发布时间:2023-09-18 16:37:01
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇数字农业的前景,期待它们能激发您的灵感。
传统的设计技术只是简单满足使用者的需求,数字化设计技术则是运用计算机技术来缩短产品的设计周期、降低产品的设计成本并进行后期的维护。对于农业机械的设计来说,它有着广阔的市场,而且可以设计的种类非常多,但是农业机械的设计一般都没有使用数字化设计技术,所以长期以来农业机械的设计水平相对较低。而运用数字化设计技术可以使农业机械设计有着更好的发展前景,使设计出来的农业机械更加完善。目前,农业机械的种类相对固定,功能没有太大的改变,而且没有过多的创新。比如,在播种机的设计中应该考虑根据不同的播种对象来进行相应的设计,即可以分为条形播种机和精密播种机,要根据不同的播种条件来进行相关的设计。另外还可以按照播种机工作原理的差异设计机械式和气力式播种机,数字化设计技术能够将这些种类进行区别设计。将数字化设计技术运用于农业机械的设计过程中将会使农业机械的种类更加丰富,使同一种类的产品有不同的功能区分,完善目前农业机械设计的不足之处,使农业机械能够得到更广泛、更有效的运用。
二、数字化设计技术应用于农业机械设计的前景
由于现今农业机械的设计水平相对落后,所以数字化设计技术必然在农业机械的设计过程中有更广阔的应用前景。比如,可以将虚拟技术运用于农业机械设计中、数字化设计技术与农业机械设计协同设计以及在农业机械的设计中注重增强创新意识,下面将对这些数字化设计技术在农业机械设计中的运用前景进行详述。
2.1将虚拟技术运用于农业机械设计中
虚拟技术是利用计算机技术来生成产品的三维图像设计,通过虚拟技术可以使设计人员更加清楚地了解产品的形状,另外虚拟技术可以对机械运动进行仿真模拟,即可以模拟所设计的产品的功能,这样就便于设计人员对产品进行改进,更大程度上保障了产品设计的可行性。通过虚拟技术还能够加快产品设计的速度,完善产品的质量。
2.2数字化设计技术与农业机械设计协同设计制造
在农业机械的制造过程中运用数字化设计技术能够最大程度提升产品的可靠性,降低产品设计过程中的成本费用和设计时间。利用这一技术能够使设计方案得到较快地更改,避免不够完善的计划造成生产成本浪费。
2.3农业机械数字化设计过程中更加注重创新设计
现今的农业机械种类和样式差异不大,没有较大的改良,所生产的农业机械不能完全满足农民的需要,而且作用较单一,如果能够对农业机械进行创新设计,那么将会使农业产品的种类更加完善,并且能够更大限度的提高农业生产率。数字化设计技术可以较快捷、可靠地帮助研发人员设计出不同的农业机械,这将是未来农业机械的设计的必然发展方向。
三、小结
关键词:农业知识;信息技术;应用;前景
中图分类号: SL26 文献标识码:A 文章编号:1674-0432(2010)-12-0013-1
0 引言
农业、农村、农民问题关系党和国家事业发展全局,农业信息化是当今世界经济和社会发展的大趋势。智能化信息技术从70年代末开始应用于农业生产领域,发展速度很快。目前,农业信息技术在农业生产运用中还存在诸多问题,信息技术在农业生产中的应用,是农业信息化的主要标志和重要内容。
1 农业信息技术概述
农业信息技术是现代信息技术与农业生产相结合的一类技术的总称。它是高新技术应用于农业的一个重要发展方向,主要研究现代信息技术在农业领域的应用,包括感测与识别技术、信息传递技术、信息处理与再生技术、信息施用技术等,利用现代信息技术可以加速农业的发展和农业产业的升级,是现代信息科学迅猛发展和农业产业内部需求相结合的必然产物。
2 我国农业知识领域中信息技术的应用现状
