当前位置: 首页 精选范文 航空航天的认识范文

航空航天的认识精选(十四篇)

发布时间:2023-09-25 11:24:31

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇航空航天的认识,期待它们能激发您的灵感。

航空航天的认识

篇1

2013年6月20日10:04—10:54,在距离地面343 km的天宫1号,中国神舟10号飞船的3名航天员王亚平、聂海胜、张晓光为全国青少年上了一堂精彩的“太空一课”。这堂课由王亚平主讲,其他2名航天员担任助教和摄像。活动过程中,王老师开展了质量测量、单摆运动、陀螺、水膜和水球5项实验,展示了失重环境下物体运动、液体表面张力特性等物理现象,使中小学生了解失重条件下物体运动的特点,了解液体表面张力的作用,加深了对质量、重量及牛顿定律等基本物理概念的理解。300名中小学生与中学物理教师在地面课堂听讲,并与航天员进行了互动交流。从首都北京到祖国的四面八方,8万多所中学、数千万名师生通过广播、电视和网络直播,共同收听、收看航天员太空授课,一同领略奇妙的太空世界。

实验1:质量测量演示

“失重了,我们的身体质量是不是也没有了?”

失重环境下怎样测量质量呢?航天员用天宫1号上的质量测量仪现身说法。他们从天宫1号的舱壁上打开一个支架形状的装置,航天员聂海胜把自己固定在支架一端,王亚平轻轻拉开支架,一放手,支架便在弹簧的作用下回复原位。装置上的LED屏显示出数字:74.0,这表示聂海胜的实测质量是74 kg。王亚平向同学们解释了实验原理后,还给同学们布置了1道课后思考题:除了运用牛顿第二定律,还有什么办法可以在失重环境下测量物体的质量?

实验2:单摆运动演示

“太空中的单摆小球松手后会出现怎样的情况呢?”

T型支架上,用细绳拴着1颗明黄色的小钢球。王亚平把小球轻轻拉升到一定位置放手,小球并没有出现在地面上常见的往复摆动,而是停在了半空中。王亚平用手指沿切线方向轻推小球,给小球一个初始速度,奇妙的现象出现了,小球开始绕着T型支架的轴心做圆周运动。

实验4:水膜演示

“天宫里有没有飞流直下的瀑布?”

王亚平拿起1个航天员饮用水袋,打开止水夹,水并没有倾泻而出。轻挤水袋,在饮水管端口形成了1颗晶莹剔透的水珠,略微抖动水袋,水珠便悬浮在半空中,与天宫1号舱壁上鲜艳的五星红旗交相辉映,更显得美轮美奂。接着,她把1个金属圈插入装满饮用水的自封袋中,慢慢抽出金属圈,便形成了1个漂亮的水膜。轻轻晃动金属圈,水膜也不会破裂,用力稍大才甩出1个小水滴。随后,王亚平又往水膜表面贴上了1片画有中国结图案的塑料片,水膜依然完好。这些在地面难得一见的奇特景象,引起了地面课堂同学们的连声惊叹。

实验5:水球演示

“用神奇的液体表面张力变个‘魔法’!”

王亚平用金属圈重新做了1个水膜,然后用饮水袋慢慢地向水膜上注水,不一会儿,水膜就变成了1个亮晶晶的大水球,水球中还有一串珍珠般的小气泡,仿佛银河系中的繁星点点。王亚平用注射器向水球内注入空气,在水球内产生了2个标准的球形气泡,气泡既没有被挤出水球,也没有融合到一起。水球也没有爆裂。紧接着,王亚平又用注射器把少许红色液体注入水球,红色液体慢慢扩散开来,晶莹透亮的水球变成了粉红色,令人啧啧称奇。

宇宙无限,探索无尽,不知不觉中,航天员们要和地面课堂的同学们说再见了。他们每人都为同学们送来了太空寄语——

聂海胜说:“愿同学们刻苦学习,增长知识,为‘中国梦’添彩!”

张晓光说:“深邃太空,奥秘无穷,探索无止境,让我们共同努力!”

王亚平说:“飞天梦永不失重,科学梦张力无限!”

?太空授课活动的策划与设计

电视和网络是目前最有影响力的传播媒体。中央电视台作为中国国家级电视台,是中国受众最多、影响力最大的电视媒体。中央电视台从授课活动策划开始就高度关注、主动参与,并结合电视传播的特点对授课的内容和形式提出了很多建议。在活动开始之前,进行了多角度的宣传,吸引观众的注意。授课活动中进行了同步直播,并组织了多个专题节目,邀请著名科学家对此次活动的内容进行全方位地详细解读和阐释,进一步拓展了授课活动的影响。中国众多网络媒体在互联网上对活动的全过程进行了视频直播,全世界的观众都可以通过网络看到授课活动。网络传播使得授课活动的覆盖面进一步扩大,并得以持续和多次传播,使得很多没有及时观看电视直播的观众得以通过网络观看活动的视频。此外,很多报纸、期刊也对授课活动进行了及时且翔实的报道。

为吸引青少年关注此次太空授课活动,今年3—5月,中国科协在全国范围内举办了“全国青少年航天科技知识竞赛”。竞赛组织专家围绕太空基本知识设计了竞赛题目。全国30多个省区2 000余所学校的30余万名青少年积极参与。中国载人航天工程网在授课活动前也举办了“我问航天员——太空授课大型问题征集”活动,收集中小学生对载人航天科技、航天飞行、空间科学及航天员太空工作、生活等领域的提问,征集到数千个相关问题。这些活动的开展为授课活动进行了预热,激发了很多孩子对太空授课活动的好奇心,为授课活动作了知识上和心理上的铺垫。

这次太空授课是一次成功的科学传播活动案例。成功之处体现在:一是参与人数多。中国有6 000万名中小学生及公众通过电视和互联网直播收看了授课活动,总共约有1亿中国人观看了这次授课活动。中国以外的中小学生和公众也都可以通过互联网观看此次授课活动的视频。二是效果好。授课内容形式生动有趣,给公众留下了深刻的印象。航天员在太空中演示的5个实验现象是地面上无法实现的,展示了太空失重环境下的有趣现象,王老师的讲解轻松活泼,大大激发了中小学生和公众的好奇心和求知欲,激发了青少年热爱太空、探索太空的热情。

篇2

关键词 航空航天 知识普及 必要性

中图分类号:X738 文献标识码:A

我国是世界四大文明古国之一,尽管航空航天科技属于现代化科技的研究成果,但是早在2000多年以前,我国和航空航天科技就已经结下了不解之缘,无论是历代史册还是民间传奇话本小说中都有着许多行有关的神话传说,比如我国最著名的“嫦娥奔月”这一神话小说,此外还有鲁班制作木鸟等的飞天尝试,这些丰富的想象和勇敢的尝试对于现代航空航天技术的萌芽有着非常重要的推动作用。

1航空航天的概念和发展历程

1.1航空航天的概念

二十世纪以来,人们在对自然进行认识和改造的过程中,所以取得的最大的成果就是航空与航天,航空航天科学技术的发展对我们的生活产生了非常重要的影响,标志着人类文明发展到一个新的高度。

生活中人民一提到“航空航天”,首先想到的就是火箭、载人宇宙飞船等的发射,但是这种认识实际上是错误的,事实上,航空航天也并非是一个单词,而是一组词语,航空和航天分别有着自己的概念:所谓航空指的是地球的大气层范围之内,飞行器所进行的航行活动。而航天则是指飞行器在冲出大气层之后的宇宙空间所进行的航行活动。

1.2航空航天的发展历程

一直以来,人类都没有停止过对宇宙的探索和对飞翔的追求。在二十世纪以前,由于受到较低的科技和生产力水平的限制,人民对于宇宙的探索和对飞翔的追求都只能通过想象来进行,尽管有很多先驱者做了一些努力和尝试,例如我国西汉时期的滑翔尝试等,但是都收效甚微。直到18世纪热气球的成功升空,人们终于拉开了实现飞翔梦想的序幕。而人类在天空翱翔这一梦想的真正实现实在二十世纪初期,第一架可操纵的飞机被发明出来,并且成功飞行。此后,许多专家人士坚持不懈的努力研究飞行科技,大大促进了航空科学技术的发展,增强了人类探索和征服宇宙的信心。二十世纪中期,第一个人造地球卫星的成功发射是航空航天科技发展的重要里程碑,人们开始正式对宇宙进行探索。

在二十世纪,航空航天进入了科技和事业双发展的“期”。在这一时期,人类的科技发展水平有了质的突破,社会生产力水平也大大提高,这都大大促进了航空航天研究成果的出现。尽管目前人类所进行的航空航天活动仍然处于初级阶段,但是其所起到的作用和产生的影响已经覆盖了人类生活的方方面面,所以非常有必要进行航空航天知识的普及。

2普及航空航天知识的必要性

在现代世界追求和平的浪潮下,航空航天活动在进行的过程中一直都是以和平、为全人类造福为主要目标的。尽管现在的航空航天活动的初始目的都是为国家军事进行服务,但是其所造成的影响范围并非局限于军事领域,它对社会生活和国民经济的发展也产生了非常重大的影响。

2.1对人们探索、热爱科学精神的鼓励

航空航天技术是人们对于宇宙这一未知世界进行探索所取得的重要成就,具有着鼓舞人心的作用;此外,航空航天技术融合了当前世界各种高新技术,是对人类科技水平进步以及科技人勇往直前、不畏风险精神的完美展示。所以,大力普及航空航天知识可以让人们近距离接触到当前世界高新技术的研究成果和科技人的精神,有助于提高国民素质和探索、创新精神。

2.2对青少年有着特殊的教育意义

向广大青少年进行航空航天技术的普及,能够极大地吸引青少年对于航空航天科学技术知识以及对自然和宇宙进行探索和改造的热情,提高他们对科学和自然学科的学习兴趣。但是对青少年进行航空航天知识的普及并不代表要求青少年要将学习和工作方向定位为航空航天科技工作。其更深层次的意义是帮助青少年学会从微观到宏观的角度观察和认识世界,了解到世界的广大和宇宙的浩渺,从而帮助他们树立正确的世界观、人生观和价值观,因此普及航空航天知识对于青少年来说,有着非常重要的意义和必要性。

2.3有着相当的经济价值

航空航天技术与其他科学技术相互结合开创出大量的新型技术途径,而这些技术途径的使用为国民经济的发展带来了巨大的经济效益。其中最为典型的就是卫星通信技术,它以其高度的灵活性和可靠性、高质量和高容量以及超远距离等优点成为现代人们进行信息通讯的首选。除此之外,还有地球资源卫星的运用,大大降低了人们进行地球资源的普查的时候所消耗的成本,而且避免了各种意外的发生,大大保障了人身安全。

3结语

尽管目前我国在航空航天技术和事业方面取得了相当瞩目的成果,但是与西方的发达国家相比,我国的航空航天科技水平仍然处于相对劣势的地位,因此我国需要大量新鲜的航空航天技术专业人才和创新型人才的加入,但是当前我国民众对于航空航天知识的了解远远不够,尤其是青少年对于航空航天技术的热情和兴趣非常的低,因此,非常有必要进行普及航天航空知识活动,从而提高我国人民尤其是青少年对于航空航天技术的兴趣和热情,为我国航空航天技术的发展培育一批有生力量。

参考文献

[1] 周露.航空航天知识与技术[M].国防工业出版社,2013.

篇3

关键词:航空航天业;技术溢出;因子分析

一、研究背景

技术溢出(Technology Spillover)是指先进技术拥有者在从事生产、贸易或其他经济行为时,有意识或无意识地输出技术而引起的技术水平的提高[1]。航空航天业的技术溢出则指航空航天业的先进技术通过一定渠道自愿或非自愿地传播到其他工业领域,进而带动这些工业领域技术水平的整体提升。航空航天业是我国战略性高技术产业,属于技术密集型行业,技术装备多、投资费用大,是国家经济实力与科技水平的综合体现。自20世纪50年代以来,我国航空航天业经历了从无到有、从小到大的发展历程,逐步建立起平台化、系统化、专业化的研发与应用体系。它技术内涵高、产业链长、辐射面宽、连带效应强,对众多高技术产业以及传统产业的发展起到了举足轻重的拉动作用。研究表明,内涵科技因素越高的行业部门对其他部门的贡献效应越大[2]。航空航天技术是高科技领域的前沿,航空航天业必然对其他部门具有较大的贡献效应,其技术溢出也应该是显著的,本文正是基于这一前提条件进行的研究。因此,探究影响航空航天工业技术溢出的显著性因素,充分利用其技术溢出作用,对于加快我国科技进步与经济发展有着重要的战略意义。然而,目前对此问题的研究并不深入,多数学者从理论层面分析技术溢出的问题,也有学者较为系统地对技术溢出是否存在、影响技术溢出的因素以及技术溢出的机理进行了实证分析,但这些研究都局限于外商直接投资(FDI)这一领域,没有从行业层面上分析该行业部门对其他行业部门的技术溢出,并且没有在理论上形成统一的认识。本文利用我国航空航天业的数据,采用因子分析的方法,提取影响技术溢出的关键因素,进而对促进我国航空航天业技术溢出及产业自身发展提供理论支持与政策建议。

