当前位置: 首页 精选范文 精准医学综述范文

精准医学综述精选(五篇)

发布时间:2023-09-24 15:32:18

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇精准医学综述,期待它们能激发您的灵感。

精准医学综述

篇1

【关键词】 精准医疗;肿瘤;研究进展;综述

DOI:10.14163/ki.11-5547/r.2016.04.216

精准医疗是通过基因组、蛋白质组等组学技术和其他前沿科技, 依据患者内在生物学信息及临床特点, 在分子学水平为疾病提供更加精细的分类及诊断, 从而对患者进行个性化精准治疗的一种新型医疗模式[1]。2011 年美国相关学者首次提出精准医疗的概念[2]。2015年美国总统奥巴马在国情咨文中谈到“人类基因组计划”, 并宣布实施精准医疗计划将这一研究推向新的[3]。

恶性肿瘤已成为目前全球主要的死亡原因之一, 其是一类基因性疾病, 大多具有自己独特的基因印记和变异类型, 基因组发生的突变, 可以影响细胞信号、染色体、表观调节及代谢等过程。这些研究成果很早已被利用在肿瘤的治疗中, 许多针对这些特异基因改变及表观遗传学改变的靶向药物已经上市或正在研发。肿瘤的精准医疗通常分为3个步骤:基因及表观遗传学检测、大数据分析和临床药物应用[1]。

1 基因及表观遗传学检测

基因是指携带有遗传信息的DNA或RNA序列, 是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息, 从而控制生物个体的性状表现。基因检测是通过对血液、其他体液或细胞的DNA检测, 获得肿瘤单核苷酸有义突变、拷贝数变异、融合基因等基因变异的信息。弥漫大B细胞淋巴瘤(DLBCL)曾一度认为是一类性质单一的疾病, 但近年发现DLBCL中具有不同的基因表达亚型, 如GCB(germinal-center B-cell-like)、ABC(activated B-cell-like), 其起源于B细胞分化的不同阶段, 具有不同的生物学特性, ABC亚型中的基因变异可以引起NF-κB的活性改变, 导致预后不良[4], 这已被临床实践所证实。

表观遗传学就是研究基因表达的学科, 是指基因表达的改变不依赖于基因信息的改变, 而是依赖于DNA甲基化和组蛋白的化学修饰。这些异常改变在一定条件下可以向正常逆转。肿瘤发生过程最常见的表观遗传学改变为抑癌基因启动子区CpG岛的甲基化, 其引起的表达沉默可以影响肿瘤相关信号通路[5]。DNA甲基化是真核细胞的表观遗传修饰之一, 甲基化程度愈高, 基因的表达则降低。骨髓异常增生综合征存在p15、p16、降钙素基因等一系列抑癌基因的过度甲基化, 使抑癌基因表达受抑制, 细胞易于形成恶性克隆[6]。其他表观遗传学改变如组蛋白的乙酰化、磷酸化等也均可影响基因的转录活性[5]。随着二代基因测序技术及大规模多水平组学生物学技术的兴起, 肿瘤精准医疗有了越来越强的技术基础。

2 大数据分析

目前已经知道人类各种正常组织的基因及基因表达, 患者的基因及基因表达都有了参考标准, 基因表达数据的分析与建模已成为生物信息学研究领域中的重要课题。人类的基因数目很大, 基因及其表达的变异信息数据库也十分庞大, 从海量的组学数据中提取有价值的数据, 就要祛除大量的“无关信息”, 这需要具有极高精确性的分析模型与分析方法, 全球很多学者均致力于该领域的研究。如人类肿瘤基因图谱计划(TCGA), 就是应用基因组分析技术, 特别是采用大规模的基因组测序方法, 将人类全部癌症(近期目标为50种包括亚型在内的肿瘤)的基因组变异图谱绘制出来, 并进行系统分析, 旨在找到所有致癌和抑癌基因的微小变异, 其中包含体细胞突变、拷贝数变异、mRNA表达、蛋白质表达等各类信息。这一计划整合了约7000种人类肿瘤的复杂分子网络[7]。2012年, 国际千人基因组计划团队发表了1092个人类基因数据, 绘制了人类基因组遗传多态性图谱[8]。这些均表明人群中存在大量的遗传变异, 从而造成肿瘤细胞生物学行为和药物疗效等方面的差异。

