。?

(2)逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。?

(3)由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。?

(4)国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29Kg。?

2.7大功率开关型高压直流电源。?

(1)大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100KW。?

(2)自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。?

(3)国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。?

2.8电力有源滤波器。?

(1)传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。?

(2)电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。?

2.9分布式开关电源供电系统。?

(1)分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。?

(2)八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。?

(3)分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。

3.高频开关电源的发展趋势?

在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。?

3.1高频化。

理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。?

3.2模块化。?

(1)模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。?

(2)由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。?

3.3数字化。

在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。?

3.4绿色化。?

(1)电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。?

(2)现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

4.总而言之?

篇8

关键词:电力电子;能量管理系统;电能质量控制

中图分类号:TU852文献标识码:A文章编号:1007-9599 (2010) 14-0000-01

Power Electronics and New Energy Power Generation Technology

Yang Lin

(Institute of Electrical Engineering,Northwest University for Nationalities,Lanzhou730030,China)

Abstract:This paper discusses several new forms of energy generation and integrated power supply system transformation,control,intelligence management and safety issues,and hope in the future development of new energy power,we can overcome difficulties and achieve electronic power of new development.

Keywords:Power electronics;Energy management system;Power quality control

我们已进入21世纪,这是一个全新的时代,经济的高速发展给人们的生活带来了很多的便利,但随之而来的却是能源的耗竭,原本丰富的能源如今已变得匮乏,并危及到人们未来的生产生活。与此同时,毫无顾忌的能源利用还造成了大气的严重污染,从而又引发能源危及,这样的恶性循环会直接危及到人类的发展,甚至威胁人类的健康和繁衍。因此,开拓新能源,减少能量源浪费成为当今世界最为关注的话题。

一、新能源的发电方式

(一)太阳能发电

太阳能发电开始于上世纪50年代,当时,第一块实用的硅太阳电池研制成功,如今,太阳能发电技术已经经历了半个世纪的发展,其技术也在日益成熟。目前,占主流的太阳电池仍然是硅太阳电池,主要分为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池。典型的太阳能供电系统结构如图1所示,太阳电池阵列进行光电转换,把太阳能变为电能,再由功率变换器将太阳电池输入到直流电中,最后转换成用户所要使用的电源模式。根据用户的需求,功率变换器可以选择直流斩波器进行DC/DC变换,或采用逆变器进行DC/AC变换。而功率变换装置还应包括蓄电池系统,主要是为了平衡电流。如果太阳光充足,可以利用太阳能,并利用蓄电池充电;如果在夜晚或者阳光不充足时,就可以使用蓄电池供电。

(二)风力发电

如今,风力的主要运用方式就是风力发电,它的发展速度最快,也最受全世界关注。风力发电主要有3种运转方式:

1.独立运行方式,利用一台小型的风力发电机向需要的用户提供电能,它还可以通过蓄电池充电,预防无风时影响发电效果;

2.风力发电与其他发电方式相结合的联合供电方式,主要向交通不便或偏远山区供电,以及地广人稀的草原牧场提供电力;

3.并网型风力发电运行方式,将风力发电网安装在条件较好的地区,常常是一处风场安装几十台甚至几百台风力发电机,这也是风力发电的主要发展方向。风力发电机组在不同风速的条件下运行,其发电机输出的电压的幅值和频率是变化的,所以,通常要配置电力电子功率变换器,通过这种装置控制电流,保证输出的电压是平衡稳定的。

(三)燃料电池发电系统

燃料电池(Fuel Cell)是将反应物如氢气等的化学能直接转化为电能的电化学装置。它通过燃料(通常是氢气)和氧气结合所发生的光电反应来发电。燃料电池发展了这么久,根据电介质的不同,主要分为5种燃料电池:碱性燃料电池(Alkaline Fuel Cell,AFC);质子交换膜燃料电池(Proton ExchangeMembrane Fuel Cell,PEMFC);磷酸燃料电池(Phosphoric Acid Fuel Cell,PAFC);熔盐燃料电池(Molten Car-bonate Fuel Cell,MCFC);固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)。

实际上,燃料电池也有其优点,例如:发电效率高:发热少;噪音低,污染小;功率密度高。目前,燃料电池发电主要集中在以下几个方面:燃料电池特性研究;燃料电池发电系统结构和高效功率变换的研究;能量管理技术;孤岛检测和保护技术,并网电流控制;并网运行与独立运行之间的无缝切换控制技术。

燃料电池所输出的电压会随着电压的变化,发生较大范围的变化。燃料电池的输出电压在负载发生突变时还要经过一段时间才能停止反应,对于质子交换模燃料电池响应延迟达2秒。因此,燃料电池一般与负荷动态的具体要求无法很好的匹配。

二、电力储能技术

可再生能源发电装置所产生的电能主要还存在无法预测的周期性变化,例如风能、光伏发电等,如果将其电能直接输入普通电网,将会对电流带来不良影响,而电力储备装置就可以平衡能源发电输入与电网之间的矛盾。电力储能技术有蓄水蓄能、压缩空气储能、飞轮储能、电池储能等它们都各具特点,各有优势,但它们的正常运行主要是依靠电子电力技术。

蓄水储能与压缩空气储能主要是对电力高峰期进行调节,但是对地理条件的要求较高。电池储能的精密性高,需要在技术成熟的条件下进行,理论上可以用于电力调峰,单电池使用寿命有效,这成为蓄电技术的难点。飞轮储能的储能量有限,运行复杂,一般用于电能质量调节。

三、电能质量控制

(一)电源谐波检测和分析技术

谐波的测量和分析都是以思想谐波治理为前提条件的,精准的谐波测量和分析可以为谐波的治理提供准确的依据。自提出快速傅里叶变换算法(FFT)以来,基于傅里叶变换的谐波测量得到了普遍应用。然而基于傅里叶变换的谐波测量要求整周期同步采样,不然就会严重影响其效果。因此,怎样减少因同步偏差而引起的测量误差成为电子电力技术人员迫切要解决的难题。

(二)电能质量控制和管理

首先,电能质量的控制和管理主要包含功率因数校正和滤波器设计,由于传统的无源滤波器体积和重点都很大,还需要对不同的频率进行设计,而功率因数较技术正是提高功率因数和降低谐波污染的重要途径。如今,电能质量控制和管理的研究重点在与PFC控制技术上,比如:单开关、多开关以及软开关三相PFC电路的研制,软开关技术与PFC技术的融合已经成为未来的发展趋势,虽然目前的PFC产品受到功率的限制,但应用于分布式新能源发电系统却是重要机遇。