影响技术溢出的因素有很多,根据现有文献的研究将其大致归纳为:(1)人力资本因素。Keller(1996)研究发现人力资本积累的差距导致技术吸收效果与经济增长率的不同[3];Borensztein等(1998)认为人力资本存量是影响技术溢出效应的关键因素[4];王成岐,张建华,安辉(2002)得出人力资本存量与技术溢出效应不相关的结论,但他们认为人力资本投入以及人才素质是技术溢出的影响因素[5]。(2)技术差距因素。Findlay(1978)和Wang and Blomstorm(1992)的研究表明技术差距越大示范模仿空间越大,吸收技术溢出的潜力也就越大[6];Kokko(1994)的研究发现低技术水平严重阻碍技术溢出效应的产生[7];Perez(1997)从吸收能力角度考虑,认为过高的技术差距会影响示范模仿机制发挥其应有作用。(3)经济开放程度。Blomstorm and Sjoholm(1999)、认为经济开放度高的企业由于竞争压力大而进行更多的研发投入以提高自身吸收能力[8];Kokko(1994)发现经济开放程度与技术溢出效应之间的关系是不确定的[7];包群,许和连,赖明勇(2003)用出口依存度等来衡量经济的开放程度,发现我国经济开放程度的提高、基础设施的建立与完善等都是促进技术溢出的有利因素[9]。(4)研发投入因素。Kathuria(2000)指出技术溢出效应并非自动产生,技术吸收方要想从中获利,须对学习活动进行投资;田慧芳(2004)的研究则表明工业部门研发投入水平与技术溢出效应呈负相关关系。此外,市场结构、工资水平、产业关联、基础设施、经济政策等都作为影响因素引入了技术溢出的相关研究中,本文在前人研究的基础之上对此进行探讨。

二、指标构建与分析方法

目前,对技术溢出进行实证研究时,学者们通常首先选择一个影响因素,然后确定与该影响因素内容相关的指标体系,最后采用一定的计量方法(如多元回归、分组回归等)来分析这些指标。本文在分析技术溢出时,也采用了这种研究思路:选取航空航天业为研究对象,根据技术差距等影响因素建立与之相关的量化指标体系,采用因子分析的方法对这些指标与技术溢出之间的关系进行研究,并用线性回归的方法对提取出的公因子进行显著性检验。

(一)技术溢出指标体系

航空航天业是一个以现代科学为基础的高新技术产业,包括机、光、电、液综合能力的精密机械加工工业,是我国国民经济和国防建设的重要组成部分[10]。其研发成本高、风险大、周期长,具有科技含量高、连带效应强的产业特点,能够带动诸多产业的发展。理论上讲,研究技术溢出影响因素需要建立一套完整的指标体系,但为了避免信息重叠,本文根据国内外现有文献的研究成果并综合考虑我国航空航天业技术溢出的实际情况,选取如下表所示指标体系:

(二)分析方法和数据来源

因子分析是一种研究从变量群中找出共性因子的统计技术,它通过分析众多变量之间的依赖关系,探寻观测样本的内部基本结构,提取并描述隐藏在一组显性变量中无法直接测量的隐性变量,很好地发挥了降维和简化数据的作用。因子分析中的共性因子是不可直接被观测却又客观存在的重要影响因素,每一个变量都可以表示为共性因子的线性函数与特殊因子之和,即,式中为的共性因子,为的特殊因子。若满足以下条件:(1);(2),即共性因子和特殊因子不相关;(3)各共性因子不相关且方差为1;(4)各特殊因子不相关且方差不要求相等。那么,每个变量可由个共性因子和自身对应的特殊因子线性表出,因子分析的数学模型可表示为:

本文采用因子分析和线性回归相结合的方法,研究我国航空航天业技术溢出问题。用于分析的数据主要来源于《中国高技术产业统计年鉴》(1999~ 2009)中航空航天业相关数据,以及《中国统计年鉴》(1999~2009)中工业企业相关数据,统计口径为我国国有及规模以上非国有工业企业。

三、技术溢出实证研究

(一)因子分析

从《中国高技术产业统计年鉴》(1999~2009)与《中国统计年鉴》(1999~2009)整理出构建量化指标体系所需数据,并按定义计算出各指标对应值,如下表所示:

利用SPSS17.0软件做出相关系数矩阵,通过指标之间的相关系数初步判断各指标相关性较高。从已建立的量化指标体系中提取公共因子,找出影响我国航空航天业技术溢出的主要因素。因子矩阵和旋转因子矩阵如表3、表4所示:

由表3、表4可知,旋转后公共因子F1、F2的方差贡献率分别为4.803和2.795,累积方差贡献率为84.424%,进一步判断公共因子F1、F2能够代表本文所设计的衡量我国航空航天业技术溢出的量化指标体系。由表4还可知公共因子F1在X1、X2、X3、X4、X5的载荷值均大于0.7,能够反映我国航空航天业科技活动经费投入能力、研发经费投入能力、新产品研发经费投入能力、科技活动人员投入能力以及科学家与工程师投入能力,因此可将F1视为影响航空航天业技术溢出的因素之一――技术投入能力;公共因子F2在X6、X7、X8、X9的载荷值均大于0.65,能够反映我国航空航天业的新产品销售收入、新产品出口能力、新产品劳动生产率以及新产品产值比重,因此可将F2视为影响航空航天业技术溢出的因素之二――技术产出能力。

(二)线性回归

本文根据该检验模型,以公共因子F1、F2的因子得分作为自变量,以其他工业企业的全员劳动生产率LP作为因变量(具体数据见表5),构建如下回归模型:

(1)

其中LP即除航空航天业之外的其他工业企业的全员劳动生产率,是全国国有及规模以上非国有工业企业增加值与我国航空航天企业增加值的差值同全国国有及规模以上非国有工业企业全部从业人员年平均人数与我国航空航天企业从业人员年均人数差值之比。其计算公式为:

全员劳动生产率=工业增加值/全部从业人员平均人数(2)

通过回归得到人均产出变量与公因子变量之间的关系方程为:

(3)

t值:(6.240)(2.886) ( 3.320)

P值: 0.001 0.028 0.016

R2=0.749AdjR2=0.666F=8.967

由模型估计到的参数可知,我国航空航天业的技术投入能力以及技术产出能力与其他工业企业的全员劳动生产率均存在着显著的正相关关系,技术投入能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升17.541%,技术产出能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升15.9%。

四、结果分析与政策建议

航空航天业是我国国民经济的先导产业,在人才、资金、技术等方面都有着相当大的优势,产业结构具有一定的特殊性,技术溢出也不同于其他产业。因此,本文在参照前人研究成果与研究方法的基础上,构建了一个衡量技术溢出的量化指标体系,采用因子分析的方法从中提取出最为显著和最具代表性的两个因素,即航空航天业的技术投入能力及技术产出能力。科学分析这些影响因素,有效利用技术溢出效应,有利于提升传统产业的自主创新能力、推动国家整体技术进步。对此,提出如下建议:

(1)加大航空航天业技术投入力度,保障科技研发能力的领先。2007年颁布的《深化国防科技工业投资体制改革的若干意见》等政策,明确指出国防科技工业投资体制的改革思路。2009年提出的《关于加快国家高技术产业基地发展的指导意见》等政策,也明确提出鼓励高新技术产业的发展思路。因此,同时作为我国国防科技工业和高新技术产业的航空航天业,应构建以政府投资为主、社会投资为辅的多元投资渠道,注重人力资本存量的积累和人力资源结构的优化,切实加大航空航天业的技术投入力度以保证其领先的科技研发能力。

篇4

不断强化的主动意识

从大环境的变化来看,目前我国航空航天企业的主动信息化意识正在逐步增强,这与10年前的情况大不相同。不少了解行业需求的专家回忆:以前航空航天企业在信息化与信息安全领域一直都被技术提供方以“先入为主”的思想左右,技术方显得较为强势,而需求方则因对技术和自身需求不了解而被迫接受技术的灌输。但随着企业信息化意识的逐年提升,企业的信息化安全意识主动性不断增强,市场也从产品导向转向了需求导向。熟悉这一市场的普元信息军工业务部技术总监郑星光回忆,在航空航天领域,国外不少产品动辄上千万元的采购费与数百万元的维护费用让不少企业用户饱受煎熬,由于信息化产品的延续性很强,不少企业一时很难摆脱高昂的维护费,因此满足个性化需求和实现信息安全自主可控的过程并不顺利。但可喜的是,随着需求导向性市场的不断完善,特别是2014年以来行业对于安全可控的需求有了更加显著的提高,企业的个性化需求也更加具体,航空航天企业对于信息安全的掌控性要求更高,这进一步打破了技术市场的垄断。

目前,国内外航空航天领域信息安全的技术及软件差距正在缩小,技术平台也几乎处于同一起跑线上。同时,在新一轮的“十三五”规划中,也将对于如何选择更加开放的信息化软硬件产品及平台给予进一步指导。这为开放性的产品和众多国内技术、软件企业提供了良好的发展空间。

同时,从本土化的角度来看,国内从事信息化技术服务的企业应该更了解国内企业的需求,在技术上更能够做到统一规范,这一点是国外企业所无法适应的。

不同于传统ERP企业,我国的航空航天企业多是采取科研+生产的模式,对于技术的了解程度很高,对于信息安全也有着自己的标准。安全可控推进过程要遵循技术调研、方案论证、试点实施、全面推广来进行。因此必须认识到,安全可控并不是简单国产化,也不是简单的设备、软件替换,而是用新一代的开放弹性架构来重构 IT 系统。例如成飞集团对于安全技术的要求就特别强调了其灵活适应性,而定制化的产品显然无法适应。这需要软件、平台方在基于知识积累的基础上实现构建式开发。

弹性平台脱颖而出

目前在航空航天行业的信息安全也划分为软件、硬件、数据、网络等不同领域。同时航空与航天两个领域本身也存在较大差别,不同领域的市场情况也各不相同。拥有众多行业(特别是航空航天领域的软件平台建设)经验的郑星光坦言,软件平台的特点之一就是“安全可控”,只有搭建合理有效的软件平台才能实现航空航天信息化的“安全可控”和IT架构的开放弹性。

例如,针对航天航空信息化“安全可控”推进策略,把信息安全的主动权交给用户的做法。这种做法把航空航天信息化技术平台架构分为四个层面:最下面是基础设施平台化,第二层次主要是数据管理平台化和业务流程平台化,第三层次是应用开发平台化、科技管理平台化、运维监控平台化,最上面是服务支撑平台化。在这样的“大平台”构建下,航空航天信息化技术平台能够有效解决技术一致性、敏捷可靠、安全可控、自动化运维等行业痛点,用开放、弹性的信息化科学管理实现“七统一”信息平台。

在安全可控层面,基于开放式技术路线,提出航天航空信息化安全可控推进策略。该策略分为直接引用、直接替换、平台迁移、系统迁移四种方式。直接引用,是指在新技术、新模式带来的新应用需求方面,可以直接采用安全可控的软件产品和解决方案。直接替换,是指对于基础软件,可以直接采用替换策略,对非安全可控的软件直接采用1:1的替换策略 ,如应用服务器、消息中间件、数据库、操作系统。平台迁移,是指对信息化基础平台进行替换:对企业应用架构支撑平台,如SOA开发平台、流程平台、业务集成平台、数据平台、监控平台,进行统一的迁移。系统迁移,是指将企业的整体信息系统整体迁移到安全可控的软件、硬件产品和解决方案上。在平台迁移过程中,需要对建立在企业应用平台之上的应用进行分批、分阶段进行迁移工作;最终完成所有的应用系统完成迁移工作,使得企业的应用全部构建在自主掌控的硬件、操作系统、数据库、中间件、企业应用平台之上。

篇5

关键词:空气动力学 流体控制 航空航天 发展方向

中图分类号:V211 文献标识码:A 文章编号:1672-3791(2012)06(a)-0000-00

空气动力学是研究物体同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化,在流体力学基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。空气动力学的发展对于航空航天飞行器的研制有着极为重要的意义,是航空航天最重要的科学技术基础之一,对国家安全、经济发展、社会和谐都有着重要和用。在过去一段时间里,由于航空工业的相对成熟,关于航空领的研究更多的集中于如何通过改进制造过程降低成本,而不再将主要力量投入新技术的研究,但随着国际形势的日益严峻、信息化程度的提高以及航空运输对安全性经济性的要求,航空技术研究面临着更多更新的挑战,使得全球重新提高了对航空技术研究的关注程度。作为航空航天技术的重要基础学科之一的空气动力学,也面临着全新的机遇和挑战。

1 空气动力学研究意义和研究现状

1.1 空气动力学研究意义

人们最早对空气动力学的研究可以追溯到人类对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测,但真正形成独立学科是在20世纪航空事业的迅速发展之后,是在经典流体力学中发展并形成的新的分支,并且迅速成为发展航空航天各类飞行器的重要基础科学和关键技术,推动整个人类航空航天事业的发展,成为航空航天事业发展的基础。如今,空气动力学已经不再仅只是应用于航空航天领域,还被应用于环境保护、公路交通、铁路交通、冶金、建筑、体育等众多领域,对整个人类社会的发展与进步都有着极为深远的影响。

1.2 空气动力学研究现状

在20世纪90年代,随着航空工业的迅速发展,使得航空工业整体技术程度相对于其它行业都成熟许多,基于此种原因,在较长一段时间里学界多认为航空工业已经走向成熟,尤其是空气动力技术基础技术方面,因此航空工业的研究将更多的集中于成本费用的降低,而减少了对应用技术的研究重视程度,使得空气动力学的研究相对缓慢。进入21世纪以后,随着计算机技术、通信技术、飞机设计技术等的发展,人们重新重视起了空气力学的研究,使得空气动力学得到了较好的发展。如以Euler及Navier.Stokes方程为主要数学模型的整机及部件绕流流场和气动特性计算研究领域,在我国即得到了极大的发展,并被应用于很多重点型号的研制中;再如飞机多外挂气动干扰特性研究、现代歼击机大攻角过失速气动持性研究等,都取得了极大的进展,在计算空气动力学领域也取得了突出的成绩,很多研究成果处于国际先进水平。

2 空气动力学研究所面临的挑战

传统的认为空气动力学研究已经足以满足航空航天需求的认识很明显是错误的,随着飞机一体化设计技术、微型飞行器、行星探测飞行器的发展,必然向空气动力学的研究提出新的挑战。

3 先进飞机器研制需求所带来的挑战

随着航空交通事业的不断发展,以及出于国家安全等方面的需要,对先进飞行器的研制需求不断提高。如高机动性作战飞机、可重复使用高超音速飞行器、大型民航机、大型运输机、地效飞行器、微型飞行器、智能飞行器、无人侦察机、战略战术导弹、应用卫星、概念武器等,都对空气动力学的研究提出了更多的挑战性课题,需要空气动力学从复杂流场预测、喷流干扰、气动隐身、微流体力学、气动防热、高超音速边界湍流、低雷诺数流动力学、地面效应等多个方面进行更深入的研究,而所有这些研究,都涉及高度非定常、线性,包括复杂的物理化学变化效应的影响,难度极大。