3 临床药物应用

肿瘤的精准医疗就是以大数据分析结果作为参考, 给予患者个体化的药物治疗方案, 再根据治疗结果进行反馈, 确认更多有价值的基因及蛋白组靶点, 开发更多的药物, 保证精准医疗的不断完善。在应用这些药物治疗肿瘤之前, 必须明确肿瘤中是否包含这些药物所靶向的改变, 也只有这一部分患者才会对上述治疗敏感。而对于无特异性基因改变或表观遗传学改变的肿瘤患者, 上述治疗除了无效, 还会带来一定的毒副反应。

1997年11月上市的利妥昔单抗是抗CD20人鼠嵌合抗体, 是第1个应用于临床肿瘤的靶向治疗药物, 已成为治疗弥漫大B细胞淋巴瘤及滤泡淋巴瘤等CD20阳性的淋巴瘤的一线药物[9]。伊马替尼通过抑制bcr/abl融合基因的酪氨酸激酶活性、PDGFR和干细胞因子受体c-kit的活性, 治疗慢性粒细胞白血病、Ph染色体阳性的急性淋巴细胞白血病和胃肠间质瘤[10, 11]。曲妥珠单抗仅适用于HER2基因阳性的乳腺癌患者[12]。而阿扎胞苷则是首个被美国食品和药物管理局(FDA)批准的去甲基化的表观遗传药物, 用于骨髓增生异常综合征的治疗[13]。均显示出了显著的疗效, 堪称精准医疗的典范。可以看出, 可供选择的药物的多少直接关系到治疗的成败。研究表明, 这些靶向药物除了单用, 还能相互或与化疗药物联用, 以进一步提高临床疗效。例如利妥昔单抗联合CHOP方案治疗DLBCL, 可以提高缓解率, 延长患者的生存时间, 是目前国际上治疗DLBCL的一线方案。

4 小结

当前的肿瘤治疗正逐渐从宏观层面对“病”用药向更微观的对“基因、表观遗传”用药转变, 精准医疗可以实现“同病异治”或“异病同治”, 已成为肿瘤治疗的一个趋势。但目前该治疗模式仍需进一步完善, 需要发现更多的目标靶向, 建立更完善的疾病知识网络和新分类系统, 建立更精确、可靠的组学数据标准化整合模型, 研发更多有效、低毒的靶向药物。肿瘤的精准医疗之路任重道远。

参考文献

[1] Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med, 2012, 366(6):489-491.

[2] National Research Counci US Committee. Toward Precision Mdedicine:Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease.M. Washington DC:National Academies Press, 2011:2115-2116.

[3] Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med, 2015(372):793-795.

[4] Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling.Nature, 2000(403):503-511.

[5] 付小兵, 韩为东, 时占祥.生物治疗中的转化医学.西安:第四军医大学出版社, 2014:216-250.

[6] 柯晴, 岑洪, 胡晓华. 去甲基化药物地西他滨治疗血液系统恶性肿瘤的研究进展. 医学综述, 2010, 16(7):1068-1070.

[7] John N Weinstein, Eric A Collisson. The Cancer Genome AtlasPan-Cancer analysis project. Nature Genetlcs, 2013, 45(10):1113-1120.

[8] Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1, 092 human genomes J. Nature, 2012(491): 56-65.

[9] Colombat P, Salles G, Brousse N, et al. Rituximab as single first-line therapy for patients with follicular lymphoma with a low tumor burden:clinical and molecular evaluation. Blood, 2001(97):101-106.