四、总结

综上所述,随着科技的发展,新能源的开拓和使用技术越来越成熟,但是,要真正做好新能源发电技术,还需要从解决先存的各种问题,因此,电子电力技术人员应在在电气、电子、控制和信息等工程技术领域加强合作研究,通过系统集成和技术融合,实现各种技术的突破,我相信,我们一定可以克服各种困难,迎来新能源造福人类的灿烂明天。

参考文献:

[1]Rechten H.可再生能源技术[A].中美清洁能源技术论坛论文集[C],2001

[2]汤天浩.新能源与变换:系统集成、技术融合及应用展望[J].电源技术学报,2004,2,1

[3]李俊峰,高虎,王仲颖.中国风电发展报告[M].北京:中国环境科学出版社,2008

[4]戴慧珠,陈默子,王伟胜.中国风电发展现状及有关技术服务[J].中国电力,2005,38,1

篇9

【关键词】电子技术;单元电路;设计方法

电子电路的设计方法和实现方法在EDA技术的发展下发生了根本性的变化。电子技术具有很强的实践性,在对电子电路系统进行设计的过程中,首先应该将系统的设计任务明确下来,依据任务选择方案,然后单元设计方案中的各个部分,选择参数计算和期间,最后有机连接各个部分,将一个符合设计要求的完整的系统电路图画出来。作为电子电路设计人员,对单元电路的设计方法进行熟练掌握,具备实际设计电路的能力尤为重要。

1.电子技术及单元电路概述

电子技术是依据电子学的原理,在解决实际问题的过程中应用电子器件将某种特定功能的电路设计和制造出来。包括两大分支,即信息电子技术和电路电子技术。前者又包括两个分支,即模拟电子技术和数字电子技术;后者是处理电子信号的技术,发生、放大、滤波、转换信号是其主要的处理方式[1]。

电子电路由电子元件和电子器件两部分组成。前者是指电子设备中的开关、电阻器、变压器等,后者是指晶体管、电子管等。按组成方式,我们可以将电子电路分为分立电路和集成电路两种形式。单元电路是整个电子电路系统中一个重要组成部分,常用的有放大电路、振荡电路、数字电路等几种。设计训练单元电路的主要目的是促进整体电子电路设计水平的显著提升[2]。

2.电子技术单元电路的设计步骤

2.1 明确任务

将本单元电路的任务明确化是设计单元电路前均需要明确的,设计单元电路的最基本条件是将单元电路的性能指标详细拟定出来。在设计单元电路的过程中,我们应该将电压放大的倍数、输入输出电阻的大小计算出来,并尽可能做到简单明了、尽可能地节约成本、使单元电路具有较小的体积和较高的性能等。

2.2 计算参数

计算参数的目的是使单元电路的功能指标达到实际需求。专业化的电子技术知识是计算参数的必要条件,比如,只有将各电阻值及其放大倍数计算出来,才能有效设计放大器电路;只有将电阻电容及其震荡频率制定出来才能有效设计震荡器[3]。在计算参数的过程中,同一电路可能得出一组以上的数据,这是我们就应该给予数据选择方法以充分的重视,保证所选择的数据达到并符合完成电路设计的要求,并能够在实践中得到有效的应用。

2.3 画出电路图

在电子技术单元电路的设计过程中,我们需要将完整的电路图绘制出来,这样做的目的是对单元电路和整机电路的连接关系进行详细的表达。同时,设计者还应该依据单元电路之间的相互配合和前后之间的关系将电路结构尽可能地简化。比如,在确定各单元电路之后,应该给予单元电路之间的级联设计以充分的重视和考虑,从而将浪费及工作量减少到最低限度。给予各部分输入信号、输出信号和控制信号之间的关系以充分的重视,对输入、输出进行模拟,完全隔离输入、输出、电源、通道,分割直流电流、电压信号为多路不同或相同的电流、电压信号,从而使同时采集控制不同设备的目的得到切实的实现。首先,注意电路图的可读性。在绘图的过程中应该尽可能地在一张纸上画主电路图,在另一张纸上画比较独立和次要部分,标记号图的端口和两端,将各图纸之间的信号的引入和引出标出来;其次,注意信号的流向及图形符号。一般情况下,我们可以将起始点设在输入端和信号源,然后依据信号流向从左到右、从上到下将单元电路画出来。同时,还应该将适当的标注加在图中,保证图形符号的标准性;再次,注意连接线画法。用直线连接各元件,并尽可能地减少交叉[4]。一般情况下,应水平或垂直布置连接线,尽可能地不画斜线,用原点表示互相连接的交叉。

3.电子技术单元电路的设计方法

3.1 对于线性集成运放组成的稳压电源的设计

调整部分、取样部分、基准电压电路等是单元电路中串联反馈式稳压电路的主要组成部分。设计线性集成运放组成的稳压电源的主要功能是过流和短路保护,起到对电路的保护功能的标准为负载电路达到限额。在对其的设计过程中,直流电通过整流出来后,用滤波将其波文系数降低,从而对负载进行直接的带动,但是这种电路无法起到稳压的作用,因此,应该依据一定的技术指标设计稳压电源。

3.2 单元电路之间的级联设计

在确定各单元电路之后,设计者还应该给予单元电路之间的级联问题以充分的重视并认真考虑。阻抗匹配、负载能力匹配等是单元电路之间电气性能相互匹配的主要问题,设计者应该谨慎认真地思考这些问题。如果没有过高要求驱动能力,则可以运用运放构成的电压跟随器;如果对驱动能力要求高,则可以运用互补对称输出电路或功率继承电路;如果为数字电路,则可以运用单管反向器或达林顿驱动器等。从本质上来说,单元电路之间的级联设计问题就是模拟单元电路之间的相互干扰及匹配问题[5],在整个电路的正常运行中起着至关重要的作用,值得我们予以充分重视。

3.3 对于运算放大器电路的设计

UA741、OP07等均是依据工业上的普通用途设定的运算放大器电路,具有中等的性能和极为便宜的价格。在设计运算放大器电路的过程中,应该将单双电源供电、电源电流选择出来作为基本参数,同时将失调电压、失调电流、电阻输入,对速率进行有效的转换,将时间确定下来。在运用运算放大器时,如果没有特殊要求,应该尽可能地运用通用性运算放大器。指标的先进性不应该成为设计过程中选择各种参数的唯一依据。当运算放大器作弱信号放大时,所选择的运算放大器应该具有极小的失调和噪声系数,同时保持等效直流电阻运放同相端和反相端对地。为了将运放的高频自激有效消除掉,设计者应该依据推荐参数将适当的电容消振介入规定的消振引脚之间,同时对两级以上放大级级联的情况进行有效的预防和避免,以将消振困难减小到最低限度[6]。

随着科技的飞速发展和社会的不断进步,电子电路的种类越来越多,因此需要各种不同的有针对性的设计方法。在集成发生电路的快速发展的过程中,各种专用功能的新型期间不断涌现出来,对电路设计工作提出了新的要求,集成块直接组装逐渐取代了传统的分立原件电路的设计方法。因此,设计者应该将注意力逐渐从设计单元电路向设计和规划整体方案转移,清楚明了各种集成电路的性能和指标,在选取集成器件的过程中严格依据实际需求,并能合理地进行单元连接,从而成功完成总体系统的设计,同时在日常工作中积极积累经验、深入研究其设计原理、努力改进及设计方法,为推动社会各方面的发展做出积极的贡献。

参考文献

[1]许开君,李忠波.模拟电子技术[M].机械工业出版社, 2009.