我国的农业信息化水平与发达国家还存在很大差距。尽管我国农业信息技术的应用已初见成效,但整体水平不高,信息资源的数量与质量不能满足农业生产和科学管理的需要。从事农业生产的劳动者,大部分文化程度较低,信息意识不强,对农业科技的了解比较少。我国目前已有的信息设施,尚未在农业知识领域得到广泛的应用,根源在于,我国农技人员及广大农民不会使用计算机,信息意识差。广大农村的生产力水平落后,信息不灵,交通不便,农民缺乏有效的信息指导。信息时代的到来,给农业发展提供了大好的机遇,我们应该抓住这一机遇,真正做到使农业发展逐步转到依靠科技进步和劳动者的素质提高上来。
3 我国农业知识领域中信息技术应用存在的问题
首先,政府在农业信息技术及农业信息化建设上的主导作用发挥不够。主要表现在以下几个方面:一是职能不到位,政府在农业信息化发展战略和总体规划方面,没有充分发挥指导和协调的功能。二是职能错位,政府承担了许多本该由社会力量完成的工作。三是政府缺乏对信息化工作的监督和管理,工作机制不够健全。其次,农业信息采集的覆盖范围和时效性有待进一步加强,兼备农业科学技术和信息技术的复合型农业信息人才缺乏。农业信息服务面窄,实用性不强。为了解决我国在运用农业信息技术服务于农业生产遇到的实际问题,我们提出数字农业理论体系。
4 数字农业理论体系的研究
农业是国民经济的基础,信息技术、生物技术的突破及其在农业领域的广泛应用,大大加快了农业现代化进程,数字农业是21世纪提升农业产业水平的有效途径之一,数字农业将有力推动农业增长方式转变和农业增产与农村经济结构调整优化,加速农业现代化进程,数字农业是农业现代化发展的要求,同时,数字农业是环境健康的要求。美国、加拿大等国家的数字农业研究已初有成效,澳大利亚、英国、丹麦等国家都颁布了严格的环境法律。在我国,从事农业研究的人员首先开始了“数字农业”研究。农业信息化是现代农业的共同取向和世界农业发展的必然趋势,数字农业是农业信息化的核心和必由之路。数字农业具有几个显著特点:虚拟现实技术支持下的多维网络信息系统;多源、多比例尺、多分辨率以及数据集成的网络信息系统;面向全社会公众开放的网络信息系统;农业运行机制的全面数字化。
5 完善农业信息化的具体途径
建立涉农服务网站,充分考虑农民使用,充分考虑农业增效,充分考虑农村发展。完善农民信息素养建设,加强信息技术环境下的教育培训,促进信息技术环境下科技传播的带动,注重信息技术环境下科技推广政策的引导。推进农业信息化应从以下几个方面着手:农业信息网络建设;农业信息资源数据库建设;农业信息监测与速报系统建设;国际间农业信息机构的联系与合作机制建设;引导和支持非政府农业信息机构的发展;信息服务人员的素质提高。
6 结束语
“农业兴,基础牢;农村稳,天下安。”在世界农业发展史上,大致经历和发生了三次比较引人注目的农业技术革命。以拖拉机等农机具为标志的农业机械技术在农业生产上的广泛应用,以现代遗传学理论等为标志的生物和化学技术在农业生产中的应用。以生物技术和信息技术为核心的新技术革命,将影响到农业发展的各个层次和环节。农业技术革命已经悄然拉开了序幕。本文就农业知识领域中信息技术的应用前景展开了相关探讨,首先对农业信息技术的基本理论做了相关梳理,然后分析了农业信息技术在我国的应用现状,同时指出了我国农业知识领域中信息技术应用存在的问题,针对存在的问题,提出了构建数字农业理论体系的设想,并基于数字农业理论体系的基础上,提出了完善农业信息化的具体途径。通过这一系列的思考,获得了对我国农业信息技术应用前景的一个基本认识。希望能对日后的农业信息技术工作的开展,起到微薄的帮助。
参考文献
[1] 杜新民.信息技术在农业上的应用[J].农业网络信息, 2005,12:11.
[2] 周国民.我国农业信息技术的应用与发展[A].农业信息技术与信息管理[C].北京:中国农业出版社,2003.
[3] 李道亮,丁娟娟.农业资源高效利用技术集成专家系统的设计[J].中国农业大学学报,1999,4(2):14-18.