[10] Cohen MH, Williams G, Johnson JR, et al. Approval summary forimatinib mesylate capsules in the treatment of chronic myelogenousleukemia. Clin Cancer Res, 2002, 8(5):935-942.

[11] Dagher R, Cohen MH, Williams G, et al. Approval summary: imatinibmesylate in the treatment of metastatic and/or unresectablemalignant gastrointestinal stromal tumors. Clin Cancer Res, 2002, 8(10):3034-3038.

[12] 贾朝阳, 应明真, 王雅杰. Her-2阳性的复发转移性乳腺癌的一线治疗进展.综述与进展, 2013, 42(4):196-198.

篇2

大数据时代的循证医学

环境污染物与消化道肿瘤

美国启动精准医疗计划

大数据癌症风险预测系统

欧洲移动健康发展状况及对策

介绍一种改良T形切口开颅术

浅谈国际康复医学发展及启示

美国医院医生是如何治疗病人的

光化学转染对肿瘤治疗的研究进展

关于健康医学模式的思考与解读

全民智慧健康研究与实践的新成果

治疗急性缺血性脑卒中的两个里程碑

3D打印技术在生物医学领域的应用

周围神经损伤修复的新材料与新技术

我国数字医学新学科的创立与发展

面向POCT应用的微流控芯片技术综述

现代社会肠道复合微生态改变与疾病

膝关节对于足底支撑的生物力学响应

植物凝集素结构多样性与药物设计

两种全血基因组DNA提取方法的比较

政治理论课教学生动化的做法

小儿胸腔积液150例病因及诊断分析

肺癌患者12项血液生化检查结果分析

新生儿肺出血32例的早期观察和护理

妊娠糖尿病30例孕期护理体会

爱婴医院消毒效果监测分析与评价

强化护士在健康教育中的主动意识

术中荧光引导技术在泌尿外科应用的现状

中药治疗单纯性肥胖有效性的Meta分析

纯中药唐肌康治疗糖尿病足2例效果观察

移动医疗与神经外科医学生教学方式的变革

超声诊断和治疗肌肉骨骼伤病的研究进展

MicroRNA对体细胞重编程的调控研究进展

多学科复合促进发展低剂量医学成像技术

脑梗死患者的早期个体化综合康复治疗选择

肌电生物反馈治疗臂丛神经损伤的临床研究

河南省密县金银花挥发油化学成分研究

口腔颌面部复合组织异体移植研究进展

右肾结石、积水并自发性肾破裂1例

洋葱提取物对高血脂小鼠的降血脂作用

不同材料导尿管引起导管相关感染的研究

案例教学法在老年护理学教学中的应用

PET代谢融合影像导航下胶质瘤外科治疗现状

住院病人92674例住院费用的影响因素分析

交互式经颅磁刺激功能磁共振成像技术进展述评

基于碳纳米管的高性能核磁共振造影剂研究进展

三叉神经痛的发病机制及立体定向放射外科治疗进展

篇3

日前,上海市医学会分子诊断专科分会成立大会在沪召开,中科院、中工院及分子诊断领域的多位专家学者到会研讨。上海市领军人才、第二军医大学附属东方肝胆外科医院实验诊断科主任高春芳教授受聘担任分会首届主任委员。会上,高春芳教授通过介绍其研究团队已经成功转化应用的高通量测序分析HBV基因组突变及多重耐药位点的实例,为我们进一步展示了分子诊断在肿瘤、感染性疾病精准医疗中的发展前景。

在医学界,分子诊断尚且是一个比较新的概念,对于老百姓而言无疑更加陌生,甚至很多人从来都没听过这个名词。而作为老百姓,最关心的无非是这一新技术到底能给自身健康、疾病诊疗带来哪些实实在在的帮助。为此,我们也在会后第一时间采访了高春芳教授,请她详细地为我们讲解一下,这一新颖的“分子诊断技术”,到底能如何服务患者的健康?

记者:分子诊断听起来是一个特别高大上的名词,那么,它到底是一种什么样的诊疗手段?