[2]邓木生.电子技能训练[M].机械工业出版社,2012.

[3]丘立尚,张琳.电工与电子技术基础[M].华南工学院出版社,2012.

[4]高吉祥.基本技能训练与单元电路设计[M].电子工业出版社,2011.

篇10

1仿真模型构建

起动Matlab软件,打开Simulink仿真模块,通过拖拽元件构建单相桥式全控整流电路电阻性负载和电感性负载仿真模型。仿真电路中主要的元件的提取路径如下所示。

2单相桥式全控整流电路电阻性负载触发角度为450仿真

利用3.1中描述的元件的提取,根据单相桥式全控整流电路电阻性负载原理图,对所选择的仿真元件进行连线,仿真模型如图1所示。模块参数设置分别针对电源、触发脉冲、负载电阻进行设置。电源电压为100V,50HZ交流电;VT1、VT4触发脉冲设定为幅值为10、周期为0.02S、延时时间为0.0025S;VT2、VT3触发脉冲设定为幅值为10、周期为0.02S、延时时间为0.0125S;电阻R=2、H=0、F=inf;晶闸管为默认值设定。开始时间设置为0,终止时间设置为0.05,算法设置为ode23tb。参数设定完毕后进行仿真,仿真波形如图2所示。

3单相桥式全控整流电路电感性负载触发角度为45̊仿真

模块参数设置分别针对电源、触发脉冲、负载电阻进行设置。电源电压为100V,50HZ交流电;VT1、VT4触发脉冲设定为幅值为10、周期为0.02S、延时时间为0.0025S;VT2、VT3触发脉冲设定为幅值为10、周期为0.02S、延时时间为0.0125S;电阻R=2、H=0.1、F=inf;晶闸管为默认值设定。开始时间设置为0,终止时间设置为0.05,算法设置为ode23tb。电感性负载不带续流二极管和带续流二极管仿真模型和仿真波形如图3、4所示。

4结论

篇11

关键词:新能源汽车电子;技术进展;投资热点

随着汽车销量尤其是我国新能源汽车总体销量的稳步增长、汽车电子化的普及带动装配率的提高,我国汽车电子的市场规模呈现加速增长趋势。我国汽车电子市场规模从2007年的1216亿元增长到2015年的3979亿元,2016年已经突破5000亿元大关。

1国家地方系列政策出台助力新能源汽车推广

近年来,《国务院办公厅关于加快新能源汽车推广应用的指导意见》等一系列文件的出台积极推动了新能源汽车的发展。截至到2016年6月,国家共出台新能源汽车相关政策30项,其中推广政策出台7项,行业规范政策出台8项,充电基础设施政策出台4项,企业目录相关政策出台5项,行业管理相关政策出台6项。地方政府也纷纷推出鼓励新能源汽车的各项优惠政策,其中具有代表性的一线城市中,北京是2015年全国首个出台针对纯电动专用车补贴政策的城市。此外,上海、深圳等面临节能减排压力较大的城市,也积极加大在在财政补贴、牌照资源等方面的优惠力度。在国家和地方政策的推动下,我国新能源汽车呈现爆发式增长,2016年产量51.7万辆,销售50.7万辆,比2015年同期分别增长51.7%和53%。在我国新能源汽车爆发式增长的带动下,我国新能源汽车电子产业迅速发展。2015年我国汽车电子市场规模达657亿美元,同比增长13%。目前,我国已初步形成了长三角、珠三角、环渤海和东北等四大汽车电子产业集群。根据估算,2015年我国新能源汽车电子产业规模接近45亿元,2020年将达237亿元,复合增长率约39%。

2技术进展

新能源汽车电子产业的快速发展,对技术研发提出了更高的要求。在我国汽车电子技术起步较晚的大背景下,我国企业积极与国外企业合作,在车联网终端、车辆通信等方面取得一定进步。在整车控制和集成领域,我国骨干的整车企业从系统到软件到硬件三个层级都具备了开发的能力,为新能源汽车电子产业的发展提供技术支撑。2.1车载信息服务领域取得快速发展。当前,车联网是装备工业实现信息化的重要内容,车载信息系统服务同时作为智能交通的重要补充和新的亮点受到关注。近年来,我国政府陆续了涉及车联网的多项政策法规,交通部《道路运输车辆卫星定位系统车载终端技术要求》;国务院《关于加强道路交通安全工作的意见》,要求重型载货汽车和半挂牵引车应在出厂前安装卫星定位装置,并接入道路货运车辆公共监管与服务平台等等,这些政策规范了商用车车辆的监控管理,也加快了商用车联网实施的步伐。与政策相对应,企业也积极加快车联网的布局。乐视与阿斯顿马丁的合作、上汽与阿里的合作已表明汽车智能化与车联网已成为当前汽车技术领域研发的重要方向。2015年4月,英特尔公司联合中交兴路和星航道,了首款基于英特尔Quark处理器的“端到端”商用车车联网终端。英特尔表示“端到端”主要强调数据在多个端之间的流动性,如从终端到云端,从物流企业到车主端再到云端。数据采集后传送到云端进行大数据分析后,再传回终端为司机提供信息服务,达到规避交通事故、提升驾驶效率等目的。该终端产品主要有运算、端处理和安全三大特性。2015年5月,凯迪拉克与安吉星联合,在国内首家推出车载4GLTE服务,为未来车联网技术与服务创新构建平台基础。汽车智能化与网联化的发展不仅给车主带来全新的驾乘体验,同时兼顾安全和绿色环保,通过车与路、车与车、车与人、车与城市之间实时联网,实现智能交通网络。2.2新能源汽车整车控制器开发技术取得突破新能源汽车电控产品主要负责对关键零部件的控制以及能量的管理。从产品种类上看,主要包括车用动力电池控制系统,车用电机控制系统,燃料电池控制系统,混合动力耦合控制系统,电动车能量管理系统,代用燃料发动机电控系统等。目前国内部分整车企业或零部件企业通过自主研发,技术引进以及与国内大学、科研院所联合开发,掌握了混合动力汽车串联、并联以及混联控制技术,电动汽车以及燃料电池电控技术,产品已初步实现产业化,应用在新能源汽车的试点中,控制器的生产厂商主要有一汽、上汽、东风、奇瑞、天津清源等整车厂和万向电动车、上海电驱动等零部件厂商。目前,我国已基本掌握新能源汽车整车控制器开发技术,拥有自主研发并生产新能源汽车电控产品的能力,部分产品进入小批量生产阶段;产品研发水平和产业化实力与国外比较成熟的企业相比仍有较大差距,控制器基础硬件、开发工具等依赖进口;国产电控产品目前主要应用在小规模试生产产品中,大部分企业推出量产新能源汽车时更倾向于选择国外知名控制器硬件供应商。2.3电源管理系统取得阶段性进展电池管理系统(BMS)是新能源汽车电子关键技术之一,在新能源汽车中负责对动力电池进行评价、管理和保护的功能。目前国内研发主要集中在部分高校、科研院所和企业的研发中心,BMS系统功能较为完备,能与示范车型相配套,但目前仍处于试验或小批量生产阶段,与达到产业化程度仍有差距。国内BMS系统主要由企业与高等院校联合开发、生产。同济大学配合国内多家动力电池研发单位研发了新能源轿车集中控制式电池管理系统,同济大学与上汽集团等联合开发的电池管理系统已在上海世博会的燃料电池汽车系统中应用;北京航空航天大学研制开发的锂离子动力电池的均衡充电及管理系统在一汽、东风电动、重庆长安、天津清源等企业得到应用,申报并获多项发明专利。