例如,大容量运输机的研发,首先需要解决大容量运输机高燃油效率、低噪声、常规跑道起飞着陆能力的需要。在这里,虽然高燃油效率可以通过混合层流控制技术(HLFC)、发展新型发动机、采用高效的气动设计方面来进行满足,但这些技术要应用到大型飞机、高Re数情况却还存在很多缺陷和不足。再如低噪声的研究也是大型飞机所必须关注的问题,必须充分将声学研究向气动研究结合在一起进行。同时,还必须考虑增升阻力、尾涡效应、发动机喷流和外流干扰效应等。

3.1 自适应流动控制需要所带来的挑战

传统空气动力学对绕复杂物体的流动,多集采用涡发生器、吸气、吹气、肋条等技术进行模拟研究,但这种研究主要集中于流动的被动控制,随着近年来电子技术、软感技术、材料技术等的发展,传统的集中于被动控制的研究存在许多不足,必须对宏观流动和微观流动的主运控制进行更深入的研究,这对飞行器的未来发展有着极为重要的意义。只有提高自适应流动控制研究水平,才能提高自适应流动控制技术,为飞机结构设计提供更为全面的飞行控制函数,以有效减轻飞机重量和飞行能力。

自适应流动控制的研究主要包括减阻流动控制、边界层分离流动控制、高升力流动控制三个方面。具有感知能力的自适应流控制技术对于去不稳定性扰动源的影响极为重要,是未来飞行器发展所需要解决的一项关键性技术,对于简化吸气装置和相关系统都有着极为重要的意义。边界层流分离流动控制技术则驻地改善飞机气动性能有着重要意义,需要进一步研究射流、湍流、目标流场、近壁面压力分布等方面的关系。高升力流动控制技术对行器增升装置的研发有着重要意义,需要进一步研究如何在不降低飞机性能的情况下减少飞机重量提高飞机增升能力。

篇6

关键词:“工程材料学”;航空航天专业;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)04-0124-03

“工程材料学”是航空主机类专业(包括飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等专业)的学科基础课程。该课程虽然仅有48学时,但承担着为未来的航空工程师构建材料知识体系的重任,对学生今后的发展起着重要作用。本文结合近年的工作实践,对该课程在教学要求、教学内容和教学方法等方面的改革进行研讨。

一、高度重视航空和材料领域发展对“工程材料学”课程教学的影响

材料学既是基础科学,也是应用科学。材料科学与技术的发展,解决了很多工程领域的关键问题,有力地推进了相关科学和技术的进步,使得材料科学成为最活跃的科学领域,材料产业也成为国民经济发展的重要支柱产业。“工程材料学”以物理学、化学等理论为知识基础,系统介绍材料科学的基础理论和实验技能,着重培养学生把这些知识应用于解决工程实际中提出的对材料结构、性能等方面问题的能力。作为一门重要的学科基础课程,“工程材料学”具有较长的开设历史,在人才培养中发挥了重要的作用。航空航天领域的发展对工程技术人员的能力素质提出了更高的要求,特别是“卓越工程师”教育培养计划的实施,对工程类课程建设的需求更加迫切,有必要以新的形势为背景反思该课程的教学改革。航空以众多学科知识、先进研究成果为基础,已发展成为一个由多个分系统组成的大系统,需要工程技术人员采用系统工程的方法进行综合设计。现代航空技术一百多年的发展,使得人们可以在更大的范围内探索天空,也使得飞行器的工作条件更加恶劣,工作环境更加严苛。现代飞行器不仅要具有速度快、航程大、载重多等特点,还要满足节能低碳等要求。材料科学技术的发展,为解决航空航天领域的诸多难题提供了可能,“一代材料,一代飞机”已成为飞行器发展公认的规律。这对航空航天工程技术人员的材料知识提出了更高的要求。在飞行器及其主要部件的设计、制造和维护工作中,要全面认识材料的性质和特点,才能挖掘材料的潜能,充分利用材料的特性,满足工作需要。面对航空航天迅猛的发展形势,仅了解和掌握已有材料的知识是不够的。具有创新素质的工程技术人员,要了解材料科学与工程的发展方向和趋势,分析材料领域的发展对航空航天领域的影响,同时要认真研究具体工作对新材料、新工艺的要求,明确材料发展的需求。在新型飞行器的研发过程中,要综合考虑用户对飞行器总体性能的多种要求,对各项技术参数进行统一的优化。在落实对飞行器性能的要求时可以发现,很多要求是相互矛盾的,比如飞机的航程和机动性就存在着较大的矛盾。为了获得较好的综合性能,需要对飞机进行一体化设计,要及时掌握各种设计方案对飞机主要材料和工艺的要求,对飞机整体结构进行综合优化。在此过程中,各部门工程师都需要和材料系统密切配合,才能实现信息和资源共享,降低全系统的风险,提高系统的可靠性和综合性能。材料科学技术的迅速发展也对课程教学提出了新的要求。材料科学与技术是研究材料成分、结构、加工工艺与其性能和应用的学科。在现代科学技术中,材料科学是发展最快速的学科之一,在金属材料、无机非金属材料、高分子材料、耐磨材料、表面强化、材料加工工程等主要方向上的发展日新月异,促使“工程材料学”课程内容的不断充实。

“工程材料学”课程要系统讲授材料科学与技术的基础理论和实验技能,使得学生掌握工程材料的合成、制备、结构、性能、应用等方面的知识。早期的航空工程结构以自然材料为主,如在美国莱特兄弟制造出第一架飞机上,木材占47%,普通钢占35%,布占18%。随后,以德国科学家发明具有时效强化功能的硬铝为代表,很多优质金属材料被开发出来,使得大量采用金属材料制造飞机结构成为可能,也使得研究者们投入了更多的精力于金属材料的探索。相应地,这一时期“工程材料学”课程内容也以金属材料为主。上世纪70年代以后,复合材料开始在航空领域应用。复合材料具有较高比强度和比刚度的优点使得工程技术人员对其抱有很大的希望。航空工程师首先采用复合材料制造舱门、整流罩、安定面等次承力结构,而现在复合材料已广泛应用于机翼、机身等部位,向主承力结构过渡。复合材料因其良好的制造性能被大量应用在复杂曲面构件上。复合材料构件共固化、整体成型工艺能够成型大型整体部件,减少零件、紧固件和模具的数量,降低成本,减少装配,减轻重量。复合材料的用量已成为先进飞行器的重要标志。相应地,复合材料必然要在“工程材料学”课程中占重要地位。钛合金的开发和应用使得飞行器具有更好的耐热能力,提高了发动机、蒙皮等结构的性能,有效解决了防热问题。“工程材料学”课程的教学内容应该及时反映材料科学在提高飞行器性能方面的新应用与新进展。与此同时,其他相关学科也取得了长足的发展,使得主机专业教学内容大幅度增加,“工程材料学”课程的教学内容和学时之间的矛盾愈加突出。

二、认真分析专业教学对“工程材料学”课程的不同要求

“工程材料学”课程是一门重要的学科基础课,是基础课与专业课间的桥梁和纽带,在航空航天主机类专业培养学生实践动手和创新创造能力,提高学生综合素质等方面具有重要作用。在多年的教学实践中,该课程对主机类各专业采用同一标准教学。虽然主机类各专业人才培养有其共性要求,但随着航空航天事业的发展,专业分工越来越细,差异化特征也越来越明显,因此“工程材料学”课程应该充分考虑不同专业的具体需求,结合各专业的课程体系安排教学。飞行器设计与工程、飞行器动力工程、飞行器制造工程和机械工程等主机类专业根据航空领域中的分工培养学生,毕业学生的工作要求有所不同,对知识结构的要求也不一样。就材料方面知识而言,不同专业学生也会有所区别,应按照专业特点纵向划分对“工程材料学”课程的要求。不同专业主要服务对象的材料特点是确定课程要求的主要依据。

飞行器设计与工程专业要全面统筹飞行器产品及各部件的设计和制造,主要从事飞行器总体设计、结构设计、飞机外形设计、飞机性能计算与分析、结构受力与分析、飞机故障诊断及维修等工作,要求了解材料科学与工程的发展对现代飞行器设计技术的影响,因此要较全面地掌握主要航空材料的性能、制造等方面的知识,了解轻质高强材料的发展动态和发展趋势。飞行器动力工程专业要求学生学习飞行器动力装置或飞行器动力装置控制系统等方面的知识,主要培养能从事飞行器动力装置及其他热动力机械的设计、研究、生产、实验、运行维护和技术管理等方面工作的高级工程技术人才。飞行器动力的重要部件对抗氧化性能和抗热腐蚀性能要求较高,要求材料和结构具有在高温下长期工作的组织结构稳定性。因此,材料在高温下的行为、性能和分析、选择方法应该是该专业“工程材料学”课程的重点。飞行器制造工程和机械工程等专业要针对现代飞行器工作条件严酷、构造复杂的特点,采用先进制造技术,实现设计要求,并为飞行器维护提供便利。该专业要求学生理解飞行器各部件的选材要求,掌握材料的制造工艺。飞行器零部件形状复杂,所用材料品种繁多,加工方法多样,工艺要求精细。很多新材料首先在航空航天领域得到应用,其制造技术具有新颖性的特征,设计、材料与制造工艺互相融合、相互促进的特点非常明显,这就要求学生在“工程材料学”课程中把材料基础打好,适应工艺和材料不断发展的要求。虽然各专业对“工程材料学”课程的要求有所不同,但课程基础一致。

该课程名称为“工程材料学”,即明确其重点在于将材料科学与技术的成果运用于航空航天工程,把材料基本知识转化为生产力。“工程材料学”是相关专业材料学科的基本课程,学生要通过该课程了解金属材料、无机非金属材料、高分子材料等微观和宏观基础知识,学习材料研究、分析的基本方法,掌握材料结构与性能等基础理论,研究主要材料的制备、加工成型等技术,为更好地学习专业课程创造条件,为将来从事技术开发、工艺和设备设计等打下基础。由此可见,在明确了各专业对该课程的个性化要求的基础上,更要明确共性要求。“工程材料学”课程要培养学生材料方面的科学概念,提升材料方面的科学素质,扎实的材料科学与技术知识基础是学生学习专业课程、提高综合素质、培养创新能力的必备条件,是进一步发展的基础。因此,“工程材料学”课程采用“公共知识+方向知识”的模式比较合适,即把教学内容划分为每个专业均要求了解的材料领域知识和根据各个专业特色需要重点介绍的知识两部分,既满足了宽口径、厚基础的教学需要,又注重了后续专业课程学习和能力培养的要求,促进了基础理论和专业应用的融合渗透,较好地满足了材料、设计、制造、维护一体化发展的需要,增强了跨学科、跨专业认识问题、思考问题和研讨问题的能力。

三、多管齐下建设丰富的教学环境

作为一门学科基础课程,“工程材料学”课程要根据学校人才培养创新目标和相关专业的人才培养标准、方案,结合卓越工程师教育培养的要求,注重与专业课程体系的融合,注重与工程实践教育的结合,注重对学生创新意识、创业能力及综合运用知识能力的培养。在充分调研与分析专业人才培养对课程教学要求的基础上,要对课程的教学大纲和内容进行修订,与相关教学环节有效整合,拓展教学活动的空间,营造良好的学习环境和氛围,加强与后续课程及实践活动的联系,解决学科基础课的教学与专业人才培养需求的脱节或不衔接等问题。

“工程材料学”在第四学期开设,是一门承前启后的课程。在前期开设的课程中,“大学物理”和“航空航天概论”是两门直接相关的课程。“大学物理”提供了学习“工程材料学”的科学基础,认真分析“大学物理”知识点在“工程材料学”中的应用,有助于学生更好地理解相关概念。“航空航天概论”以航空航天领域的发展为主线,介绍飞行器的组成及工作原理。如果在“工程材料学”课程讲授之初让学生重新回到机库,从材料发展的角度再次审视航空航天的进步,结合材料学的概念研究飞行器的组成及工作原理,会使得学生对该课程有比较全面的认识。在相关专业的后续课程中,有好多课程与“工程材料学”密切相关,如“飞行器总体设计”、“发动机原理”、“先进制造技术”等,如果在“工程材料学”中对有关知识点作简单介绍,可以使学生更好地综合分析相关概念,加深理解。在主机类专业培养方案中,“工程训练”是集中式的工程能力培养环节,其教学内容与“工程材料学”密切相关。“工程训练”教学内容以机械制造工艺和方法为主,包括热处理、铸造、锻造、焊接、车削加工、铣削加工、刨削加工、磨削加工、钳工、数控加工、特种加工、塑性成型等,每一种制造工艺和方法都与工程材料密切相关。在以前的教学工作中,材料是加工对象,对材料的性能等的介绍很简单,学生的认识较浅。如果在“工程训练”教学过程中,针对不同的加工工艺和方法对材料作较深入的介绍,从应用的角度分析不同材料加工工艺和方法的适应性,可以促进学生把材料理论知识的学习和工程实际联系起来。通过让学生分析研究实际材料在加工过程中的表现来认识材料的性能,通过感性认识来体会材料变化的规律,把深奥的材料科学理论知识和生动形象的加工过程结合起来。这样不仅强化了工程训练效果,还能让学生把材料的知识学活,留下更深刻的影响,更好地发挥学生的潜力。

航空航天主机类专业的课程设计是重要的综合学习环节。课程设计任务一般是完成一项涉及本专业一门或多门主要课程内容的综合性、应用性的设计工作,通过一系列设计图纸、技术方案等文件体现工作成果。很多主机类专业的课程设计涉及材料的选用、处理等方面的问题。按照教学计划,“工程材料学”先行开设。因此,在相关课程设计中,有目的地提出材料问题,引导学生在更广的范围里选材,在更加深入的层面上分析材料性能,可以更好地调动学生自主探究材料科学的积极性,帮助学生把材料知识转化为初步的工作能力,克服课程知识的碎片化倾向。

四、结语

航空航天是现代科学技术的集大成者,该领域发展很大程度上取决于材料科学技术的进步。材料学是航空航天工程技术人员知识结构的重要组成部分。“工程材料学”要按照现代大工程观的要求组织教学,才能实现教学目标,提高培养质量。航空航天领域和材料科学技术发展,极大地丰富了“工程材料学”的教学内容。要根据学科领域的发展需要选择教学内容,按照理论实践结合、突出工程应用的要求构建知识体系。在教学工作中,应根据不同专业的培养要求,深入研究材料学的基本要求和各专业的发展方向,形成“公共知识+方向知识”的“工程材料学”课程结构,提高教学效率。统筹考虑专业教学与其他课程的联系,以及课程设计、工程训练、毕业设计等教学环节,以“工程材料学”课程为中心,注重课程的纵向推进和知识的横向联系,不断加深对材料学的理解和掌握,培养多角度研究分析、跨专业交流合作、多学科解决问题的能力。

参考文献:

[1]朱张校,姚可夫.工程材料[M].北京:清华大学出版社,2011.