高教授:所谓分子诊断,其实就是应用多种先进的分子生物学相关技术,对遗传物质的结构或表达水平,通过检测特定基因的存在、转录及表达异常,进而对人体状态和疾病作出诊断的一种方法。分子诊断的核心技术是基于基因扩增的聚合酶链式反应(PCR)、杂交技术、测序技术等。PCR技术的出现,推动了临床实验进入分子诊断时代。近二三十年来,分子生物学检测技术不断进步,包括一代测序、高通量测序和组学、质谱、芯片等技术的发展以及临床应用探索,为疾病标志物的寻找、临床应用提供了强劲技术支持。分子诊断在临床实验医学中的应用,使越来越多疾病发生发展的分子机制得到阐明,为临床医生对疾病的预测、诊断、治疗、疗效监测和预后判断都提供了更为直接准确的依据。

记者:分子诊断主要应用于哪些疾病的诊断?

高教授:目前,分子诊断学技术在感染性疾病和遗传性疾病中的应用最为广泛,在肿瘤性疾病中的应用也已成为热点。广义的分子诊断的研究对象不仅限于基因,还包括基因表达产物生物大分子,例如蛋白质及其异常翻译后修饰。目前,随着生物信息学以及多种分子诊断技术的迅猛发展,分子诊断已经成为医学科学研究领域和临床诊断中发展最活跃、更新、最迅速的领域之一,也是践行我国“十三五”科技发展规划中精准医疗的关键手段之一。

记者:作为一种现代先进的诊断方法,它给临床诊断带来了哪些革命性的变革?

高教授:分子诊断学技术应用于疾病的诊断、治疗,已彻底打破了常规的诊疗方式。具体来说,以往是将相同的诊疗方案应用于患有同一类疾病的患者,是根据每个患者治疗情况的反馈和医生的个人经验进行诊疗方案的调整,以达到预期的治疗目的。而分子诊断则可以分析检测患者的分子特征或者“差异”,临床依据患者存在的这些“差异”进行针对性治疗。

例如,对某种特异性疾病的易感性差异、患者可能发生疾病的生物学和(或)预后的差异、对某种特异性治疗的反应性差异等,临床上可以依据这些“差异”,制定特定的治疗方案,实现个体化诊疗。因此,通过基因芯片、高通量测序等多种分子诊断技术,找到个体的这种差异或者特征、标签,将改变目前的疾病诊疗模式。那就是就诊个体量体裁衣的诊断和充分了解个体特点后的个体化医疗。

首先,分子诊断可以让医疗诊断更为精准,为个性化医疗提供技术保障,其结果是降低患者的疾病诊疗成本,减轻社会公共卫生负担。比如,临床患者用什么药、用多少剂量,传统的经验式用药时采用同一个标准,具体落到某个患者来讲,可能会碰到:用A药不行,换用B药,A、B都不行,再用C药……其结果是既占用了有限的医疗资源,又可能延误了最佳治疗时机。但是,有了分子诊断之后,用药治疗模式发生了根本性改变,在明确诊断的前提下,进行个性化治疗,依据是敏感还是耐药指导选择药物种类、药物剂量(个体代谢是快代谢型,还是慢代谢型),可以达到满意的效果。这种个体化用药方式目前在肿瘤的化疗、抗凝药物、调血脂类药物、代谢类药物、精神类药物等领域都已经进入临床应用。

其次,分子诊断更注意个体基因差异,不仅可以对患者所患疾病作出判断,也可以对表型正常的携带者或特定疾病的易感人群作出预测。大家熟知的美国好莱坞影星安吉丽娜・朱莉与中国歌手姚贝娜,同样是乳腺肿瘤的患者,但两个人的结局却完全不同。朱莉通过早期的分子诊断,检测到易感基因,从而尽早将乳腺和卵巢进行了预防性切除,避免了进一步患病的可能;而姚贝娜则由于肿瘤发现时已经太晚,过早地离开了人世。因此,分子诊断技术的有效应用不仅可以预测或者早发现疾病,更可以做到个性化、精准性的治疗,从而大大改善公众的健康状况,提高公众的健康水平。

记者:在医学检验中,分子诊断具体是如何实施的?