3技术投资热点

当前,我国新能源汽车市场保持高速增长,行业投资规模迅速扩大。未来,在国家政策和市场需求的带动下,新能源汽车产业链的下述环节将成为投资热点。

3.1动力电池

随着扶持政策陆续出台,新能源汽车产业化进程加速,动力电池市场需求持续扩大。根据工信部的《中国制造2025》规划系列解读,节能与新能源汽车产业发展战略目标中提及到2020年,动力电池、驱动电机等关键系统达到国际先进水平,在国内市场占有率80%。2016年6月,国家动力电池创新中心成立,这是首个国家制造业创新中心。此外,2016年,国轩高科、吉利、天津力神、三星SDI、天能集团陆续投资动力电池新建项目。新能源汽车产业的关键点在于动力电池的生产和电池技术的创新,未来,动力电池制造商将围绕电池安全、续航能力、充电速率、环境适应性以及成本等方面积极提升竞争力。

3.2核心器件

随着新能源汽车渗透率的大幅提升,功率半导体、传感器等作为新能源汽车的核心器件,将迎来新的爆发机遇。比如近几年随着市场的刺激以及国家政策的扶持,国内逐渐出现了一批IG-BT方面的公司并取得了令人欣喜的成绩,例如中车时代电气、比亚迪微电子、华微电子。功率半导体占到新能源汽车中半导体用量的50%,而IGBT是用于新能源汽车的主要功率半导体。新能源汽车动力总成系统电气化,使每辆汽车半导体元器件用量大幅提升,国内相关厂商将从中获得发展机遇。

3.3充电桩

根据《节能与新能源汽车产业发展规划(2012-2020年)》要求,2020年充电桩与汽车之间的比例要达到1:1,而目前的车桩比例仅为4:1,这表明未来充电桩市场具有巨大发展空间。4月6日和29日,国家电网启动了两批充电桩招标,2016年充电桩招标总金额将达50亿元,远高于往年。国家电网也明确了2016年将进一步加快推进国家公路快充网络和城市充电网络建设,在“两纵两横一环”高速公路城际快充网络的基础之上,建设“七纵四横两网格”高速公路快速充电网络。充电设施是新能源汽车发展的一大短板,也是新能源汽车产业链投资的热点,2016年将是充电设备产业高速发展的一年。

3.4服务运营

对于投资者来说,整车制造需要更长的时间投入、更深的技术积累以及更高的资金要求。在此背景下,避开如整车制造等门槛较高的产业前端,着眼于服务运营、电池回收、检测评估、物流租赁等产业后端,完善新能源汽车行业的整体生态圈将成为投资热点。比如新能源汽车单位耗能价格低的特点,使其在物流租赁领域拥有广阔的应用前景,一辆4立方米的电动汽车一个月较传统燃油车节约1800元,而且车越大节约越多。

3.5无人驾驶

不少国家已认识到无人驾驶汽车所拥有的广阔市场前景,无人驾驶符合汽车智能化和互联网化的趋势,是互联网浪潮下汽车行业变革的重大机遇,目前世界顶尖级互联网公司和汽车厂商公司,都在积极切入这个领域。国内一汽、上汽、北汽、奇瑞、长安等整车企业以及小米、乐视、百度等互联网企业也均开展了相关研究和试验。当前国内无人驾驶产业正处于萌芽期,部分细分市场仍为空白。2016年有望成为无人驾驶投资元年,预计到2020年无人驾驶将初步实现商业化,并于2025年实现量产,行业将迎来5-10年的中长期投资机会。

参考文献:

[1]国际新能源汽车网[EB/OL].http:///html/newenergy-2272646.shtml,2016-06-14,2017-06-11.

[2]赵艳,刘学文.5号令你读懂了吗?中国交通通信信息中心冯泉博士解读5号令[J].交通世界(运输车辆),2014,7.

[3]文清.积极加入车管网实行车辆动态监督[J].汽车与安全,2015,3.

篇12

摘要:随着经济的快速发展和社会的全面进步,我国的能源供应和环境污染越来越突出。一般估计,地球上的石油还可供人类开采40年~50年 ,煤炭约200年。我国的石油剩余开采量仅有全球人均的1/10,煤炭仅有1/2。火力发电,燃烧大量煤炭,排放SO2和CO2,汽车尾气也是城市空气污染的首要因素。新能源的开发与利用迫在眉睫,而在新能源的利用中,电力电子技术扮演者重要的角色。

关键词:电力电子技术;新能源;开发;利用

一、风力发电

风能是洁净的,可再生的,储量很大的低碳能源,为了缓解能源危机和供电压力,改善生存环境,在20世纪70年代中叶以后受到重视和开发利用。风力发电是可再生能源领域中除水能外,技术最成熟、最具规模开发条件和商业化发展前景的发电方式之一。目前我国主要的能源是火力发电、水力发电、核能,风力发电的成本比核电要低。风力发电相对于太阳能、生物质能等其它可再生能源技术更为成熟、成本更低、对环境破坏更小。在过去20多年里, 风力发电技术不断取得突破, 规模经济性日益明显。随着风力发电技术的改进, 风力发电机组将越来越便宜和高效。增大风力发电机组的单机容量就减少基础设施的投入费用, 而且同样的装机容量需要更少数目的机组, 这也节约了成本。随着融成本的降低和开发商的经验丰富, 项目开发的成本也相应得到降低。风力发电机组可靠性的改进也减少了运行维护的平均成本。