——信息技术改造传统农业
利用先进的信息采集系统将一片土地的土壤类型、肥力等土壤信息,降雨、日照等气象信息,以及农业生产动态等信息收集起来,利用信息分析系统将这些信息进行综合分析处理,决定耕作的种类、方式,在生产过程中使用具有变量施肥、喷药功能的农用机械根据不同地块的情况进行精耕细作,从而有效提高产出、节约投入、减少环境污染———在位于北京市海淀区的国家农业信息化工程技术研究中心,中心精准农业工程技术部主任孟志军为记者描绘了这样一幅与传统农业截然不同的图景,这就是精准农业。
随着信息时代的来临,信息技术的飞速发展改变了人类的生活,这一技术在农业上的应用改变了几千年来传统农业的生产方式,翻开了农业发展的崭新一页。基于“3s”技术即遥感技术(rs)、地理信息系统(gis)、全球定位系统(gps)在农业中的应用,20世纪90年代中期以来,精准农业在美国、日本等发达国家中的实验研究与实践有了快速的发展,被誉为“信息时代作物生产管理技术思想的革命”。
承担这一项目的是一支年轻的队伍,平均年龄33岁,70%具有博士学位,多是有着农学与计算机专业背景的复合型人才,短短的五年时间,项目的研发已经有了实质性进展,他们开发出了收集信息的农田地理信息系统、分析信息的变量农业处方图系统、能进行全自动化操作的变量施肥机、变量喷药机等,目前他们正在打造一个更大的具有综合分析功能的平台系统。
——打造“数字农业”技术体系
事实上,精准农业也好、专家系统也好,还有设施农业、虚拟农业等等,这些基于现代信息技术的农业技术系统,都有一个共同的名字———“数字农业”。
“数字农业”是利用信息技术全面促进农业、农村可持续发展,建设现代化农业重要的科学支撑技术。“数字农业”的内容主要包括农业要素、农业过程及农业管理的数字信息化。
“数字农业”是农业信息化的核心,也是农业信息化的具体表现形式。
“数字农业”正在使人们对科学利用农业资源潜力的认识和作物生产管理观念产生深刻的变革,促进农业科技界突破传统的以单学科研究为主的工作方式,通过多学科的融合和协调,将多种科技成果组装集成,直接为农业生产的持续发展服务。
——以国产化与社会化为目标
“数字农业”是一个具有挑战性的国家目标。几乎所有现存的技术基础,目前都还不足以支撑这样一个战略目标的实现。“数字农业”在国内的发展,一方面是将其作为开展农业高新技术研究的重要方向,另一方面是通过“数字农业”技术体系的研究,从中分解出一系列适用新技术,进行国产化和社会化推广。
作为“数字农业”的核心之一,精准农业的发展正面临着令人振奋的前景。从精准农业示范基地的实施情况看,这一技术可以广泛应用于小麦、玉米等大田作物,对品质要求高的经济作物如烟叶、茶叶等效果也非常明显,可以有效提高产出率,节约肥料使用率,提高产品质量。
然而同所有引进的技术一样,精准农业面临成本过高以及如何本土化的问题,目前基地使用的全球定位系统和联合收割机等设备都由国外进口,价格高达100多万元人民币,只有实现国产化,其成本才能大幅降低,所以,今后精准农业要在关键技术上进行自主知识产权的研发和储备,建立完全的国产化的精准农业信息采集、分析以及应用体系。
孟志军介绍说,目前中心正在与黑龙江农垦总局、上海郊区的现代农业园区合作进行国产化试验,以目前研发的情况看,精准农业技术的国产化在3、5年之内就可以达到。这意味着被普遍质疑的实施精准农业成本过高的问题会得以解决,进行社会化生产成为可能。
摘要:数字农业中大量时空数据分散在异构系统中,有着不同格式规范、概念术语、数学模型和分析推理方法。采用时空推理、本体论、语义Web和专家系统等技术建立一个数字农业时空信息管理平台,对多源、异构的农业时空数据和推理分析方法进行集中统一的规范化管理。基于该平台构建数字农业应用系统更加方便快捷。
关键词:数字农业;时空推理;专家系统
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容
(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
关键词:数字农业;时空推理;专家系统
0引言