高教授:分子诊断技术通常是采用被检测者的组织细胞(穿刺或手术标本、外周循环肿瘤细胞)、抗凝血,甚至甲醛固定、石蜡包埋的组织等。目前用于分子诊断的技术非常丰富。代表性技术包括:多种PCR,例如 ARMS-PCR、实时荧光定量PCR、数字PCR;测序技术,例如一代测序、焦磷酸测序、高通量测序;芯片技术,例如杂交芯片、微流控芯片、质谱及荧光原位杂交(FISH)技术等。分子诊断技术的门槛较高,只有具备资质的医疗机构或者实验室才能胜任。

记者:分子诊断目前在我国临床上的应用现状如何?未来发展方向是什么?

高教授:近年来,国内的分子诊断技术取得了快速发展,国家投入了大量的科研经费,国内的研究成果与研究水平同国际先进水平的差距越来越小,但是,目前临床转化应用现状难以满足实际需求。

篇4

关键词:临床医学;工程思维;学科交叉

1工程学技术在医学进步中的作用日益凸显

现代医学的进步离不开工程技术的发展。一定程度上来说,技术的进步很大程度上决定了医学的基础与临床进展。X线、彩超、CT、核磁共振等影像学检查设备以及各类的生化诊断设备极大提高了临床诊断的水平;腹腔镜手术设备、达芬奇手术设备等,使大部分手术得以高效、安全的完成;电子病历系统、各类远程检测设备等极大提高了医疗的效率与安全性[2]。进入21世纪以来,人工智能和机器学习等技术也正在推动医学进入新的革命,智能诊断、图像识别、诊疗建议等又将极大促进医学的快速发展。在这一背景下,迎接时代的变化,积极储备相关交叉学科的基本知识与素养,是每一个优秀医生以及医学生终身学习中的重要内容。

2工程学思维的内涵

工程是一种造物活动。工程在医学中的应用主要体现在医学诊断治疗工具的发明和应用。工程思维是工程活动的灵魂,其特征体现在系统性、集成性、跨学科性、创造性和复杂性等方面[3]。跨学科性指其涉及自然科学、技术学、人文等多领域的问题,而单一学科很难进行解决。工程思维简单来说就是应用各种知识综合起来解决具体的实践问题;在医学范畴里,我们可以简化地说,它是一种利用工科技术系统性解决某种医学问题的实践[4]。医学生本科教育目前主要体现在医学基础理论的学习与初步实践认知方面,跨学科的教育在国内医学教学中相对缺失。我们结合自身的团队特色,在本科生医学教育上有意识地尝试增强学生工程思维的培养,希望学生能够发现问题、分析问题,并尝试通过一些初步的工程实践来解决问题。由于医学生本身的知识结构,解决方案可能比较简单,没有深入问题的核心,但是,我们相信这种工程思维思考问题的方法对于医学生在今后的发展具有长远的意义。

3工程思维培养在本科生临床医学教学中的实践

团队长期以来在医工结合领域的研究与探索取得了一定的成绩。团队承担了国家自然科学基金重大项目精准微创手术器械的创新与制造,完成了国内第一例国产手术机器人的临床手术运用。同时,我们拥有一支较为强大的医学、工程学背景的专家教授团队,承担着中南大学自主设置二级学科医学设备技术学的教学工作。结合我们的学科特点与基础,在本科生的教学中进行了一些尝试与探索,以初步培养医学生的工程学思维。医学的基础理论是目前医学临床医学专业本科生教育的主要内容,结合他们的知识背景,我们通过学术讲座、兴趣小组、实践项目三个主要内容,针对不同的学生进行由浅入深的实践探索。