国际能源专家预言: 21世纪是风力发电的世纪。可以说,绿色能源———风力发电将为人类最终解决能源问题带来新的希望。目前风力发电通常有三种运行方式:1.独立运行2.联合供电方式3.并网型风力发电运行方式,这是风力发电的主要运行方式。

风力发电系统示意图

大部分可再生能源和其他分布式发电系统产生的电能通常都是不稳定的,如果不加控制和调节,就会对电网造成严重的冲击,同时为了保证将尽可能多的有功能量送人电网,风力发电系统还必须有储能环节,并需解决存储能量再次转化的问题。上述这些过程都需要利用电力电子技术对其进行控制。

风能取之不竭,耗之不尽。合理利用风能,既可减少环境污染,又可减轻越来越大的能源短缺所造成的压力。发展风电有利于调整能源结构:电源结构中75%是燃煤火电,增加风电等洁电源。尤其在减少C02等温室气体排放,缓解全球气候变暖方面,风电是有效措施之一。发展风电是解决我国能源供应不足的有效途径之一。就社会效益来讲,开展风力发电技术的研究有助于解决我国乃至全世界范围内的能源短缺的问题。

二、太阳能发电

太阳能是取之不尽,用之不竭的能源。太阳能作为清洁的可再生能源,越来越受到人们的重视,应用领域也越来越广泛。中国的太阳能资源至少是风能资源的100倍,每年接收的太阳能是总消耗一次能源的600倍,据统计,我国2/3以上国土面积的年日照时间在2200h以上,年辐射总量在502万kJ/m2以上,为太阳能的利用创造了丰富的资源和有利条件。

目前太阳能在利用中,主要采用了三种技术:太阳能光电技术、太阳能光热技术和太阳能光伏发电技术。

太阳能光电技术是指利用太阳能电池将白天的太阳能转化为电能由蓄电池储存上在放电控制器的控制下释放出来,供室内照明和其他需要。目前占主流的太阳电池是硅太阳电池,它又分单晶硅太阳电池、多晶硅太阳电池(总称晶体硅太阳电池)和非晶硅太阳电池。整个光伏系统由太阳能电池、蓄电池、负载和控制器组成。

太阳能热发电技术就是利用光学系统聚集太阳辐射能,用以加热工质,生产高温蒸汽。驱动汽轮机组发电,简称光热发电技术。他与光伏发电相比,具有效率高、结构紧凑、运行成本低等优点。目前技术比较成熟且应用比较广泛的是蔬菜温室大棚、中药材和果脯干燥及太阳能热水器等。

将光能直接转换成电能的过程确切地说应叫光伏效应。不需要借助其它任何机械部件,光线中的能量被半导体器件的电子获得,于是就产生了电能。这种把光能转换成为电能的能量转换器,就是太阳能电池。太阳能电池也同晶体管一样,是由半导体组成的。它的主要材料是硅,也有一些其他合金。光伏发电系统分为独立光伏发电系统和并网光伏发电系统。完全依靠太阳电池供电的光伏系统,系统中太阳电池方阵受光照时发出的电力是唯一的能量来源。首先最简单的独立光伏系统是直联系统,发出的直流电力直接供给负载使用,中间没有储能设备,负载只在有光照时才能工作。这种系统有太阳能水泵、太阳能风帽、太阳能路灯等。并网光伏发电系统:太阳电池方阵发出的直流电力经过逆变器变换成交流电,且与电网并联并向电网输送电力的光伏发电系统。这类光伏系统发展很快,在20世纪末,并网光伏系统的用量就超过了独立光伏系统。并网光伏发电系统可分为两大类:光伏电站和户用并网光伏系统。

在光伏系统中太阳能电池、蓄电池、控制器,都离不开电力电子技术,在太阳能到电能的转换中,电力电子技术发挥着重要的作用。

篇13

关键词:电子技术;电力能源;计量管理;应用分析

1电力能源计量管理现状与作用分析

1.1管理现状

随着电子市场竞争变得愈发激烈,我国电子技术管理水平有了很大的提高,电子计量管理技术在实现安全生产的基础上,实现管理层面的科学化治理。同样电力能源管理范围逐渐扩大,用户使用过程中会出现一些问题,因此需要应用先进的电力能源技术,创新和改革客户端及变电站,全面分析电力电源整体管理工作的数据,促进电子技术水平的提高。目前我国电力计量技术水平正在不断提高,也是我国电力事业技术创新的重点所在。电力计量技术目前已经初步实现网络化、智能化与系统化,大幅度降低工作人员工作强度,保证电力工作系统运行过程中的安全性。电力计量技术与生产服务逐渐趋向一体化,大幅度降低供电企业的能源消耗,需要不断完善和更新电力企业的管理结构,调整管理流程与生产流程,通过科技创新的手段完善电子技术,达成有效生产与管理的目的,严格监察电子计量的设备与管理。将电力网络自动化技术应用到生活中,大幅度提高电力企业生产的综合效益。

1.2作用分析

电力是维持现代社会生产生活正常运行的主要能源,虽然现在电力生产技术不断优化与更新,在原有基础上降低了能耗,但是从持续发展的角度分析,还需要采取措施来对资源配置进行优化[1]。电子技术在电力能源计量管理中的应用,正好满足这一发展要求,来保证电能资源大规模计量的准确性,促进电力事业的进一步发展,提高资源配置效果;虽然我国电力行业发展迅速,但是从技术水平角度分析,大部分电力企业对电子技术的应用水平十分有限,对已经投运的电子设备未进行安全性能评估,并不能保证各设备运行不会对计量产生不良影响;社会经济水平的提高,对电力计量有更高的要求,电力计量一直都是关注要点。通过电子技术的应用,来确保电力计量的稳定性,提高电能资源质量,满足社会企业发展需求。

2促进电子计量技术管理水平提高的措施

2.1建立健全电子计量管理体系

实际中建立健全电子计量技术管理体系,促进电子计量管理水平的提高。通过健全制度与建立管理机构,推行岗位责任制,提高工作人员的责任意识,同时协调各工作部门间的关系。同时针对各部门制定相应的规章制度,除此之外,还需要建立相应的监督制度,提高工作人员的积极性与主动性。进一步落实电力计量的管理制度,建立健全工作管理的制度[2]。