[2]周风云.工程材料及应用[M].武汉:华中科技大学出版社,2002.

[3]王少刚,郑勇,汪涛.工程材料与成形技术基础[M].国防科技出版社,2016.

[4]闫康平.工程材料[M].化学工业出版社,2008.

[5]于永泗,齐民.机械工程材料[M].大连理工大学出版社,2010.

Discussion on Reform of "Engineering Materials" Course Teaching for Aeronautic Majors

WANG Tao,ZHOU Ke-yin

(College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing,Jiangsu 210016,China)

篇7

关键词 课程教学改革;航空航天类专业;自动控制原理

中图分类号 G642.0

文献标识码 A

文章编号 1005-4634(2012)05-0048-05

0 引言

《自动控制原理》是航空航天类本科专业一门重要的专业基础课。以笔者所在的北京理工大学为例,航空宇航科学与技术一级学科下属的飞行器设计与工程、航天运输与控制、飞行器动力工程、武器系统与发射工程、探测制导与控制技术等专业的本科生,均在大三第一学期必修《自动控制原理》经典控制理论部分,包括54个理论课时和10个实验课时,其任务是通过对自动控制理论知识的学习,培养学生对控制系统的分析设计能力、工程实践能力和创新能力。同时,《自动控制原理》还是学习测试技术、飞行器制导与控制技术、飞行器总体设计、航天器测控原理等诸多专业课程的先修课,在航空航天类专业的本科生培养计划中占据着非常重要的地位。

《自动控制原理》的授课模式一般有两种:一是将经典控制理论部分和现代控制理论部分分开讲述,先讲授经典控制后讲授现代控制,目前国内大部分高等院校均是采用的这种授课模式;二是将经典控制和现代控制融合讲授,这种授课模式有助于培养学生从系统角度、全局高度来思考问题的能力,更利于掌握控制理论的实质。由于授课模式的沿袭性及单学期课时数的限制,北京理工大学航空航天类专业的《自动控制原理》采用了前一种授课模式。授课教师采用A、B角的方式,教师队伍中有授课近20年的教师,还有刚刚博士毕业踏上工作岗位的年轻教师,更难能可贵的是,所有授课教师均有出国留学或访问的经历,兼通中西教学模式之长,融蓬勃朝气与丰富经验于一体。

本文主要是以《教育部关于全面提高高等教育质量的若干意见》(教高[2012]4号)中“坚持内涵式发展”、“促进高校办出特色”、“创新人才培养模式”、“提升国际交流与合作水平”等内容为指导,结合北京理工大学的学校定位和办学特色,以笔者在《自动控制原理》经典控制理论部分本科教学过程中的思考和认识为基础,对北京理工大学航空航天类专业在《自动控制原理》本科教学改革中的若干有效措施进行总结和探讨。

1 授课内容及学习过程中存在的问题

1.1《自动控制原理》的授课内容

笔者主要讲授《自动控制原理》中的经典控制理论部分,授课内容分为八章,分别是:自动控制系统导论、自动控制系统的数学模型、自动控制系统的时域分析、根轨迹法、频率法分析、控制系统校正、非线性系统和线性离散系统。其中,前六章和第八章是重点讲授内容,第七章是一般讲授内容。就总的讲授内容来说,有理论性强、新概念多、系统性强、与工程尤其是航空航天工程联系紧密的特点,如已列装或在研的大部分导弹飞行器,其自动驾驶仪的设计仍主要是在经典控制理论的框架下完成的。学习过程是先了解控制系统的组成尤其是强调“反馈”的概念,再根据实际的控制系统建立数学模型,然后通过时域法、根轨迹法、频率法等分析系统性能的优劣对比,最后对系统整体性能进行校正和设计,可以说,整个过程是一个完整的体系,更是一个循序渐进的过程。

1.2《自动控制原理》学习过程中的几点问题

无论哪门课程,讲授目的均是希望学习者能够掌握相关知识的基本原理、分析方法并最终做到灵活运用。考试成绩是评价学习者是否达到上述标准的一个参考,但考试成绩并不能表明一个学生是否真正达到了上述标准。为了准确评估《自动控制原理》的讲授效果,真正了解该门课程学习中可能存在的问题,不但要时刻注意本专业学生在修习过程中的反馈意见,而且要广泛调研和阅读其它学校和专业的教师在该门课程上的经验总结。在此基础上,结合笔者的亲身体验和思考,认为航空航天类专业的学生在学习《自动控制原理》过程中可能面对的主要问题包括:(1)部分学生由于数学基础不够扎实,对课程中涉及到的数学知识产生畏难情绪,进而无法很好地掌握控制系统的分析方法;(2)不能将所学的控制理论知识与自己专业的实际案例充分地联系起来,这主要是在学习过程中接触专业案例少造成的;(3)阅读英文文献的能力不足,而且这种不足突出表现在缺乏对专业词汇的正确理解上,这说明《自动控制原理》需要适度地推进双语教学改革;(4)无法将基本理论和计算机辅助设计软件MATLAB结合起来进行更有效地控制系统设计,即割裂了基本理论和计算机辅助软件相辅相成、互相印证、互相促进的关系;(5)从系统角度理解控制系统核心思想的能力不足,即无法做到融会贯通,更谈不上灵活运用,这需要授课过程中注意前后串联,帮助学生建立起系统概念。针对上述问题,结合北京理工大学办学定位和航空航天类专业《自动控制原理》的授课特色,授课教师均提出了有针对性的改革措施。多年来的教学实践证明,这些措施很好地解决了北京理工大学航空航天类专业本科生在《自动控制原理》课程中的学习问题,增强了学生对该门课程的学习兴趣和“自主学习”能力。

2 教学改革的若干举措

2.1从数学基础抓起

“工欲善其事,必先利其器。”《自动控制原理》课程涉及大量的数学知识,如拉氏变换及其逆变换、微分方程、差分方程、复变函数理论、Z变换等。毫不夸张地说,扎实的数学功底是学好该课程的基础。如果学生缺乏必要的数学知识,教师又不能适时补上这个不足的话,很容易造成学生在学习过程中的畏难情绪,不可避免地会影响教学效果。

北京理工大学授课教师的做法是在《自动控制原理》开课伊始,就给学生列出所有需要用到的基础数学知识。一方面引导学生重新复习这些已经学过的数学知识;另一方面,授课教师还会抽出专门的课时来对这些数学知识进行复习和重点讲授。为了不断加深学生对这些数学知识的理解,在用到相应的数学工具时,授课教师都会结合具体的实例进行更详细地讲述。为了尽可能减少学生在学习中的畏难情绪,北京理工大学授课教师在考试中坚持“注重概念,弱化计算”的理念,只要学生思路正确,仅仅是计算错误的情况下,尽量少扣或不扣分。

2.2双语教学,与国际接轨

开展双语教学有助于我国高等教育与国际接轨,是当前教育改革的热点和重点,同时也得到了教育部等相关部门的大力支持。在双语教学的改革中,有一点需要明确的是,专业课双语教学的目的并不是为了增加学生的词汇量,也不是为了提高学生外语的写作水平,更不是为了教学生外语语法,而是为了增强学生阅读专业外文文献的能力和对专业知识的理解能力。近年来,英语已经逐渐发展成为全世界通用的语言,最新的科研成果更主要是以英文形式发表。所以,我国高等教育中大部分的双语教学均是采用中文和英文的双语授课模式。

由于《自动控制原理》涉及到的诸多基本理论和分析方法大都是从国外引进和翻译过来的,加上国外学术界习惯用人名来命名定理的做法,给国内学生记忆和理解这些理论和方法增加了额外的困难。如用于判定线性系统稳定与否的劳斯判据就是以英国数学家Edward John Routh的名字命名的,类似这样的例子还有很多,这对于习惯望文生义的国内学生来说,想仅仅从字面意思来理解劳斯判据本身几乎是不可能的。有鉴于此,基于航空航天类专业《自动控制原理》双语教学改革的目的主要是为了增加学生对专业词汇认知这一基本的出发点,决定了航空航天类专业《自动控制原理》双语教学的授课方针应以中文为主、英语为辅。具体做法是,每当第一次出现新的名词、原理和方法时,授课教师先用中文进行详细讲解,然后告诉大家这些名词、原理和方法在英文中的表示方法和来源,并在以后遇到这些名词、原理和方法时,更多地采用英文表述。如传递函数(Transfer Function)、劳斯判据(Routh Criterion)、阶跃响应(Step Response)、脉冲响应(Impulse Response)、根轨迹(RootLocus)等,都可以采用这种处理方式。此外,还需要注意引导学生适量阅读英文参考书和专业文献,由于Katsuhiko Ogata所著《Modern Control Engineer-ing》一书在世界范围内的广泛被接受性,北京理工大学同样推荐学生将这本书作为英文参考书。

2.3融科研于教学

随着我国高等教育改革的不断实施和深入,昔日的“填鸭式”教学已逐步被更能激发学生“自主学习”能力的“启发式”、“案例式”教学所取代。在《自动控制原理》的教学中,如果只是讲授一般的数学公式和物理定理,而与实际工程割裂开来的话,很可能出现的后果就是学生学习后不知道用在什么地方,更不知道如何用,更糟糕的情况是学生在考试后就把所学的东西全忘掉了。为了避免这一状况的发生,有必要将专业案例、授课教师的科研项目融入日常的教学工作中去,让科研带动教学、教学促进科研。

如在第一章讲授自动控制系统定义和基本组成的时候,通用的教材是举一些工业上常见的例子,像室温调节系统和水位调节系统来引入自动控制的专业术语和反馈的概念。这种讲授方法是很好的,有利于学生建立对控制系统组成的直观概念,并认识到自动控制的核心思想所在。对于航空航天类专业的学生来说,在讲述通用案例的同时,还可以结合航空航天领域的应用案例,如引入图1所示的导弹攻击飞机的案例。在这个案例中,导弹根据自己探测到的目标机动特性,依据一定的制导律生成最佳攻击曲线,当弹上的测试设备探测到实际飞行路线和预定飞行路线出现偏差的时候,弹载计算机会依据一定的法则生成控制指令,气动舵机来执行这一控制指令,从而达到控制导弹回到预定飞行路线的目的。按照这一描述可以画出它的系统方块图,如图2所示,和基本的负反馈闭环控制系统(如图3所示)对应起来,预定飞行路线对应给定输入、弹载计算机对应控制器、气动舵机对应执行机构、导弹就是被控对象、实际飞行路线即是实际输出、弹载测试设备即对应测量输出的传感器。这样讲授下来,由于比较贴近专业方向,同学们就很容易理解控制系统的结构,并对输入、输出、被控对象、执行机构、控制器的作用及反馈的概念有了更为直观和深刻的认识。

在讲述控制系统稳态性能和动态性能的时候,大量引入航空航天的专业案例,尤其是一些因为控制系统设计失误或控制系统未能正常工作产生重大损失的失败案例,对引发学生的学习兴趣颇有帮助。从教学的效果看,这些案例的引入,不仅加深了学生对《自动控制原理》重要性的认识,激发了他们学习的热情,同时,还培养了他们对所学专业的兴趣。在此基础上,可以注意吸收一些对自动控制理论或应用感兴趣的学生提前进入实验室,并挑选与任课教师负责项目相关或者处于航空航天控制前沿的研究方向,如临近空间飞行器的制导与控制技术,让他们自由发挥,思考和创新,切实培养他们的动手能力。

此外,授课教师要非常注重“基于书本、超越书本”。比如香农(Shannon)采样定理认为:对于一个连续信号来说,当采样角频率是该连续信号所含最高次谐波频率两倍以上的话,即能做到一个周期内采样两次以上的话,那么经采样后所得到的脉冲序列,就包含了原连续信号的全部信息,可通过理想滤波器把原信号毫无失真地恢复出来。这一表述在数学理论上是没有任何问题的,但在实际工程项目中往往是行不通的,比如一个正弦曲线的测试,一个周期里只采样两三个点的情况下,几乎没有可能复现原信号。类似于这样的问题,授课教师需要在授课过程中向学生特别强调。

2.4计算机辅助教学

由于《自动控制原理》在授课过程中涉及到的数学公式、图形(结构图、框图、根轨迹图、伯德图等)比较多,非常不方便在课堂上进行直接板书,一旦板书不清楚会直接影响学生的学习效果。而这些公式和图形是非常适合以幻灯片(PPT)的形式来进行表述的,学生也更乐意看到这种方式。北京理工大学授课教师同样采用了以PPT为主的授课模式,配以适当的动画,给学生一个更为直观的展示。如在讲授动态性能指标的时候,延迟时间、上升时间、峰值时间、超调量、调节时间等名词的定义并不是那么容易理解,但通过动画的形式就可以很清楚、明了地向同学们展示这些概念的不同,学生反映良好。再比如在讲授不同阻尼比情况下二阶系统单位阶跃响应特性的时候,只靠文字表述“随着阻尼比的增大,系统的响应越快,但超调量越大”的话,大部分学生是比较茫然的。如果换成通过PPT展示给同学们如图4所示的响应曲线时,就会一目了然,同时,还有助于同学们掌握零阻尼、欠阻尼、临界阻尼、过阻尼等情况下单位阶跃响应特性的不同。