3.1定期举行相关的学术讲座

医学生的工程学知识相对缺乏,工程学医师相对薄弱。对此,我们组织相关的专家联系医工结合的研究热点与基本学科思维特点开展相关讲座。在本学期中,我们开展的医生在医工结合中的角色、手术机器人发展历程、手术机器人研究热点初探、3D打印在医疗中的应用进展、人工智能+医疗应用场景几何等学术讲座,受到学生的热烈欢迎,并引发学生的积极讨论和广泛交流。

3.2组织兴趣小组

在学术讲座后,许多感兴趣的同学与我们进行了进一步的沟通,也带来了许多鲜活的想法。为了给这些同学们提供更好服务和交流的平台,我们组织了本科生医工结合兴趣小组。在兴趣小组中,我们通过小组例会、自主学习指导、综述写作几种形式开展相关的教育实践探索。我们根据同学们的时间定期组织小组例会。通过组织小组会议,学生与老师直接沟通,相互激发出很多鲜活的想法,实现了教学相长。我们根据同学们的兴趣,系统性地给同学们推荐了相关的书目与网络学习资源,并定期予以相关的答疑,为学有余力的同学提供自主学习的资源与指导。我们还结合同学们自身的情况,组织同学们开展一些基础的科研培养,如教授学生中英文相关文献的检索与阅读,并在此基础上,鼓励学有余力的同学针对某一问题查阅资料、撰写综述。通过这些措施,同学们的视野和能力得到了很大的进步。

3.3鼓励开展相关项目

工程思维很重要的一点在于系统性地解决具体问题。通过学术讲座与兴趣小组,很多同学们的能力得到了锻炼,有一些同学针对临床上的问题尝试给予工程上的解决。有同学观察到目前临床上用来进行肺功能锻炼的吹气球,因为普通气球材质与规格的不同,患者进行功能锻炼的程度很难量化,导致许多患者吹气球不合格,未能实现实质上的功能锻炼。针对这个问题,有兴趣小组对问题细致分析,通过观察类比临床中氧流量的设计,利用在气流中悬浮的钢珠来对应不同的气流量的原理,构思出一种新式的肺功能锻炼设备。同学们还利用身边常用的物品设计出原型机,得到患者的肯定。我们组织同学们对该设备申请专利,也通过专利申请来培养同学们的知识产权保护的理念,目前已开始撰写相关专利内容[5]。我们也组织有能力的同学参与团队目前的研究工作;鼓励兴趣小组同学申报大学生创新课题。在实践的过程中,学生的工程思维得到极大的锻炼。

篇5

1转化医学的兴起要求基础医学与临床医学的交互统一

现代医学发展出现了二律背反的态势:一方面,医学科学与技术发展迅猛,医学研究已经不满足于普通病理生理学的研究,而是继续探索分子病理机制,力求从基因水平对疾病进行诊断治疗;另一方面,随着人类寿命的延续,健康成为人们当下的第一医学需求,而老龄化社会中人类健康状况持续恶化,现代医学“诊断明确、治疗单一”的发展水平远远不能满足人类维系健康的需要。其中一个重要原因,就是传统教学中医学基础理论研究与临床实践之间存在难以逾越的鸿沟。转化医学是在当前医学教育体系“偏理论轻实践”的情形下应运而生的,其概念源自美国Science杂志1992年提出的“BenchtoBedside(B-to-B)”,即是寻求将基础研究成果尽快应用到临床实践的科学,目的就是消除理论研究与临床实践间的屏障。