2.2通过专业培训提高管理水平

对电力计量的工作人员进行专业培训,包括理论培训与技能培训,大幅度提高电子计量管理人员的工作能力;与此同时还需要对电力企业管理人员加强培训,制定培训制度时要结合不同岗位的具体要求进行,比如科技人员应该强化电力电子技术创新技术能力,创新研发新的产品与技术。企业有意识的加大科技创新的投入力度,安排管理人员学习国外先进管理经验与技术,创新产品与升级,促进电力计量技术综合管理水平的提高。

2.3提高设备综合管理水平

电力企业有意识的加强设备综合管理,这是两方面共同作用的结果:一方面电力设备是电力计量管理工作的核心组成部分,另一方面则是需要对设备进行定期检查,全面检查与管理设备。电力能源的工作管理人员需要做好相应的准备工作,对设备运行状况进行记录。当发现故障时要及时记录并上报问题,安排专业检修人员判断故障成因,采取有效措施进行完善。对设备的一些关键部位,比如传感器等创新研究,提高设备使用性能,延长设备使用寿命,对强化状态进行识别与矫正等[3]。电力能源企业结合实际情况建立完善的电力计量设备管理体系与运行体系。建立完善的设备管理制度,同时安排专门的相关管理人员,通过培训工作落实与贯彻电力能源设备的安全管理教育工作,严格管理与监督设备故障,科学化管理设备,通过规范制度管理的实施,提高安全生产与管理效率。电力计量管理水平提高得益于电力制度的实施与制定,落实人员思想理念。

3电子计量技术应用时需要注意的问题

近些年来我国电力计量设备技术发展迅速,在我国电力企业中得到广泛应用。但实际中令人担忧的是,目前我国电力技术水平相比于发达国家还存在一定的差距,实际应用中技术与系统存在一定的问题,创新电力计量技术。相关技术研究人员需要不断学习研究国外先进电力系统的科学技术,充分吸取有效的经验教训,参与到新产品的研发工作中,诸如传感器这类设备。提高研发与创新人员的积极性,实现高水平、科学化与先进性的发展。同时促进设备调节功能的强化与完善,设备故障践行自我矫正,提高电力设备使用性能,保证其在各种环境中的正常运行,保证计量工作的准确性。创新与改进电力设备传感器核心元件,促进提高电力设备工作的科学性,提高工作中设备的性能,延长电子设备的使用寿命。对电力计量设备出现的各种故障进行有效分析,提高故障诊断与检测的准确性。有效提高设备的工作效率,同时大幅度降低故障与意外发生率[4]。通信模块选择时要科学进行,选择可靠性高的模块,同时研究人员应该加大对通信功能与设备的研究力度。强化通信控制工作提高电力计量的管理水平,结合实际工作环境调整电力设备的系统,确保系统处于最佳的工作状态。加强创新和研究不同环境下工作的最佳状态,对电力计量的设备要不断地更新和改进,提高电力计量设备的可靠性。

4结束语

电力能源计量管理中应用电子技术可以显著提高管理效率及质量,推进电网自动化建设进程的加快。除此之外,还能有效降低电网运行故障出现的几率,确保供电运行的稳定及持续性,在降低运行成本的基础上实现电力企业经济效益的提高。所以电力企业应该重视电力能源计量管理自动化建设工作,提高计量管理自动化水平,实现提高电力计量准确性的目的。

参考文献

[1]陈卓.简析电力电子技术的现状与发展趋势[J].电子世界,2015(22):112.

[2]岳金雪.我国电力电子技术的现状及应用[J].电子制作,2016(08):89-91.

[3]吕鹏飞,曹腾.电力电子技术的发展及应用分析[J].电子技术与软件工程,2016(05):63.

篇14

关键词:电子信息系统 数字化医院 信息管理系统机房设计

一、数字化医院电子信息系统机房建设的发展

随着经济社会的发展和科学技术的进步,综合医院的建设标准也越来越高,医院智能化系统已经成为现代化医院的重要基础设施,对于维持医院的正常运转和使用非常重要,是数字化医院的大脑和神经中枢。伴随越来越多的各种医院信息系统的开通,数字化医院所有的临床作业全部实现无纸化运行,医院的电子病历、放射信息、医学影像、药品管理信息、财务信息、人事信息、办公管理信息等大量信息需要收集、存储、处理、提取及数据交换,而一个安全可靠、技术先进、结构完善、灵活性强、兼容性好的数字化医院电子信息系统机房则是实现医院智能化的关键。

我们通过结合多个数字化医院的电子信息系统机房的设计及施工案例,对医院电子信息系统机房的分级选址及设备布置、建筑结构、电气、设备等方面相关的设计、施工要素进行详细介绍。

二、医院信息系统机房的分级、选址及设备布置

(一)医院信息系统机房的分级

按《电子信息系统机房设计规范》GB50174-2008中的规定,电子信息机房应划分为A、B、C三级,根据机房所处行业或领域的重要性,单位对机房各系统的保障和维护能力,以及因场地设施故障造成网络信息中断或重要数据丢失而在经济和社会效益上造成的损失或影响程度这三方面因素来确定机房的等级。除上述外,还应综合考虑初期建设投资、维护成本等因素。

三级医院应按照B级电子信息系统机房设置。B级机房场地设施应按照冗余要求配置,运行期间,不应因设备故障而导致电子信息系统运行中断。冗余是指系统部件部分或全部一用一备,即重复的配置系统的部分或全部部件,当系统发生故障时,冗余配置的部件介入并承担故障部件的工作,由此减少系统的故障时间。系统配置为:N+X(X=1~N),系统配置除满足基本需求外,增加了X个单元、X个模块或X个路径,任何重复配置的X个单元、模块或路径的故障或维护不会导致系统运行中断。如图1所示,中心信息机房核心交换机为冗余配置,各楼信息服务器均在中心信息机房异地冗余配置;核心交换机至各汇聚层交换机为路径冗余配置。

二级及以下医院可按C级电子信息系统机房设置。C级机房场地设施应按基本要求配置,场地设施正常运行情况下,应保证电子信息系统运行不中断,系统满足基本配置。

(二)机房的选址

电子信息系统受粉尘、有害气体、振动冲击、电磁场干扰等因素影响时,将导致运算差错、错误动作、机械部件磨损、缩短使用寿命等。电子信息系统机房选址应符合下列要求:

1.应远离产生粉尘、油烟、有害气体以及生产或贮存具有腐蚀性、易燃、易爆物品的场所。三级医院的主机房空气含尘浓度,在静态条件下测试,每升重大于或等于0.5μm的空气尘粒数应少于18000粒;

2.应远离强振源和强噪声源。当不能避免时,应采取隔振、消声和隔声措施。有人值守的主机房和辅助区,当电子信息设备停机时,主操作员位置测量的噪声值应小于65dB(A);在电子信息设备停机条件下,主机房地板表面垂直及水平方向的振动加速度不应大于500mm/s2;