MATLAB是学习《自动控制原理》的学生必须掌握的一个计算机辅助分析工具。实际上,一个令人引以为傲的事实是,北京理工大学航空航天类专业本科生的MATLAB基础知识都是在《自动控制原理》的课堂上学到的。由于年轻学生对新鲜事物天生的好奇感,当他们看到教材上一幅幅精美的图片是通过MATLAB展示在自己面前的时候,不但会加深他们对所学知识的理解,更会激发他们学习这门课的热情。比如讲二阶欠阻尼系统阶跃响应的时候,可以首先引导学生思考一个问题:“既然阻尼比越小,系统响应越快,超调量越大,那怎么来选择合适的阻尼比呢?”然后再用教学计算机上装载的MATLAB画出图5,这是阻尼比位于[0.10.9]之间,以上升时间为横坐标、超调量为纵坐标的Pareto图,同时在图中标示阻尼比分别为0.4、0.707和0.8所对应的点。以这个直观的示意图做基础,同学们就很容易理解为什么工程上一般要求阻尼比在[0.4 0.8]范围内了,再告诉同学们阻尼比为0.707时控制系统效果最佳,他们也就明白了因果来源。如果更进一步画出阻尼比分别为0.6、0.707和0.8时候的单位阶跃响应曲线来,如图6所示,同学们就会有一个更加明确和直观的印象。此外,授课教师还可以通过课下作业的形式,引导学生利用课堂所学知识编程实现更复杂的响应曲线,使学生可以亲身感受到响应曲线随不同参数变化的规律,不但可以加深学生所学的理论知识,还有助于学生掌握辅助软件的用法。

用MATLAB辅助教学可能会带来的一个副作用就是,同学们可能觉得只要掌握MATLAB就可以了,而忽略了自动控制本身的基本原理和定性的分析方法。这是授课教师在教学过程中需要重点留意并刻意避免的问题之一,北京理工大学授课教师在每次用MATLAB辅助教学时,都会强调基本原理的重要性,同时会刻意用所学的定性分析方法来评估MATLAB结果的正确与否,并一再强调,MATLAB只是一个辅助大家进行控制系统分析的工具,不能取代大家所学的基本原理和分析方法本身,考试中也不会考这方面的内容。

2.5注重前后串联,建立系统概念

《自动控制原理》本身的讲授内容多、跨度时间长,而且学生同时还在修习其它课程,所以用在《自动控制原理》这一门课上的时间是极其有限的。而且一般教材也更倾向于将每个章节的内容独立出来,如仅仅在第二章讲述控制系统模型的建立方法,在以后的学习中就直接拿现成的传递函数来用;再如第三章讲述时域分析法之后,在后续章节的讲述中几乎不会再涉及。很可能造成的一个后果就是学习过程中常常不清楚各个知识点之间的相互联系,也无法真正的做到融会贯通,在遇到实际的工程问题时就会显得束手无策、不知如何下手。这需要授课教师帮助同学们理清线索,弄清楚各个章节之间的因果关系。

北京理工大学授课教师在每个章节开始和结束的时候都会向学生展示图7,告诉大家正在学习的内容在图中什么位置,在整个自动控制原理的框架中起到什么作用,它以哪几个章节为基础、又可以为哪几个章节提供帮助。在课程结束的时候,还会精心选取几个航空航天专业的典型案例,让同学们以小组为单位形成一个大作业,这个大作业涉及到《自动控制原理》所讲授的全部核心内容,从系统建模到系统性能分析,并发挥他们自己的独立思维进行系统的二次设计,从学生的反响及实际的教学效果看,这种做法十分可取。

篇8

 

1.国内飞行器制造工程专业人才培养现状

 

随着我国飞机保有量和需求量快速增长,以及为实现从“航空航天大国”向“航空航天强国”发展、提升航空航天工业水平而实施的“大飞机”等项目产业政策的推进,我国对飞行器制造方面的专业人才需求不断加大。近些年,各类高校依托教学科研优势,不断加强或开设了飞行器制造方面的专业,提高了行业参与度。

 

至今,办此本科专业的有西北工业大学、北京航空航天大学、南京航空航天大学、哈尔滨工业大学、南昌航空大学等十多所高校。各高校依托自身的优势,积极开展专业特色化建设,培育自身的专业特长。如西北工业大学偏向于CAD/CAM集成的数字化制造技术、北京航空航天大学突出于板料成型技术专业教学和实验、中北大学以飞行器特种制造为特色等,形成了面向飞机制造、适应航空航天发展要求的课程培养体系,培养出一批具有飞行器制造工艺技术的航空航天类人才。

 

从2002年开始,我国高校开始重视本科专业教育教学实习基地的建设,并以此为依托加强学校与企业的交流与合作,如带领学生深入企业进行现场教学、企业人员为学生讲课(讲座)、征求企业意见制订专业培养计划、订单培养等。我校飞行器制造工程专业主要面向航天航空飞行器产品制造等相关产业培养钣金、铆接、装配技术类高素质应用型本科人才。由于本专业开办时间短,目前我校在飞行器制造工程人才培养方面仍处在探索阶段。加强实践教学已成为飞行器制造工程专业人才培养模式的必然选择,而其中最有效的途径是校企合作。

 

2.校企“3+1”合作办学的优势

 

3+1校企合作办学指前三学年的培养在校内进行,第四学年除部分课程及实验教学在学校完成之外,其他现场课教学、生产实习、课程设计、毕业设计等环节均在企业内实施,以强化学生工程实践、动手能力及综合素质的培养,简称“3+1”合作办学模式。校企合作办学“3+1”模式,这种合作教育能够实现工学结合,为学生提供在真实工作环境下学习的机会,是实现应用型工程技术人才培养目标的有效途径,也是与就业联系最密切的一种教育模式。

 

由于有很多限制条件,学校无法投入过多资金购置像企业的一些精密加工设备作为教学仪器设备,所以学生在校内学习期间只能在理论上了解基本成形原理和方法,根本看不到实际的设备及生产工艺过程,也就无法掌握一些知识。而合作教育提供的教学手段和设备资源,弥补了学校的教学条件的不足,解决了教学与生产实际脱节甚至落后于生产现状的严重问题,实现了校企教育资源的优势互补。

 

学生在航空航天企业生产实践过程中会认识到,一个不受社会和企业欢迎的人是无法发挥才干的。到企业后,学生清楚地了解了用人单位人才需求目标,了解了作为飞行器制造专业的工程技术人员必须重点掌握的知识,明确了学习目的和方向,增强了学习主动性。在专业知识对生产过程发生作用的亲身体验中找到了成就感和危机感,提高了学习兴趣,明确了专业思想,树立了学以致用、理论联系实际的观念,使就业观念和定位更符合社会与航空航天企业的需求,且学生就业之后,表现出的工程意识、创新意识和适应工作岗位的能力都明显增强。

 

3.飞行器制造工程专业校企“3+1”合作办学模式探析

 

我校长期以来,一直与一些航天企业有着较好的合作关系,并与其建立了校外实习基地,如中国航天科工集团柳州长虹机器制造公司、桂林航天电子有限公司等。这些公司每年都会吸收一批本科毕业生,以补充和优化专业技术人员结构。

 

本科生在外语、计算机及基础知识等方面表现出了一定的优势,但普遍存在本科生专业知识与航空航天生产过程的需求脱节比较严重、独立解决现场实际问题的能力非常薄弱,同时表现出对社会及企业的了解甚少,融入工作环境的协作精神比较欠缺等问题。这正是毕业生和企业共同担心的问题。这些公司在航天专业技术领域与我校飞行器制造工程专业在培养学生过程中需要的全部专业知识具有良好的适应性。可见校企及学生三方都有合作办学需求的基础。

 

3.1合作办学模式的定位

 

飞行器制造工程专业人才培养采取校内培养和企业联合培养的方式,即学生在校期间的学习分为校内学习和企业学习两部分。学制4年采用“3+1”模式,即3年校内通识类课程、大类学科基础课程、核类专业基础和专业课程的理论与实验教学,着重加强学生基本知识、基本理论和基本技能的学习、锻炼和培养;累计1年(主要集中在第四年)校外企业核类部分理论课程和实践教学。

 

重点是最后一个“1”的环节,具体而言在这一年的校外企业实践教学环节中实行“部分专业课+课程设计+生产实习+毕业论文(设计)”的集成化教学方式,着重培养学生获取知识、分析问题和解决问题的能力及创新能力。

 

3.2“3+1”校企合作办学的主要特征

 

3.2.1规范选拔机制,组建一支优秀学生队伍。第四学年初,学校需要在飞行器制造工程专业组建实验班进行统一编班授课。学生自愿报名的基础上,根据学生前三年在校成绩及获奖等综合素质表现,择优选拔出一定数量的学生,成立“飞行器制造工程专业‘3+1’校企合作试验班”。规范的选拔机制应公平公正,公开透明,也是对低年级学生的一种激励。再则,一支高素质学生队伍是校企合作有效办学的重要保障。

 

3.2.2校企双方共同制订和实施培养计划。试验班的培养计划和教学大纲应由我校机械工程学院牵头,与企业共同协商制订,将学校教学过程和企业生产过程紧密结合,校企共同完成教学任务,使学生在掌握一定飞行器构造、飞行器制造工艺与工艺装备的基础理论和专业知识基础上,具有钣金、铆接和装配等基本操作技能,能够从事飞行器产品零件的设计、生产及装配、工厂生产管理和服务于第一线的工作的能力。实验班往往会加入部分企业需要的专业课程,学校无法完成的可由在企业中聘请的兼职教师到学校讲授。部分实践教学依据学校实验设备条件和企业生产进度协调安排。

 

课程设计、毕业设计选题应尽量来源于企业的生产实际。3.2.3建立校企双向管理制度。学生实践活动期间,不仅要保障学生安全和日常教学活动,还不能影响企业正常生产,因此,应严格实行校企双向管理制度。学生的劳动纪律考核应由企业负责,尽量与员工保持同步。校企双方应各派一名专职辅导员,有利于学生日常行为和具体事务协调与管理。由于航天企业有其特殊性,教学管理程序要适应航天企业产品研制与生产中的相关保密规定。

 

3.3“3+1”校企合作办学实施的保障措施

 

许多学校在开展校企合作办学的过程中,企业合作积极性不高,教学主体在实施过程中缺乏企业的实际参与和互动等问题。为了实现校企双赢的合作关系,保障校企关系持久稳定,要在以下两方面下工夫。

 

3.3.1寻求学校、学生与企业三方协调。学校有教学任务,学生有就业任务,而企业有其生产任务,校企合作教育应该在学校、学生与企业三者间寻求协调和统一,在学校教学管理部门、二级学院和专业教师的精心组织与周密安排下,加强与企业的沟通和联系,加强与企业兼职教师之间的合作与协调。校企之间要协同制定相应制度,明确各自在应用型人才培养过程中的职责,成立专门部门,负责协调校企合作各项事宜,真正做到有政策制度的保障。特别要健全学生在企业实践学习阶段的教学质量考核与评价体系,优化企业对试验班毕业生的择优录用机制。

 

3.3.2培养高质量“双师型”教师队伍。近年来,为了加强师资力量,学校引进不少拥有博士学位的毕业生补充到我校飞行器工程专业教师队伍中,他们虽然有扎实的基础理论,但工程实践背景比较薄弱。因此,师资队伍建设中,除注重学历、年龄和职称结构外,还特别强调教师的航空航天企事业单位工作经历和工程实践背景。为了加强专业课教师工程实践能力的培养,学校要鼓励或创造条件让来自高校或没有一线工作经历的教师到相关企事业单位挂职,增强实践能力,以促进校企合作教育的开展。

 

4.结语

 

合作办学是以学生为中心的,在合作教育所有效益中,适合人才市场需求,提高学生的就业能力是利益的核心。校企合作办学让高校走向企业,也让企业走进高校,将高校的理论教学与企业实践有机融为一体。这种办学模式对促进飞行器制造工程专业创新人才培养模式、拓宽人才培养思路非常有利。

篇9

blogs.hbr.org

很好地定义问题,有助于找到突破性的解决方案。在开发新产品,或在企业运营流程、业务开展的过程中,大多数企业都不能很准确地界定问题。然而,到了要试图解决问题时,仍然不明确要解决什么问题,就无法认识到要着手开展的工作的重要性。如果无法严谨、准确地定义要解决的问题,企业将错过机会,浪费资源,或者最终的努力无法与战略目标保持一致。多少次某个项目做到一半,你才顿悟原本应该采取另一种做法。多少次某个创新工程似乎要取得突破,你才发现其实是不可能实现的。企业必须更好地提高自己找出问题的能力,这样才能解决真正应该解决的问题。

以下故事涉及三个不同的企业,它们处于不同的领域,但它们的相同之处是都曾经面临正确定义问题的困扰。从案例中可以看出,正确定义问题最终可以帮助企业吸引合适的创新者,为企业带来突破性的解决方案。

亚北极石油问题

1989年,埃克森发生瓦尔迪兹石油泄漏事件(Exxon Valdez Oil Spill)。二十多年后,在亚北极的石油清理队仍面临石油泄漏清理难题,因为石油在低温下粘性很大,很难将它用泵机回收到驳船上再带到岸上的收集站。

如何定义问题:在寻求解决方案的过程中,溢油回收研究所(Oil Spil Recovery Institute)将这个问题定义为“材料粘度”,而不是“石油清理”,并且在报告中使用了一些非石油行业术语。而这份报告的目的在于吸引各个行业的人士提出建议。

突破:最终一位水泥行业的化学家解决了这个问题并获得了2万美元。这位化学家采用了一种商用建筑设备的改良方案,利用这种设备能够振动凝结的石油,从而让石油保持流体状,最终解决了石油清理问题。