数字农业应用涉及大量的气象、环境、水文、地质、土壤等领域的时空数据。这些时空数据分散在异构系统中,有着不同的数据格式和规范,采用不同的概念和术语,基于不同的数学模型和分析推理方法。这些多领域时空信息对农业生产、决策均起着重要作用。但是以前由于缺乏高效、合理的技术手段,即使付出很高的代价,也很难将这些时空信息完整无损地共享和融合集成到数字农业应用中,在很大程度上制约了数字农业的应用发展。同时GIS等商业软件平台成本较高也不利于大规模应用推广。
为此,本文基于自主版权GIS、专家系统等系统软件,应用时空推理、本体论、语义Web、关系数据挖掘和专家系统等技术,建立一个数字农业时空信息智能管理平台,对多源、异构的数字农业时空数据和推理分析方法进行集中统一的规范化管理,便于在实际应用中进行融合、集成和共享。基于该平台快速建立起了数字化测土施肥系统、大豆种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批智能应用系统。这些应用系统精确控制农田每一地块种子、化肥和农药的施用量,在提高作物产量的同时,能够实现精确控制农业生产过程,有效降低成本,充分保证农业资源科学地综合开发利用,减少和防止对环境和生态的污染破坏,保持农业生态环境的良性循环,是实现“绿色农业”的重要途径。
1主要关键技术研究现状
1.1数字农业
数字农业是在“数字地球”的基础上提出并发展的,是21世纪新型的农业模式和挑战性的国家目标,包括精准农业、虚拟农业等内容,其核心是精准农业。以3S技术应用为核心的数字农业空间信息管理平台开发研究是数字农业研究的突破口[1,2]。美国于20世纪80年代初提出数字农业的概念,它是针对农业生产稳定性差、技术措施差异程度大等情况,运用卫星全球定位系统控制位置,用计算机精确定量,把农业技术措施的差异从地块水平精确到平方厘米水平,从而极大地提高种子、化肥、农药等农业资源的利用率,提高农产量,减少环境污染。法国农业部植保总局建立了全国范围内的病虫测报计算机网络系统。日本农林水产省建立了水稻、大豆、大麦等多种作物品种、品系的数据库系统。新西兰农牧研究院利用信息技术向农场主提供土地肥力测定、动物接种免疫、草场建设、饲料质量分析等各种信息服务。同时,我国紧跟国际研究的前沿,开展了系统工程、数据库与信息管理系统、遥感、专家系统、决策支持系统、地理信息系统等技术在农业、资源、环境和灾害方面的应用研究。
1.2时空推理
近年来,时空推理(Spatio-temporalReasoning)已成为十分活跃的研究方向,在军事、航天、能源、交通、农业、环境等领域有着广泛的应用。近十年来我国国家基础地理信息中心、清华大学、信息大学、中国科学院、武汉测绘科技大学、武汉大学、吉林大学等单位在时态GIS、时空数据模型、时空拓扑、时空数据库等时空推理相关领域开展了大量研究工作。
1.3时空数据标准与共享
不同领域和应用环境对时空数据的理解存在很大差异,这造成了异构时空系统集成的困难,因此时空数据共享、互操作和标准化的研究具有重要意义。这方面研究最初从空间数据入手,近期开始向时间数据和时空结合数据发展。时空数据的共享有以下方式:
(1)空间数据交换
空间数据交换的基本思想是各系统使用自身的数据格式,通过标准格式进行数据交换。目前空间数据交换标准有:SDTS、DIGEST、RINEX等国际标准;以色列的IEF、英国的MOEPSTD、加拿大的SAIF、我国的CNSDTF等国家标准;AutoDesk的DXF、ESRI的E00、MapInfo的MIF等厂商标准。尽管各GIS软件厂商提供了公开的交换文件格式来进行空间数据的转换,但由于底层数据模型的不同,最终导致不同的GIS的空间数据不能无损的共享。虽然空间数据交换仍然在使用,但效果并不理想。空间数据互操作标准是当前国际公认的,比空间数据交换标准更有前途的数据标准。
(2)基于GML的空间数据互操作