3.应远离强电磁场干扰场所,不应设置在变压器室、配电室的楼上、楼下或隔壁场所,主机房和辅助区内磁场干扰环境场强不应大于800A/m;主机房和辅助机房内频率为0.15MHz~1000MHz的无线电干扰场强不应大于126dB。满足不了要求时,应采取电磁屏蔽措施;

4.不应设置在厕所、浴室或其他潮湿、易积水场所的正下方或临近区域;

5.电力供给应稳定可靠,交通通信应便捷,自然环境应清洁;

6.主机房的活荷载标准值应远大于建筑物其他部分,考虑到经济性,机房应设置在建筑的低层;考虑到防止水灌入等,机房宜设置在建筑物的首层及以上层,当地下室为多层时也可设置在地下一层。

(三)机房的设备布置

机房宜根据设备布置及工作运行要求,根据实际需要由主机房、辅助区、支持区、行政管理区等功能区组成。主机房的使用面积应根据电子信息设备的数量、外形尺寸和布置方式确定,并应预留今后业务发展需要的使用面积。在条件不具备的情况下,主机房的使用面积可按下式确定:

电子信息设备确定规格时:A=K∑S ;电子信息设备未确定规格时:A=FN 。

其中,A—主机房使用面积(m2);K—系数,可取5~7;S—电子信息设备的投影面积(m2);F—单台设备占用面积,可取3.5~5.5(m2/台);N—主机房内所有设备总台数。

辅助区的面积宜为主机房面积的0.2~1倍,用户工作室的面积可按3.5m2/人~4m2/人计算,长期有人工作的房间可按5m2~7m2计算。

机房的设备布置,应满足机房管理人员的操作和安全需求,及设备运输、散热、安装和维护的要求。机房内通道和设备间距离应符合以下规定:

用于设备运输的通道净宽不应小于1.5m;面对面布置的机柜之间距离不宜小于1.5m;背对背布置的机柜之间距离不宜小于1.0m;需设备检修时,设备检修方向的净距不宜小于1.2m;成行排列的机柜,长度超过6m时,两端应设有出口通道;当两个出口通道间距离超过15m时,在两个出口通道之间还应增加出口通道,出口通道的宽度不宜小于1.0m。

三、医院信息系统机房对建筑结构的要求

(一)一般要求

建筑平面和空间布局应具有灵活性,并应满足电子信息系统机房的工艺要求。主机房净高应根据机柜高度计通风要求确定,考虑常用机柜一般为1.8m~2.2m,气流组织所需机柜顶面至吊顶距离一般为400mm~800mm,取平均值,机房净高不宜小于2.6m。

三级医院内B级信息机房距离停车场不宜小于10m,距离铁路或高速公路不宜小于100m,距离飞机场不宜小于1600m。信息机房楼地面等效均布活荷载≥4.5kN/m2,免维护电池室容量

(二)人流、物流及出入口

机房宜单独设置出入口;有人操作区域和无人操作区域宜分开设置;机房通道宽度及门的尺寸应满足设备和材料(大型设备如精密空调、UPS机柜等)的运输要求,建筑入口至主机房的通道净宽不应小于1.5m;为减少人员将灰尘带入机房,可根据实际需要在机房主入口设置更衣间,条件不具备时可设置更衣柜。

(三)防火、疏散及安全

电子信息系统机房的防火设计应符合《建筑设计防火规范》GB50016或《高层民用建筑设计防火规范》GB50045的相关要求,其耐火等级不低于二级,且不低于建筑主体的耐火等级。A级或B级电子信息系统机房,当位于其它建筑物内时,考虑其安全性,主机房与其他部位之间应设置耐火极限不低于2h的隔墙,隔墙上的门应采用甲级防火门。

面积大于100m2的主机房安全出口不应少于两个,且分散布置,宜将门设置在机房的两端;门应向疏散方向开启且能自动关闭,并保证在任何情况下都能从机房内打开。

主机房的顶棚、壁板(包括夹芯材料)和隔断应为不燃烧体。

另外,设置在首层的机房的外门外窗应采取安全措施,根据机房的重要性,可设置警卫室或保安设施。

(四)室内装修

信息机房的室内装修,应选用气密性好、不起尘、易清洁、符合环保要求,在温度和湿度变化作用下变形小且具有表面静电耗散性能的材料,不得使用强吸湿性材料及未经表面改性处理的高分子绝缘材料作为面层。顶棚与墙面应涂不起灰、浅色、无光涂料。

机房地面铺设防静电活动地板时,活动地板的高度应根据电缆布线和空调送风要求确定,并应符合下列规定:

第一,只做电缆布线使用时,地板高度不宜小于250mm,活动地板下的地面可采用水泥砂浆抹平;

第二,既作为电缆布线,又作为空调静压箱时地板高度不宜小于400mm,活动地板下的地面应采用不起尘、不易积灰、易清洁的材料,楼板或地面应采取保温、防潮措施,地面垫层宜配筋,维护结构宜采用防结露措施。

三级医院内B级信息机房的主机房不宜设置外窗,当设置外窗时应采用双层固定窗,并具有良好的气密性。UPS系统的电池室设有外窗时应避免阳光直射。

四、医院信息机房的电气设计

(一)机房供配电

医院信息机房负荷等级应根据《供配电系统设计规范》GB50052-2009及《电子信息系统机房设计规范》GB50174-2008中的规定。

1.医院各类信息机房负荷分级及供电要求:

A级信息机房应按一级负荷中的特别重要负荷供电,应由双重电源供电,当一电源发生故障时,另一电源不应同时受到损坏,还应配备柴油发电机作为备用电源,当市电发生故障时,后备柴油发电机应能承担全部负荷的需要;

B级信息机房应按一级负荷供电,应由双重电源供电,当一电源发生故障时,另一电源不应同时受到损坏,当供电电源不能满足要求时,应设置后背柴油发电系统;

C级信息机房应按二级负荷供电,宜由两回路供电。

后备柴油发电机燃料储存量,A级机房要求72小时,B级机房要求24小时。

2.医院信息机房内精密空调系统应采用放射式供电,A级、B级机房精密空调系统按一级负荷供电,双重电源末端切换。

3.医院信息机房内信息设备供电的电源质量要求,见表1。

为保证供电质量,电子信息设备应由不间断电源系统UPS供电。UPS系统应有自动和手动旁路装置。确定UPS系统基本容量时应留有余量,一般可按不小于电子信息设备计算负荷的1.2倍选取,且UPS系统备用时间不小于15min。