ALS治疗问题

在20世纪后期,研究人员试图开发一种药物,用以治疗萎缩性脊髓侧索硬化症(ALS,或称卢伽雷氏病),但是没有取得多大的进展—一个主要障碍是研究人员无法准确、迅速地检测和追踪病情的发展情况。因为研究人员无法准确地知道病人的这种病发展到哪种程度,因此,研究人员增加了临床实验患者案例,推迟了研究时间表。而这种做法除了增加成本之外,无法在治疗上取得成果。

如何定义问题:非营利性组织Prize4Life提出了解决方案。Prize4Life不是将问题定义为寻找ALS治疗方案,而是定义为让ALS研究更有效,希望利用一种生物标志物,让ALS检测和追踪更迅速、更准确。

突破:2011年,一位来自波斯顿贝斯以色列医院(Beth Israel Hospital)的研究人员解决了这个问题并获得了100万美元的奖金。这位研究人员提出了一种无创伤、无痛楚、低成本的解决方案,依靠测量电流通过肌肉的变化情况监测ALS,并评估这种疾病的变化情况。这种方法降低了治疗ALS的研究成本,因为它可以及时提供准确的数据,让研究人员能够在较短的时间内取得成果。

太阳耀斑问题

2009年,美国航空航天局公告,要寻求一种更好的方法预测太阳耀斑爆发,以保护在宇宙空间的宇航员和卫星,以及保护地球上的电网。而美国航空航天局在过去的30年里采用预测模型,只能提前4小时预测太阳耀斑辐射是否到达地球,而且预测准确率不超过50%。

如何定义问题:面对潜在的问题解决专家,美国航空航天局没有让他们找到一个更好的方法以预测太阳耀斑爆发;相反,美国航空航天局将这个问题视为一个数据问题,他们找到那些有分析背景的研究专家,允许他们使用美国航空航天局庞大的太空天气数据库,最终开发出一种预测模型。美国航空航天局认为,这种数据驱动的解决方案不仅能让各个行业的人士加入解决问题的行列,同时也能让自己利用已经归档的数据,对新预测模型的精确性进行测试,并反馈信息。

篇10

2020年11月18日下午,第十四届航空航天月桂奖颁奖典礼在北京成功举办。那么你们知道关于第十四届中国航空航天月桂奖心得感悟范文内容还有哪些呢?下面是小编为大家准备第十四届中国航空航天月桂奖心得感悟范文五篇,欢迎参阅。

中国航空航天月桂奖心得感悟范文一我爱祖国的航天事业也许是父母给予我一个特殊的“符号”—陶嫦娥,所以从小的我就是一个充满幻想的女孩,我幻想将来有一天我能像嫦娥一样飞上天空,能在浩瀚的苍穹和无垠的宇宙中有一个舒适而温暖的家。小时候,我总缠着妈妈给我讲我们中国航天事业的发展,妈妈告诉我,我国航天事业起步于20世纪60年代,1970年4月24日,寂寞而辽阔的茫茫太空中,第一次响起了中国人的声音,中国成为世界上第五个能够发射卫星的国家从此开始了中国的航天事业。2003年10月15日,我在电视的屏幕上看到了“神舟五号”载人航天飞船发射成功,10月16日6时23分,飞船在环绕地球14圈后成功返回祖国大地。这是我国首次载人航天飞行的成功,向全世界庄严宣告:中国已经成为第三个独立掌握载人航天技术的国家

。2005年10月12日,这又是一个令人惊心动魄的时刻,中国第二艘搭载太空人的飞船“神舟六号”再次将两名中国宇航员费俊龙和聂海胜送入太空。在经过115小时32分钟的太空飞行后,飞船返回舱于17日凌晨4时顺利着陆,这又是一个具有里程碑意义的重大胜利。看了《我的祖国》这本书,让我知道了许多关于航天的感人事迹。第一个令我热泪盈眶的故事是万户飞天的故事,中国明代的官员万户,是世界历史上第一个试验乘火箭上天的人。他用两排47支的火箭捆绑在椅子下面,自己坐在椅子上,手拿两只大风筝,然后叫人点火发射,巨大的反冲力将他送上高空,但是天有不测风云,随着一声巨响,第二节火箭筒在空中发生了爆炸,顷刻间,他变成了一团火球,坠落在地。万户牺牲了,万户为光荣的航天事业做出了伟大的奉献,他那勇于探索和不怕困难的精神使我不得不为他所折服,在人们的心中,会永远记住万户这个响亮的名字,国际天文学联合会将月球上的一座环形山命为“万户山”,而在我的心中,万户已成为了在我面对困难和挫折的一种鼓励,一种坚持,更是一种激励我进步的理想。

第二个是在载人航天工程的研制、建设中,广大科技人员、工人、解放军官兵做出的贡献:有的人为了工作的及时、方便,将铺盖搬到了工厂车间;有的人积老成疾,几次住进了医院;有的年轻人虽风华正茂却华发早生;有的人甚至为此付出了全部心血与生命,未能等到成功的那一天便猝然长逝。这些都体现了中国航天人的团结合作,默默奉献,勇于探索,锲而不舍的科学精神。所以我要从小培养与同学团结合作,遇到困难要有勇于探索,锲而不舍的精神,有一颗爱国之心,我相信我一定能的。我爱祖国的航天事业!温泉小学:陶嫦娥

中国航空航天月桂奖心得感悟范文二随着天文观测技术的发展,现代航天器将人们带入了崭新的航天时代。我热爱宇宙,更热爱航天,我的理想就是当一名航天事业的战士,乘着载人飞船去遨游太空,探索宇宙。

我对航天的理解很浮浅,认为飞机、火箭飞上天就是航天,实际航天领域研究的东西非常广泛,也非常深奥,不管我对航天认识的深与浅,但我非常喜欢航天。

记得小时候,大人们给我买的玩具中我最喜欢的就是飞机,现在家里还有两架遥控飞机模型保存的好好的;还记得我上幼儿园中班的时候,我和爷爷一起做了一支火箭模型,并在全幼儿园观展;上了小学我参加的是航模兴趣小组,在小组里我做了六架飞机模型。当我制作的飞机模型飞在天空中的时候,我想起了杨利伟叔叔,他乘着我国自己建造的载人宇宙飞船遨游太空,这一创举在全世界面前为我们中国人争了光露了脸。

随着年龄和知识的不断增长,我对航天的理解也逐渐加深了,同时脑子里的疑问也一个一个的接踵而来,如:火箭没有翅膀是怎样飞起来的?人造卫星在天上会不会掉下来?再如:载人飞船为什么能遨游太空?……带着这些问题我买了一些有关“宇宙、太空、自然科学”方面的百科全书。通过学习我初步了解到:火箭是利用发动机向后喷射高温高压的燃气产生及作用力以获得前进推力,并由此向前运动的飞行器,它一般由动力系统、控制系统和结构系统三部分组成。人造卫星和太空探测器是无人驾驶的航天器,它拥有高度精密的自动控制装置,迄今为止它们已先后对月球、金星、火星、哈雷星等近距离或实地考察,并取得了丰硕的成果,因此人类称它为“宇宙信息的侦察兵”。人类除了派人造卫星和探测器到太空考察外,也希望自己能够飞上太空,载人飞船就是人类遨游太空的工具之一,它一般由座舱、轨道舱、服务舱、对接舱和应急救生装置等部分组成。座舱是飞船的核心,轨道舱内装有各种实验仪器,服务舱则是为航天员提供生活保障的地方。载人飞船可以独立进行航天活动,也可作为往返于地面和空间站之间的“渡船”,并能与空间站或其他航天器对接后联合飞行。我国自行研制的天宫一号和神州八号于11月3日凌晨1时36分首次空间对接成功,这是在美国、俄罗斯进行首次交会对接试验40多年后中国成为世界上第三个掌握自动空间交会对接技术的国家,这说明我们国家的航天技术已达到了世界顶尖水平,我为之骄傲和自豪,同时我也更加热爱航天了。

我是一名少年儿童,是祖国的未来,我知道宇宙间还有许多奥秘等着我们去探索和发现,航天领域里还有许多难题在等着我们去认识和攻关,因此,为了实现自己遨游太空探索宇宙的美好理想,长大后为我所爱的航天事业贡献力量,从现在起我要努力学习科学文化知识,牢牢掌握过硬本领,争做一名优秀的少先队员。

齐齐哈尔市第三十四中学初一:祝朝遐

中国航空航天月桂奖心得感悟范文三航天航空,是一个大国崛起的标志,是一个大国屹立于世界民族之林的根本。正因为人类对未知世界的向往及人类的求知欲,才有了今天的航天航空。航天航空是世界历史上开天辟地的大事,关系到世界科技技术、经济等方面的发展。我们需要航天航空,我们更要支持航天航空事业的发展。因为有了航天航空,才有了中国的腾飞。

没有航天航空,怎么会有中国的繁荣富强;没有航天航空,怎么会有世界科技的腾飞;没有航天航空,怎么会有揭开宇宙神秘面纱的基础;没有航天航空,怎么会有将古老神话变成现实的能力……

自古以来,中国一直向往着太空,从古代的嫦娥奔月到如今的嫦娥一号升天,从东方红一号到神舟飞船系列,从北斗导航卫星群到建立自己的空间站。从1992年启动载人航天工程以来,中国航天不断取得新突破,成为世界上第三个独立掌握载人航天技术、独立开展空间实验、独立进行出舱活动的国家。中国的航天航空目标致力于全面突破和掌握近地空间长期载人飞行和服务技术;突破和掌握近地空间组合体的建造和运营技术;开展较大规模和较高水平的空间科学应用;为开展载人登月等未来发展奠定基础等。

因为航天航空事业是一项巨大的系统工程,所以它的发展基础必须是:综合国力强盛,经济发展水平高,有一定的财政支持,有一批从事航天科技事业的骨干人才队伍,有先进的科学技术的发展水平。这样才有可能发展航天航空事业的腾飞。有了航天航空,才有中国的腾飞。

因为航天航空技术是科技密集综合性尖端技术,它体现了现代科学技术多个领域的成就;发展航天航空能体现一个国家综合国力,提高我国的国际地位;航天航空的发展能更好地开发太空资源为地球人类造福;航天航空是人类发展的一个新阶段的开始,因为人类可以通过航天航空的桥梁,转移到其他星球居住和生活,开发出更美好的生活空间,这不是可望而不可及的事情。航天航空促进了新学科的形成、新材料的研发、新资源的探测、新民用产品的生产。

在不久的将来,我们将会充分开发太空的旅游资源,让进入太空旅行成为一件平常事,让人们更进一步地与太空有亲密接触。航天航空技术的发展为我们进入太空奠定了基础。在未来,我们将能用我们

的双眼看看神秘的太空和美妙的仙境以及我们的美丽而浩瀚的家园—地球。太空之旅将不会是遥不可及,因为有航天航空。不久,人类将主宰太空,实现人类发展的革命。

作为学生的我们应怀有探索浩瀚宇宙的决心和勇气,努力学习科学文化知识,为航天航空的发展做贡献,为航天航空事业的腾飞而努力。未来中国的发展离不开航天航空,航天航空的发展更需要我们。

航天发展,中国腾飞!

中国航空航天月桂奖心得感悟范文四尊敬的各位评委们,敬爱的老师们:

大家上午好!

我们是祖国的花朵,祖国的未来。在我们心中都有一双“隐形的翅膀”,能让我们的中国梦飞上蓝天,绽放绚丽。今天,我演讲的题目就是我的中国梦——航天梦。

一个国家的梦想是什么?用国泰民安四个字来概括比较贴切。中国,是有着五千年文化史的国家,从古至今,名垂青史的人物有很多,他们都为国家的繁荣昌盛,奉献出了自己的全部力量。我想:为什么我就不能为伟大的祖国也尽一份力呢?因此,我从小心中就有着这样一个念头——当一名宇航员。

我十分向往宇宙,只得说,我与星星有缘。打从我记事起,每到晚上,我就爱趴在屋檐下看星星,那一颗颗闪烁着微弱光芒的星星,究竟是怎么样的呢?后来,我长大了,通过学习《科学》这门课程,我才渐渐明白,地球是多么庞大,星星是多么可爱呀!了解了这些知识后,我才觉得,那些亲自登入月球的宇航员们真是太了不起了!

我8岁那年,本来不爱看新闻的我,却跟着爸爸这个“新闻迷”看起了新闻。因为我被一则新闻吸引住了——“中国神舟七号登上月球”大家知道是谁这么厉害吗?就是航天员霍志刚,刘伯明和景海鹏。霍志刚出舱作业,刘伯明在轨道舱内协助,实现了中国历史上第一次的太空漫步,令中国成为能进行太空漫步的国家,他们真是我们中国的骄傲,也是我心目中的英雄。

此时,我多么希望自己有朝一日也能登上月球,在星星的海洋里飞翔啊,看看月球究竟是什么样子,上面会不会有嫦娥、玉兔、和吴刚叔叔?

不过,我知道,要实现自己的梦想,不光要学好科学文化知识,还要有健康的体魄,光有念想,没有实际行动一定是不行的。所以,现在我的饮食、生活习惯都发生了变化。

为什么要实现我的中国梦呢?

我们中国,是一个拥有十几亿人口的大家族,每一个儿女心中,都有着一个小小的梦,小梦连着大梦,一个个小梦连接起来,就是一个大大的梦,这,就是中国梦!

实现中国梦,让中国更加繁荣、富强。让人们过上更好的生活,所以,请大家不要放弃自己的小梦,每一个人,都有实现梦想的资格!

中国航空航天月桂奖心得感悟范文五伟大的事业孕育了伟大的精神。新一代航天人在攀登科技高峰的伟大征程中,以特有的崇高境界,顽强的意志和杰出的智慧,铸就了载人航天精神。这就是特别能吃苦、特别能战斗、特别能攻关、特别能奉献的精神。这些精神永远值得我们去学习。

生活上刻苦精神永远美好。人生之路不可能是永远平坦的。每个人,总会遇到这样或那样的困难和挫折。我们必须要在挫折和困难中奋起。这就需要有刻苦的精神,特别能战斗和特别能公馆的精神了。“吃得苦中苦,方为人上人。”学习上刻苦精神永远美好!