开放式地理信息系统协会(OpenGISConsortium,OGC)提出了简单要素实现规范和地理标记语言(GeographyMarkupLanguage,GML)。OGC相继推出了一整套GIS互操作的抽象规范,包括地理几何要素、要素集、OGIS要素、要素之间的关系、空间参考系统、定位几何结构、存储函数和插值、覆盖类型及地球影像等17个抽象规范,2003年1月推出GML3.10版[3]。近年来,国内外众多学者基于GML在空间数据共享等方面开展了大量研究。2001年Rancourt等人[4]将GML与先前所定义的空间标准进行比较,认为GML能有效地满足空间数据交换标准。2002年,ZhangJianting等人[5]提出了一种基于GML的Internet地理信息搜索引擎。2003年,ZhangChuanrong等人[6]在网络环境下以GML作为异构空间数据库交换共享空间数据的格式,成功实现数据的互操作。2003年,崔希民等人[7]提出了GIS数据集成和互操作的系统架构,在数据层次上实现GIS数据的集成和互操作。2003年,张霞等人[8]提出一种基于GML构造WebGIS的框架结构,给出实现框架技术。其中采用GML作为空间数据集成格式。2004年,朱前飞等人[9]提出了一种新的基于GML的数据共享解决方案。2005年,陈传彬等人[10]提出了基于GML的多源异构空间数据集成框架。GML数据类型较完整,支持厂家较多,相关研究丰富,是目前最有前景的时空数据标准。本文选择GML作为农业时空数据标准。
1.4时空本体
1.4.1本体、语义Web和OWL
本体方法目前已经成为计算机科学中的一种重要方法,在语义Web、搜索引擎、知识处理平台、异构系统集成、电子商务、自然语言理解、知识工程等领域有着重要应用。尤其是目前随着对语义Web研究的深入,本体论方法受到了越来越多的关注,人们普遍认为它是建立语义Web的核心技术。OWL是当前最有发展前景的本体表示语言。2002年7月29日,W3C组织公布了本体描述语言(WebOntologyLanguage,OWL)的工作草案1.0版。目前工作草案的最新更新为2004年2月10日的版本[11]。
1.4.2时空本体
基于本体方法对时空建模的相关研究工作如下:
1998年,Roberto考虑了作为地理表示基础的某些本体问题,给出了关于一般空间表示理论的某些建议[12]。2000年ZhouQ.和FikesR.定义了一种考虑时间点和时段的时间本体[13]。2000年,Córcoles基于XML定义了一个类似SQL的时空查询语言,该语言包含八种空间算子和三种时态算子用于表达时空关系[14]。2003年,Grenon基于一阶谓词逻辑定义了时空本体,使用斯坦福大学的Protégé环境实现[15]。2003年,Bittner等人[16]提出了用于描述复杂时空过程和其中的持续实体的形式化本体。以上工作中Grenon的时空本体研究相对完整,相关研究成果已经在网上共享,本文在此基础上开展研究,建立农业时空本体。
2主要研究内容(1)农业时空数据规范
现阶段我国还没有公认的农业时空数据标准出台。本文基于时空推理技术,研究通用性更强的时空数据表示模型,能表示气象、土壤、环境、水文、地质等各领域的农业时空数据。GML是目前公认的时空数据标准,利用上述模型扩充GML,兼容中国农业科学院的“农业资源空间信息元数据的分类及编码体系草案”等国内现有的地方性标准,构建针对数字农业中时空数据的DA-GML标准,作为数字农业基础时空数据的规范。现有的土壤、环境等基础空间数据库均支持到GML格式的转换。
(2)农业基础时空数据库
基于笔者自主开发的GIS平台建立农业基础时空数据库,该平台具有运行稳定、资源占用少、结构灵活、功能可裁减、成本较低、便于移植等特点。采用了时空推理技术,支持对空间和时空信息的表示和推理。通过DA-GML能够直接从现有系统中获取领域农业基础时空数据,主要包括土壤数据库、环境数据库、气象资料数据库、农业生产条件数据库、林业信息数据库、影像数据库等。
(3)农业时空分析方法库与农业时空知识库
时空推理是研究时间、空间及时空结合信息本质的技术,通过时空推理技术将现有面向农业领域的时空分析技术进行整合和规范化表示,形成农业时空分析方法库。对领域农业时空知识进行归纳、整理,同时通过数据挖掘方法从基础数据中提炼知识,建立农业时空知识库。