当输出端N线与PE线间电位差不能满足要求时,宜配备隔离变压器。

4.用于信息系统机房内的电子信息设备与动力设备的UPS系统应由不同回路配电。电子信息设备的配电应采用专用配电箱(柜),专用配电箱(柜)应靠近用电设备安装,且宜配置浪涌保护器、电源检测和报警装置,并应提供远程通信接口。实际设计中,除电子信息设备设专用配电箱(柜)外,精密空调、检修等用电可合设一个配电箱(柜)。需特别注意的是,由于荧光灯容易对电子信息设备造成电磁干扰,信息机房内的照明电源不应引自电子信息设备配电盘,可就近引自防火分区内应急照明箱。

5.线路敷设。敷设在隐蔽通风空间的低压配电线路应采用阻燃铜芯电缆,电缆应沿线槽、桥架或局部穿管敷设;当配电电缆线槽与通信电缆线槽并列或交叉敷设时,配电电缆线槽应字下方。配电线路的中性线截面积不应小于相线截面积,单相负荷应均匀分配在三相线路上。

(二)机房照明

工作区域内一般照明的照度均匀度不应低于0.7,一般显色指数要求不低于80。

1.照度标准值要求:

服务器设备区、网络设备区、存储设备区、监控中心、测试区、打印室:500lx;

进线间、备件库:300lx。

2.统一眩光值UGR要求:

服务器设备区、网络设备区、存储设备区、备件库:22;

进线间:25;

监控中心、测试区、打印室:19。

3.机房内不应采用0类灯具;采用Ⅰ类灯具时,灯具PE端子必须与PE线可靠连接。信息机房的照明线路宜穿钢管暗敷或在吊顶内穿钢管明敷。

4.机房应设置通道疏散照明级疏散指示标志,主机房通道疏散照明照度值不应低于5lx,其他区域不应低于0.5lx。

(三)机房接地、静电防护

机房的防雷和接地设计应满足《建筑物防雷设计规范》GB50057和《建筑物电子信息系统防雷技术规范》GB50343的有关规定。

对电子信息设备进行等电位联结是保障人身安全、保证电子信息系统正常运行、避免电磁干扰的基本要求。等电位联接是静电防护的必要措施。电子信息系统机房内所有设备金属外壳、各类金属管道、金属线槽、建筑物金属结构等必须进行等电位联接并接地。

1.主机房和辅助区的地板或地面应由静电泄放措施和接地构造,防静电地板、地面的表面电阻或体积电阻值应为2.5×104 ~1.0×109Ω,且应具有防火、环保、耐污耐磨性能。主机房和辅助区中不使用防静电活动地板的房间,可铺设防静电地面,其静电耗散性应长期稳定,且不应起尘。

2.静电接地的连接线宜采用焊接或压接。当采用导电胶与接地导体粘结时,其接触面积不应小于20cm2。

3.保护性接地和功能性接地宜共用一组接地体,其接地电阻值应按其中的最小值确定。对功能性接地有特殊要求需单独设置接地线的电子信息设备,为防止干扰,接地线应与其它接地线绝缘;为减少环路电压,供电线路与接地线宜同路径敷设。

4.对于C级机房中规模较小的机房可采取S型(星型结构、单点接地)等电位联结方式。

5.A级、B级或规模较大的C级机房可采用M型或SM混合型等电位联结方式。主机房应设置等电位联结网格,网格四周设置截面不小于50mm2的铜带或裸铜线形成的等电位联结带,并应通过等电位联结导体将等电位联结带就近与接地汇流排、各类金属管道、金属线槽、建筑物金属结构进行连接。每台电子信息设备(机柜)应采用两根不同长度的等电位联结导体就近与等电位联结网格连接。网格应采用截面不小于25mm2的铜带或裸铜线,并应在防静电活动地板下形成边长0.6m~3m的矩形网格,一般形成600mm×600mm网格,紫铜带网格可压在架空地板支柱下。

(四)机房布线

承担信息业务的传输介质(包括设备缆线、跳线和配线设备)应采用光缆或六类及以上等级的对绞电缆,传输介质各组成部分的等级应保持一致,并应采用冗余配置。

机房存在下列情况之一时,应采用屏蔽布线系统、光缆布线系统或采取其他相应防护措施:无线电、电磁场干扰不满足要求时;银行、安全部门、军队等网络有安全保密要求时;安装场地不能满足非屏蔽布线系统与其他系统管线或设备的间距要求时。

缆线采用线槽或桥架敷设时,考虑检修、理线、通风的要求,线槽或桥架的高度不宜大于150mm。

(五)安全防范系统

安全防范系统由视频安防监控系统、入侵报警系统和出入口控制系统组成,各系统之间应具备联动控制功能。紧急情况时,如发生火灾时,出入口控制系统应能接受相关系统的联动控制而自动释放电子锁。

(六)环境和设备监控系统

具体信息机房环境要求,见表2。环境和设备监控系统宜采用集散或分布式网络结构,系统应易于扩展和维护,并应具备显示、记录、控制、报警、分析和提示功能。机房专用空调、柴油发电机、不间断电源系统等设备自身硬配带监控系统,监控的主要参数纳入设备监控系统,A、B级信息机房主机的集中控制和管理宜采用KVM切换系统。

五、消防

主机房建筑面积大于等于140m2的电子计算机机房内的主机房和基本工作间的已记录磁(纸)介质库宜采用气体灭火系统;A级机房应采用洁净气体灭火系统;B级机房的主机房及A、B级机房的配电室、UPS室,宜设置洁净气体灭火系统,也可采用高压细水雾灭火系统;C级机房可设置高压细水雾灭火系统或自动喷水灭火系统,自动喷水灭火系统宜采用预作用系统。凡设置洁净气体灭火系统的主机房,应配置专业空气呼吸器或氧气呼吸器。

医院内电子信息系统机房应设置火灾自动报警系统。机房采用水喷雾或气体灭火系统时,防护区用的空调机、通风机、排烟机、及其管道中的防火阀应自动关闭,确认火灾扑灭后方可启动排烟机排烟,系统应具有自动控制、手动控制和应急操作三种控制方式,报警区域内应设置两种火灾报警探测器,且火灾报警系统应与灭火系统联动。

医院电子信息机房内安装有高压细水雾灭火系统、空调机和加湿器的房间,地面应设置挡水和排水设施。

六、结束语

结合现有综合医院信息机房存在的问题和使用需求,设计中应首先注意先进性,医院信息机房设计应本着先进与实用的原则,把现有的较先进技术与成熟技术结合起来,充分考虑医院未来的发展空间;其次,实用性,要充分考虑医院现有的经济实力等因素,在满足实际使用需求的情况下,考虑系统造价;第三,灵活性,选择系统时,应注意选择一些标准化的开放式的系统,方便各个系统间互联以及后期系统增容等。 (编辑 刘鲁)

参考文献