团结就是力量,是治国之本,更是治校之本。试想,一个集体,如果内部不团结,还出现分歧的话,那这个集体会强大吗?不止这样,一些有图搞破坏的人,在这个时候大力进攻,那损失更是不堪设想。

科学与人文并举。从小,这一句老话就不断地在我们的耳边回响:爱科学,学科学,用科学。但是,真正落实到的,又有多少人呢?友人认为,只要学会做人和文化知识就可以了,不用在学什么科学了。先进的科学技术,对一个强大的国家来说,是必不可少的。身为祖国的“花朵”的我们,不但要做到科学与人文并举,还要做到规范与个性共存!

艰苦的条件锤炼了中国航天人特别能吃苦的精神。中国航天事业是在极其艰苦的条件下起步的。茫茫的戈壁,浩瀚的海洋,广大航天工作者为了早日实现飞天之梦,不辞劳苦,日晒雨淋,克服了无数的困难,付出巨大的牺牲。严酷的挑战铸就了中国航天人特别能战斗的精神,崇高的使命焕发了中国航天人特别能攻关的精神。我们青少年,更应该在学习上多下苦工,好好学习。在生活上、学习上,遇到困难和挫折,不要逃避,不要退缩,要知难而进,一往无前,敢于胜利。有的同学,在生活中遇到了一点点的挫折,就对人生失去了信心和希望,觉得世界上什么都不是好的。于是,就自寻短见,恨离人世。要知道,这个世界是非常美好的,我们要珍惜生命,好好地享受这美丽的人生。就算它是不好的,那也是无可改变的事实。就像航天人员要在严峻的环境中训练一样,那严峻的环境已是无法改变的事实,那只有改变自己,去攻破这个难关。所以,我们不能因为一点点的挫折而放弃自己的使命,而是要在环境中、在艰苦中、在困难中成长,成就自己的人生和使命。学习上也是如此。学习靠的不是小聪明,而是刻苦。读书要用功,持之以恒地刻苦学习、钻研,这才是学习上刻苦精神永远美好的表现。

团结奋斗培育了中国航天人特别能奉贤的精神。我国载人航天工程是中国航天史上规模宏大的系统工程。广大航天工作者不论前方后方,不计名利得失,履行职责,坚守岗位,形成了强大合力。我们都生活在同一个大集体中,都为了一个共同目标——保护集体,就应该淡泊名利,不计较个人得失,甘于奉贤,团结一心,共创辉煌。“团结就是力量”,这是一股强大的力量,是一股催人前进的力量。有了这股力量,可以排除万难,勇往向前,达到目标。大至世界全人类、国家,小至班集体、家庭,都要团结。有的同学不顾集体利益,一心只为自己。例如他在拌种来回走动,看见一张桌子跌在地上,他不但不把桌子弄好,而且还残忍地踢上一两脚,是桌子雪上加伤。又例如是拔河,内部不团结,那肯定是全军覆没。

篇11

航空航天业属于高端设备制造业,关系到一个国家的国防安全,是一个国家综合技术实力、经济实力的体现。在发达国家,航空航天产业已成为经济可持续发展的强大推动力。从提高经济增长质量看,向航空工业每投入1万美元,10年后就可以产生50~80万美元的收益。航空航天产业关联度强,产业链非常长,其技术扩散可以广泛延伸至各种制造业,能有效带动相关产业重大关键技术的群体突破,实现跨越式发展。

“十一五”成绩惊人

“十一五”期间中国航空航天产业发展迅猛,产业规模快速扩张,外贸和转包生产取得长足进步,国际地位和影响力不断提升。

自主研发成果显著

武器装备研制成果丰硕,实现了跨越发展和升级换代。自主研制的新型歼击机、歼击轰炸机、轰炸机、特种飞机、强击机、运输机、侦察机、教练机、直升机、空中加受油机、无人驾驶飞机以及多型号、成系列的航空发动机、机载设备等军用航空装备均批量生产。

民用飞机发展取得重大突破,多种产品进入国内外市场。“新舟”60、运八、运十二、直十一、直九等航空产品批量走出国门。具有自主知识产权的新支线飞机ARJ21-700系列飞机累计中外订单已达340架;“新舟”60Z机累计订单总数已达162架,迎来了批量出口多个国家和地区的新局面。民用直升机产业快速发展,直八、直九、直十一、HC120等机型已形成系列化发展格局。

具备发射各种轨道空间飞行器的能力,在可靠性、安全性、成功率和入轨精度等方面都达到了国际一流水平。近地轨道运载能力达到25吨,地球同步转移轨道运载能力将达到14吨。研制的卫星,实现了系列化、平台化发展。卫星技术水平、应用水平、可靠性有了长足进步。初步形成了返回式遥感、通信广播、气象、地球资源、导航、科学探测与技术试验、海洋等7个系列。

攻克了飞船总体技术,制导、导航控制技术等关键技术等国际宇航界公认的技术难题,20余项技术达到国际先进水平。2005年神舟六号升空,标志着我国跨入真正意义上有人参与的空间试验阶段。2008年9月神舟七号取得了圆满成功,实现了我国空间技术发展具有里程碑意义的重大跨越。

第一颗月球探测卫星“嫦娥一号”于2007年1月24日发射。标志着我国已经进入世界具有深空探测能力的国家行列。2010年10月1日嫦娥二号卫星升空,主要任务是获得更清晰、更详细的月球表面影像数据和月球极区表面数据,因此卫星上搭载的CCD照相机的分辨率将更高,其他探测设备也将有所改进。

走出去参与国际合作

近年来,我国航空工业积极推进国际化开拓,全面扩大对外开放,广泛开展国际经济技术合作,全面融入世界航空工业,对外贸易大幅度跃升,先后向十多个国家出口上千架飞机和发动机。目前,从“枭龙”、K8、ARJ21、L15到ERJ145,从EC120、S-92到6吨级直升机项目,在飞机、直升机制造领域国际合作走向多样化,国际合作的层次又上一个新的台阶。

国际合作方面,全方位推进与国外航空工业界的合作关系,有效地促进了与空客、波音等伙伴之间的合作,为实现优势互补、互利共赢的合作创造了条件;与国外知名航空制造企业以联合研发、合作生产、合资建厂等形式共同参与C919项目等。一些新项目合同陆续签订与执行,如与庞巴迪签署C系列飞机风险供应商合同,与空客签署关于建立复合材料制造中心的合资合同。

国际市场开拓方面,我国自行研制的ARJ21-700新支线飞机在第八届珠海航展进行首次飞行,美国最大飞机租赁公司通用电气金融航空服务有限公司订购7"25架ARJ21-700。ARJ21-700是中国按照国际惯例自主研制的第一个先进支线飞机产品,它的出现将打破波音、空客、庞巴迪、安博威等外国飞机厂商在中国民用航空市场近乎垄断的格局。“新舟”60、运十二飞机以其优良的性能赢得用户,实现批量出口。截至目前,已有17架“新舟”60飞机在海外七国运营。其别值得一提的是玻利维亚两架机的交付以及在海拔4000米的拉巴斯机场的试飞成功,标志着国产的民航客机在南美市场迈出了坚实的第一步。

在航天工业方面,2007年我国首次以火箭、卫星及发射支持的整体方式,为尼日利亚成功发射通信卫星一号并在轨交付,中国航天实现了卫星整星出口零的突破。第二颗整星出口卫星――委内瑞拉通信卫星已于2010年10月30日发射,第三颗卫星――巴基斯坦通信卫星项目已正式签约,成为世界上为数不多的提供完整配套的发射服务、卫星、地面设备等航天产品及服务的供应商,火箭已成为享誉世界的高科技品牌。

“十二五”,辉煌再铸

中国将航空航天产业作为国家战略性新兴产业和优先发展的高技术产业,“十二五”期间将进一步加大政府支持力度,促进其快速发展。

航空展望

在未来几年里,快速提升民机适航能力,推进民机产业快速发展。要深入开展适航技术研究,完善适航性管理体系,同时在未来5到10年间,重点推进61~99座涡扇飞机以及涡轴系列发动机的适航取证工作,重点支持技术含量高、市场潜力大、技术基础相对较好的机载设备单独适航取证和维修适航取证,为民机市场提供成熟的货架产品;强化适航验证能力建设,逐步具备国内大型客机、通用航空型号、大型民用直升机、航空机载设备等型号研制的适航符合性演示验证能力;重视专业人才培养,提升职业素质,达到每年20名试飞员的培养能力,以满足未来民机试飞的需求;突破关键试飞驾驶技术和评审技术,使我国的试飞员技术达到国际先进水平。

低空空域开放

低空域开放将会列入单独列入新兴产业“十二五”规划,未来五年有望实现全国性的开放。通用航空相关的航空配套的设施和服务(生产、销售、培训、维修等)进展缓慢亦成为制约发展的因素。估计在未来一到两年内实现开放试点,预计2010~2020年间我国通用航空飞机需求市场容量将达到1500亿人民币。在“十二五”期间,预计通用航空产业处于市场铺垫和积累期:低空域开放首先需要机场、空管和航油等配套逐步完善;通用航空运营业务也将直接开展;由于细分市场较为成熟,外资品牌将占据大半江山,国内与外资品牌合作的维修企业将直接获益。

走出去

为全面加快国际化开拓步伐,中国航空工业的骨干企业必须勇敢地走向世界,立志成长为跨国公司、全球公司,对国家战略形成有力支撑。要建立全球视野、利用全球资源、参与全球竞争和拓展全球市场。要立足国内已有资源,积极融入国际航空产业链,参与国际合作与竞争。在此基础上积极进行海外生产、销售布局,建设海外研发中心,初步完成全球生产布局和跨国投融资布局,最终实现利用全球资源,在全球范围内经营,服务全球市场,实现研发、生产、销售网络的全球化,完成全球融资平台搭建,发展成为真正的全球公司。

载人空间站

2020年前后将建成规模较大、长期有人参与的国家级太空实验室。按计划将于2011年发射天宫一号飞行器和神舟八号飞船,实施首次空间飞行器无人交会对接试验。2016年前,研制并发射空间实验室,突破和掌握航天员中期驻留等空间站关键技术,开展_定规模的空间应用;2020年前后,研制并发射核心舱和实验舱,在轨组装成载人空间站,开展较大规模的空间应用。载人空间站建成后,将全面实现我国载人航天“三步走”发展战略,进一步推动载人航天技术向更高水平发展。

篇12

基于问题的学习是一种以学生为中心的主动型教学模式和课程体系设置方法,其最初是由加拿大的麦克马斯特大学(McMasterUniversity)医学院于20世纪60年代在医学课程教改中逐步形成并提炼出来的。在PBL中,教师根据课程要求和学生的知识基础预先定义一个不完整的或劣构的问题,然后让学生进行研究,理论联系实际,运用已掌握的知识和技能提出解决问题的可行方案,让学生亲身参与问题求解的每一个步骤和知识构建的过程,从而将其先前获得的知识和经验很好地整合起来,使已有知识结构得到完善的同时达到对新知识的理解与掌。

1.目标和基于问题的学习法的特点。

基于问题的学习方法的主要目标不仅仅是让学生获得知识,并且要运用知识。PBL重视模型和问题的解决。它试图模拟现实生活中的工程研究和开发过程。Barrows这样描述PBL的主要特点:(1)学习是以学生为中心的,即学生选择怎样去学习和他们想要学习的内容。(2)学习在小团体中展开并且提倡协作学习。(3)老师是促进者、引导者或教练。(4)问题形成组织重点并刺激学习。(5)问题是拓展真正的问题解决能力的工具。(6)新的信息是通过自学获得的。

2.PBL工程教育案例———麻省理工学院航空航天工程系。

几年前,在麻省理工学院的航空航天系成立了一个由教师和科研人员组成的新战略计划小组,专门负责课程改革。为了强调教育以学生为中心,讨论小组花费了一定的时间和精力通过对项目和学习成果进行验收,设计了新的教学方法,建造与之配套的实验室。尽管基于问题的学习是关键,但它不是课程组织的原则。新的航空航天工程课程以现实生活中产品完整的生命周期工程为背景,即构思、设计、实施和执行(CDIO),结合设计建造经验,贯穿于整个项目中。接下来就是从简单的项目到高度复杂的系统设计建立过程,以及从中取得的经验教训。第一年,在《航空航天设计导论》课上,学生们设计、构思并且试飞的由无线电控制浮空飞行器(LTA)。第二年,在《联立工程学》课上,学生们设计、搭建并且试飞了无线电控制的电推力飞行器。在一些比较深入的课程例如《空气动力学》课上,从工厂或者政府以往项目中提出航空工业中很常见一个实际的问题,像是以洛克希德•马丁战术飞机系统为模板提供项目设计方案。高级课程完全利用基于问题的学习方法,如:《实验项目实验室空间系统工程》、《CDIO高等课程》。在这些PBL体验中,学生发现自己感兴趣的问题,通过做实验找到解决方法,并用多学科方法设计出复杂系统。麻省理工学院航空航天系“复杂系统学习实验室”的主任提出了一个对于基于问题的学习方法的分类框架。它将问题分为四个等级,给出了解决基础科学及先进工程课题的系统方法。一级:问题集。问题集是指在大多数工程课程中发现的传统问题。它们往往具有一定的结构与较成熟的解决方案(至少问题的设计者知道)。所有学生解决同样的问题,有时独自解决,有时以小组形式解决。问题需要在相对较短的时间内解决。二级:小型实验。小型实验是指在结构化问题下的实验课。例如测量或观察某种工程现象或数据。这些问题在一或两个学期内解决,可以“重复地进行”,也就是说,每个学生团队解决与其他团队同样的问题。在麻省理工学院有许多例子,如《联立工程学》课上的桁架实验室,《空气动力学》课上对在风洞中的流速计的校准,《航空航天设计导论》课上对空气动力减速器的各种测试。三级:大型实验。比起前几个阶段,这个阶段的问题需要更长的时间去解决,可能会耗费几周或整个学期。到了这个阶段问题明显复杂了很多,需要更多的规划和教员支持。在麻省理工学院有许多如是例子:《实验项目实验室》课上的风洞试验、飞行器模型项目,《空气动力学》课上的机械项目,《航空航天教育导论》课上的轻于空气的飞艇,《联立工程学》课上的电动飞行器设计等。四级:顶级CDIO实验。这个阶段在系统中整合了核心工程的顶级实验。麻省理工学院的航空航天工程项目用构思-设计-实施-操作(CDIO)的方法来设法更接近于实际工程。在顶级实验中,工程的四个阶段都将涉及。顶级实验室的项目均为研究的重点,需要更多的资金,工程的复杂度和依赖经验的程度也很高。例如麻省理工学院的自主卫星光学阵列项目和磁控编队飞行器。四级的项目需要学生、老师和研究员花费三个学期去完成。可以看出三级和四级问题的解决过程是由学生主导的、不受约束的、复杂的、多方面的且具有很高的主动性过程,符合之前所说的PBL标准。然而一级和二级中的项目体验过程更结构化,在这个过程中学生体验到关于问题构想的有用指导,使用工具进行研究发现。基于问题的学习方法和设计-制造经验贯穿了整个麻省理工学院航空航天工程系的本科生阶段。使用四个等级的框架来层次化PBL体验过程确保了从高度结构化问题到无约束和复杂问题情况的合理推广。