(4)农业时空本体库
在(2)、(3)中存储的数据、方法和知识需要一个有效的机制进行组织和管理。就目前技术而言,本体是表达一个领域内完整的体系(概念层次、概念之间的关联等)的最有效工具,所以本文选择建立农业时空本体库。具体包括本体获取、本体管理、本体服务与展示三个模块。使用Protégé做本体开发环境编辑。Protégé是斯坦福大学开发的基于Java的本体编辑与知识获取工具,带有OWL插件的Protégé可以支持OWL格式的本体编辑与输出。
以上三个库通过WebService方式提供基于Internet的服务,可以在线对库中信息进行维护和检索,并能无缝集成到应用系统中。
(5)系统体系结构
系统工作原理如图1所示。首先,外部系统的时空数据转换成GML格式(现在绝大多数系统支持该数据标准),进入农业基础时空数据库。通过本体获取与编辑模块将时空数据和时空知识整理,形成本体库。外部系统的请求通过WebSer-vices发给仲裁者,仲裁者区分各类情况调用三个库调用服务、提取数据和执行操作,结果返回给用户。
(6)基于平台开发农业生产智能应用系统
基于数字农业时空信息管理平台建立数字化测土施肥系统、作物种植标准化管理系统、无公害水果蔬菜栽培指导系统等一批农业生产智能应用系统,解决实际问题。
3相关系统对比分析
3.1数字农业空间信息管理平台
平台基于信息和知识支持的现代农业管理的集成技术,对农田信息进行动态采集、分析、处理和输出,从而根据农田区域差异、农事安排进行模拟分析、决策支持管理和指挥控制,并对农业生产过程的区域差异进行精确定位、动态控制等定量操作[17]。
3.2全国农业资源空间信息管理系统
全国农业资源空间信息管理系统(NASIS)实现对全国农业资源空间信息的查询分发,具有系统管理、动态数据字典、数据检索、查询、数据分发、制图、报表统计、数据分发等功能。该系统已经用于全国农作物遥感监测、农业资源调查、农业科研和农业政策信息支持服务等方面[18]。
3.3中国西部农业空间信息服务系统
计算机技术、互联网技术的迅速发展为建立基于Web的中国西部农业空间信息服务系统提供技术支撑。本文从西部农业空间信息服务系统的数据库构建开始,全面地介绍了系统的运行模式和数据库访问技术,详细论述了系统的总体结构、平台环境和开发实现等。
(1)基于平台提供的开发框架,能方便、高效地建立大量的数字农业智能应用系统,基层农业科技人员也能快速开发出技术含量高的应用系统,各应用系统能互通、共享,便于升级维护。
(2)由于大量的底层服务、数据、知识和方法由平台集中统一提供,简化了开发数字农业应用软件的工作,节约了成本。
4结束语
数字农业时空信息管理平台从系统目标、适用范围、采用技术、系统接口等方面不同于任何现有的基础农业空间数据管理平台,是一个概念全新的系统,定位于基础农业空间数据管理平台的上层,更便于开发数字农业应用。其中的本体库等机制为将来建立农业时空数据网格奠定了良好的基础。
参考文献:
[1]于淑惠.数字农业及其实现技术[J].农业图书情报学刊,2004,15(7):5-8.
[2]唐世浩,朱启疆,闫广建,等.关于数字农业的基本构想[J].农业现代化研究,2002,23(3):183-187.
[3]Geographymarkuplanguage(GML)[EB/OL].(2003)./techno/specs/002029PGML.html.
[4]RANCOURTM.GML:spatialdataexchangefortheinternetage[D].NewBrunswick:DepartmentofGeodesyandGeomaticsEngineering,UniversityofNewBrunswick,2001.
[5]ZHANGJianting,GRUENWALDL.AGML2basedopenarchitectureforbuildingageographicalinformationsearchengineovertheinternet[DB/OL].(2002).cs.ou.edu/database/documents/zg01.pdf.