作为一名医生成长的起点,医学教育应逐渐融入转化医学模式,即一方面需要适应医学发展的状况,另一方面更要体现医学发展的要求。而目前我国医学研究生的教育被严格划分为基础医学和临床医学。在基础医学的教学过程中,由于教学过程中对专业的具体强化,在理论授课时不重视与临床知识的呼应,容易导致理论知识和临床应用相互脱节的情况。而在临床教学过程中,重实用性轻理论的教学模式及对于临床与理论相结合的必要性的认识不足,常使学生“知其然而不知其所以然”,获得的往往是一些粗浅的治疗思路,而难以探寻疾病表象下隐藏的分子病理学机制,从临床工作中寻找突破点来进行未知科学理论的研究探索更无从谈起。在医学研究生的教育中,应重视基础医学和临床医学相结合,科研能力和实践能力有机结合,从而构建全新的教学模式,对于提高医学教学的效率、培养更多应用型人才具有积极的促进作用。

2在医学研究生教学工作中培养科研能力的方法

科研思路来自于临床,科研工作服务于临床。1810年德国柏林大学建立初始,即提出了著名的“洪堡精神”,即尊重学术自由和教学与科研相结合。这是洪堡的大学理念的核心,也是洪堡精神的实质所在。作者认为,在医学研究生培养过程中,也应充分贯彻该精神,达到科研和教学、实践的有机统一。作者结合多年的研究生培养经历与思考,提出了以下几个教学思路:(1)师生互动,开放式教学。在临床实践中,力求在以往教师授课、学生记录学习的教学模式基础上,逐渐重视和应用启发式教学法,对于疑难病例,与学生积极讨论其可能的发病机制,引导学生深入思考,联系基础医学理论,调动学生科研思路和深入挖掘的积极性。同时结合已有的实验基础,师生共同探讨,深入分析,结合理论知识引导学生解决临床问题。采用的方法主要有:启发式提问、开放式讨论、头脑风暴、角色模拟,同时利用多媒体、国外教学视频等,提高学生在科研方面的兴趣和思考能力,为进一步发掘有价值的科研问题从而深入研究打下坚实的基础。(2)组织文献学习及讨论,激励学生的科研兴趣。在临床实践过程中,不断接触新兴发展的科研技术和学科的新动向,对提高研究生的科研能力有很大的促进作用。组织文献学习可以尽可能增加学生互相接触的机会,并促使学生能主动追寻学科动向,树立适合自己的目标。应努力做到每位学生均能独立进行数次不同类型的完整的文献汇报,同时培养研究生的口头表达能力。文献阅读是促使科研思路提高的重要方法,主要阅读本专业国际上有影响的期刊文献,注意精读和泛读相结合,对于需要精读的文献应定期在学科或小组内交流,重点汇报作者为什么做这个工作,提出了什么问题或假说,为了验证这个假说是如何设计的,最终的结论是什么,从所读文献中自己得到了什么启发或体会等。一次完整的汇报过程可以使学生对科研思路有更直观的感受,并逐步形成科研惯性和自我促进的意识。(3)重视研究生团队的培养和合作精神。在研究生团队的培养过程中,团队成员各司其职而又互补渗透显得尤为重要。每个研究生有其独特的见解和兴趣点,团队中各成员的互补能更好地引导和开发其科研潜能,并增强其责任心,达到“1+1>2”的作用。主要采用的方法有:设立科研小组,由一名成员担任小组长,带领组员进行一项完整的科研设计,从查阅文献、综述到设计实验方案,从实验技术的学习到实验结果记录和数据统计,贯彻完整科研流程和思路,并培养其独立撰写开题、中期和结题汇报的能力;积极召开组会或汇报会,每人定期汇报自己的课题进展情况并提出目前的困难及阻碍,团队成员互相探讨解决,以求培养团队互助合作的关系,达到提高团队科研能力、增强其感情和凝聚力的目的。(4)提供实验室,增加实验动物学、细胞生物学及分子生物学在临床科研设计中的比重。医学科研问题的解决方案是立足于病理学、病理生理学、组织学、病理学、细胞学和分子生物学复杂的验证过程,而在实验室的投入往往反映了一个学科研究深入的程度和研究生科研能力的水平。实验环境的提供、实验动物的购买、实验耗材的消耗、实验仪器的购买维护等均需耗费大量的人力、财力,但其对研究生科研能力的培养是不可替代的。