3.基于问题的学习方法的评估。

基于问题的学习方法的评估是多模式和长期性的。这些方法包括实验室期刊、技术简报、设计审查、技术报告、团队协作评估、设计作品、互评和自评。教师的角色主要是顾问和指导员,以及在学习过程中为学生提供大量反馈信息。在《航空航天设计导论》课上,学生们设计、制造并试飞由无线电控制的浮空飞行器,设计审查作品和最后的评估工作都是由飞行器竞赛的方式进行。在《综合工程》课的飞行器设计项目中,二年级学生分析在问题集中与气动性能、稳定性和推进装置有关的问题,并动手组装和试飞无线电控制的电推力飞行器。与第一年的课程相似,评估手段包括问题集、设计审查以及最后的一场比赛。除了评估认知能力的培养效果,情感变化也要被评估。评估学生们在问题处理过程中的信心、参与到解决具有挑战性问题中的意愿和控制问题解决进展的感觉也很重要。这些情感变化可以通过观察、访谈、作品、期刊和其他形式的自评进行评估。

二、小卫星平台与基于PBL的航天工程教育创新结合途径

在全球化大背景下,除去意识形态的差别,世界人才的标准正趋于统一。根据著名的CDIO(Con-ceive-Design-Implement-Operate,即:构想-设计-实现-运作)工程教育模型,工程教育包括以下几大培养目标:掌握深厚的基础知识和应用技术;善于构思、设计、实现和运作新产品或系统的能力;承担和实施复杂系统工程的能力;适应现代团队协作开发模式及其开发环境。这些目标是直接参照工业界的需求而制定的,它实际上定义了现代工程技术人员的素质构成。

1.小卫星作为航天工程教育的意义。

小卫星为空间发展提供了的一条新途径,这是与以往基于传统空间开发模式的“政府导向的大型项目”完全不同的。此外,NASA已经开展了很多项目为大学提供发射机会,让他们逐渐学会如何开发、运营卫星。超小型卫星计划是其中一个著名的案例,选定十所大学并给予他们项目资金,最终的成品将搭载航天飞机发射上天。凭借多年的项目经验,一些大学已经能够制造卫星,甚至出售卫星给其他大学或国家。小卫星为大型卫星上已经实现的一些任务提供了一条新的实现途径。一定数目的小卫星协作是一个非常重要的概念,通常被称为“星座”或“编队飞行”。这种多卫星体系的优点是容错量大、重构能力强、系统的可扩展性好。

2.基于小卫星平台的航天工程教育项目。

小卫星的操作训练为大学生的太空教育提供了一个特别的机会,让他们能够体验从任务创建、卫星设计、制造、测试、发射、运行,直到结果的分析的整个太空项目周期。同时他们还能从这些项目中学到项目管理和团队协作等重要技能。小卫星项目不仅对教育有益,而且有望成为太空技术发展与商业运营中的一名新成员。

(1)日本卫星设计大赛。

上世纪90年代初期,日本的大学小卫星研究项目远远落后于美国和欧洲各国。然而,在意识到了小卫星在教育和技术发展上的重要性后,日本国内开始大力推动高校小卫星设计-制造计划。第一个里程碑是“卫星设计大赛”。1992年三个学术社团共同成立了大赛组委会,他们分别是JSME、JSASS与IEICE。经过一年时间的准备,于1993年举办了第一届比赛。这项比赛的目的是为更多的大学生提供参与太空项目的机会,同时鼓励一流大学开始进行实体卫星的制造项目。评审项目分成两大类,创意类评审该项目的创意与想法,设计类评审卫星设计的可实现性。提交的项目首先会进行初步的评审,合格的项目才能入围最终的决赛。届时,将进行卫星模型的展示和评审。优秀的作品将获得“设计奖”、“创意奖”以及三大学术社团颁发的奖项。大赛每年都会收到20到30个创意独特的项目。

(2)大学空间系统研讨会(USSS)以及CanSat项目。

USSS始于1998年,每年11月由JUSTSAP小卫星工作组在夏威夷举办。研讨会的形式十分独特,出席会议的日本和美国的大学首先提出自己卫星项目的构想,以及各大学自身的科研实力,然后将具有相同兴趣、能力或科研实力的大学进行组队。各组展开讨论,在一天半的研讨会后,各组需要向其他组展示他们的项目设计书。这些项目要在USSS结束后的一年内实施,他们的成果将在下一年的USSS上展示。其中最成功的项目就是CanSa(t罐装卫星)项目了。CanSat项目是1998年由特维格教授提出的。在最初的计划中,每所大学都要制造一个350mL饮料罐大小的微型卫星,卫星将被发射到轨道上,在下一年的USSS上进行控制操作。

(3)立方体卫星。

立方体卫星项目由特维格教授在1999年的USSS大会上提出。立方体卫星为重1kg,长宽高均为10cm的微型卫星。每所大学制作的立方体卫星都被放在一个名为“P-POD”的盒形载体内,它由俄罗斯的“第聂伯”火箭装载发射升空。为了减少立方体卫星和P-POD之间的机械和电气接口,P-POD释放机制设置得非常简单:当P-POD的门打开,里面的立方体卫星就被P-POD末端的弹簧弹出。东京大学和东京工业大学已经开始了立方体卫星项目,并大致完成了设计和EM级别的模型制造。这些大学的学生已经在立方体卫星项目中获得了微型卫星开发的基本专业知识。但他们现在需要面临新的挑战:如何使用现成的廉价的部件设计可靠的空间系统,如何进行空间环境试验(如真空热或辐射试验)并获得试验结果,以及如何处理更大的风险,更多的人力资源、时间和成本。目前计划于2002年底发射第一个立方体卫星。

(4)欧洲大学生月球轨道航天器。

欧洲大学生月球轨道航天器ESMO是欧空局教育卫星计划的第四项任务,它是基于“欧洲大学生太空探索与技术倡议”计划中的“SSETI-Express”卫星。ESMO项目是为了吸引和培养下一代的月球与其他行星的工程师和科学家。航天器有效载荷包括:船载液压双组元推进系统,用船从地球同步轨道通过“日地系统中的拉格朗日点L1”转移到绕月运行轨道的过程,历时3个月;表面光学成像的窄角相机和一个用于测绘全球引力场的子卫星,将在历时超过6个月的时间里执行测量任务;可供选择的载荷还包括一个生物实验和一个微波辐射计。ESMO项目是未来欧洲的科学和勘探计划的一个强大的动手教育和公共宣传工具。它是一个面向大学生的项目,训练和培养了下一代的月球任务的工程师和科学家。

三、建立基于PBL的航天工程教育实验平台和培养范式

我国在“十二五”规划中提出了“创新驱动,实施科教兴国战略和人才强国战略”,要“围绕提高科技创新能力、建设创新型国家,以高层次创新型科技人才为重点,造就一批世界水平的科学家、科技领军人才、工程师和高水平创新团队。实施PBL教学是一项系统工程,由于受国情、传统教育教学模式和人才培养机制的约束,在中国工科大学中实施PBL教学存在问题案例少、实施成本高、评价方式单一和师生角色僵化等问题,因此,需要根据我国工程教育的现状和国情对PBL教学进行本地化处理,不能生搬硬套,具体来讲有以下几个方面需要注意。

1.树立以学生为中心的教学理念。

树立以学生为中心的教学理念是实施PBL教学的前提条件,PBL强调以学生为中心,作为PBL教学的实施者,教师必须要深刻认识到这一点。

2.根据具体航天任务设计问题。

丰富的问题案例是PBL教学成功的关键。每门专业课的设置都是基于学生已具备一定的先修课程基础为前提,但个体的差异不容忽视,教师或教师团队在进行某课程PBL问题设计的时候要充分了解学生的知识基础,结合具体的实施条件进行问题案例的设计。为了保持热情,学生们可以一种竞赛的形式开始项目,学生们互相分享自己的认识,用自己的双手选择出最吸引人并且最有意义的项目。

3.提高卫星实验平台的开放性与多样性。

除了教育实践空间项目对航空航天教育带来的价值之外,学生建造空间项目长期承诺创新型大学的任务是可直接有利于空间行业本身。目前,各大学中设立的大学或研究生开放实验室及其配套的开放创新基金都是一些很好的尝试,取得了很好的效果,但其范围需要扩大,让大学生能够进入一些比较前沿的和良好国际合作背景的研究型实验室,使其很早就能受到良好的学术熏陶,以促进其产生向更高层次发展的内部动机和欲望。

4.加强学习能力的培养。

发展学生的学习能力,使其成为高效、独立的终生学习者是PBL的重要目标之一。通过参加PBL学习,让学生明白学习不完全是个人的事情,在PBL小组中每个学生都担当一定的角色,并承担相应的责任,在小组讨论中无私贡献自己的学习成果,并吸取其他成员的学习成果,达到共同进步。

5.建立合理多样化的评估体系。

在实施PBL的过程中,可以采用学生自我评价、同学互评及教师评价相结合的办法,注重学生的过程表现,而不是结果。创新人才的多样性和创新思维的多样性决定了我们不能用一刀切的方法来评价学生,而是要采取灵活多样的评估体系,建立激发创新的长效机制。除了评估认知能力的发展和成就,情感变化也要被评估。评估学生们在问题处理过程中的信心、参与到解决具有挑战性问题中的意愿和控制问题解决进展的感觉也很重要。

四、结论

篇13

3月14日消息,美国航空航天局所属的广域红外巡天探测器近日发现了一对距离非常近的恒星,它们将成为迄今发现的距离第三近的恒星体。这一双星系统中的两颗恒星都是褐矮星。美国宾夕法尼亚州立大学天文学与天体物理学教授凯文·鲁曼说:“这对褐矮星到地球的距离仅有6.5光年,这样的距离太近了,以至于地球上2006年时播出的电视节目信号现在已经传播到了那里。这是一个绝佳的搜寻行星的地方,因为它们的距离实在太近了。这样我们就有很好的机会来看看是否有任何行星围绕其中任何一颗褐矮星运行。”

50

3月18日消息,俄罗斯的“太空球透镜”纳型卫星据信遭到环绕地球的一块碎片撞击,毁于一旦。专家警告称,“太空球透镜”的被毁说明太空垃圾对低地球轨道活动的威胁不断提高。目前,地球周围的太空垃圾云不断扩大。据美国航空航天局估计,地球周围尺寸超过弹珠的太空碎片在50万块左右。低地球轨道的碎片以大约每小时2.8万千米的速度飞行,即使尺寸很小,也能给卫星造成巨大破坏,同时对宇航员的安全带来致命威胁。在已经编目的太空垃圾中,大约有70%位于距地面约2000千米以内的低地球轨道。

90

类星体是宇宙中最奇异的天体之一,它们在极其遥远的宇宙深处闪耀,其亮度可以与10000亿颗太阳相当。然而最近天文学家发现有三颗这样的类星体竟然共处一处,非常罕见。意大利布里亚大学艾玛努尔·法里纳领衔的一个天文学家小组发现,在90亿光年之外的宇宙深处,三个类星体聚集一处,这一群体目前被给予编号QQQ J1519+0627。

138.2

欧空局3月21日在其巴黎总部公布了根据普朗克卫星传回数据绘制的宇宙微波背景辐射图。根据普朗克卫星收集的数据,科学家对宇宙的组成部分有了新的认识,宇宙中普通物质和暗物质的比例高于此前假设,而暗能量这股被认为是导致宇宙加速膨胀的神秘力量比想象中要少,占不到70%。此外,反映宇宙膨胀率的哈勃常数也被修正至67.15千米/(秒·百万秒差距),即一个星系与地球的距离每增加100万秒差距(1秒差距约为3.26光年),其远离地球的速度每秒就增加67.1千米。这个数据意味着,宇宙的年龄约为138.2亿年。

篇14

参考文献

1 李增荣1英语构词法例释1商务印书馆出版,1982

2 张维友1英语词汇学1外语教学与研究出版社,1998

3 詹贤均金1科技英语词素1知识出版社,1985

4 林华清等1科技英语构词法1上海科学技术文献出版社,1992

5 曹务堂等1简明英语词汇学1山东教育出版社,1992

6 华人杰1英汉航空航天新词典1上海科学普及出版社,1999

7 汪榕培,卢晓娟1英语词汇学教程1上海外语教育出版社,1997

8 孙娴女柔等1科技英语常用词用法手册1科学出版社,1997

9 王逢鑫1英语构词的玄妙1北京大学出版社,1997

10 王大文等1英语基本词快速记忆1南开大学出版社,1995