当前位置: 首页 精选范文 初中物理电路动态分析范文

初中物理电路动态分析精选(十四篇)

发布时间:2023-09-22 10:35:51

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇初中物理电路动态分析,期待它们能激发您的灵感。

初中物理电路动态分析

篇1

模块一

单开关电路动态分析

例题精讲

【例1】

如图,当S闭合,滑动变阻器的滑片P向右滑动时,电压表示数将_______,电流表示数将________,电压表示数与电流表示数的比值________(选填“变大”、“变小”或“不变”).

考点:

欧姆定律的应用;滑动变阻器的使用;电路的动态分析.

解析:

当滑片向右移动时,接入电阻变大,总电阻变大,由欧姆定律得电路中电流变小,R上的电压变小.因R阻值不变,故电压表与电流表的示数不变.

答案:

变小,变小,不变.

【测试题】

如图所示的电路,滑动变阻器的滑片P

向右滑动的过程中,电流表和电压表的示数变化是(

)

A.电流表示数变小,电压表示数变大

B.

电流表、电压表示数都变大

C.电流表示数变大,电压表示数变小

D.

电流表、电压表示数都变小

考点:

欧姆定律的应用;滑动变阻器的使用.

解析:

读图可知,这是一个串联电路,电压表测滑动变阻器两端的电压,电流表测串联电路的电流.当滑动变阻器的滑片P向右滑动时,接入电路的阻值变大,根据串联电路的分压原理,电压表的示数会变大.电路中的总电阻变大,在电源电压不变的情况下,电流会变小.所以只有选项A符合题意.

答案:

A

【例2】

如图所示电路,当滑动变阻器滑片向右滑动时,电流表和电压表示数变化情况是(

)

A.

电流表和电压表示数都不变

B.

电流表示数变小,电压表V1示数变小,电压表V2示数不变

C.

电流表示数不变,电压表示数都变大

D.

电流表示数变大,电压表V1示数不变,电压表V2示数变大

考点:

电路的动态分析;滑动变阻器的使用;欧姆定律的应用.

解析:

由电路图可知,R1与R2串联,电压表V1测R1两端的电压,电压表V2测电源的电压,电流表测电路中的电流;

电源的电压不变,

滑片移动时,电压表V2的示数不变,故AD不正确;

当滑动变阻器滑片向右滑动时,接入电路中的电阻变大,电路中的总电阻变大,

I=,

电路中的电流变小,即电流表的示数变小,故C不正确;

U=IR,

定值电阻R1两端的电压变小,即电压表V1示数变小,故B正确.

答案:

B

【测试题】

如图所示,当变阻器滑片P向右滑动时,两电压表示数的变化情况是(

)

A.

V1增大,V2增大

B.

V1减小,V2增大

C.

V1增大,V2减小

D.

V1减小,V2减小

考点:

电路的动态分析;串联电路的电压规律;滑动变阻器的使用;欧姆定律的应用.

解析:

⑴定值电阻R1、R2和滑动变阻器Rr组成串联电路,电压表V1测量定值电阻R1两端的电压,电压表V2测量滑动变阻器Rr和R2两端的电压;

⑵当滑动变阻器的滑片P向右滑动时,其接入电路阻值变大,电路中总电阻变大,因此电路中电流变小;

⑶①定值电阻R1两端的电压为U1=IR1,I变小,R1不变,因此电阻R1两端的电压U1变小,即电压表示数V1减小;

②根据串联电路电压的特点,滑动变阻器和R2两端的电压U2=U-U1,U不变,U1都变小,所以U2变大,即电压表V2的示数会增大.

答案:

B

【例3】

如图所示电路,电源电压不变,当滑动变阻器的滑片P向右滑动时,各电表示数的变化情况是(

)

A.

A变小、V1变大,V2变小

B.

A变大、V1变大,V2变小

C.

A变小、V1变小,V2变大

D.

A变大、V1变小,V2变大

考点:

欧姆定律的应用;电路的动态分析.

解析:

由电路图可知,滑片P向右滑动时,滑动变阻器接入电路的阻值变大,

滑动变阻器的分压变大,电压表V1示数示数变大,由串联电路电压特点知,电阻R的分压减小,电压表V2示数变小;电源电压不变,电路电阻变大,由欧姆定律可知,电路电流减小,电流表示数变小.

答案:

A

【测试题】

如图所示,电源电压保持不变,当滑动变阻器滑片P向右滑动时,电表示数的变化情况是(

)

A.电压表V示数变小

B.

电流表A1示数变大

C.电流表A2示数变大

D.

电流表A1示数变小

考点:

欧姆定律的应用;电路的动态分析.

解析:

⑴电路的等效电路图如图所示:

⑵电源电压U不变,由电路图知,电压表测电源电压,因此电压表示数不变,故A错误;电阻R1阻值不变,由欧姆定律知IA2=I1=不变,即电流表A2示数不变,故C错误;

⑶滑动变阻器滑片P

向右滑动,滑动变阻器接入电路的阻值R2变大,

流过滑动变阻器的电流I2=变小,干路电流I=IA1=I1+I2变小,故B错误,D正确.

答案:

D

【例4】

如图所示电路中,当变阻器R的滑动片P向上滑动时,电压表V和电流表A的示数变化情况是(

)

A.V和A的示数都增大

B.V和A的示数都减小

C.V示数增大、A示数减小

D.

V示数减小、A示数增大

考点:

闭合电路的欧姆定律.

解析:

在变阻器R的滑片向上滑动的过程中,变阻器接入电路的电阻增大,R与R3并联电阻R并增大,则外电路总电阻增大,根据闭合电路欧姆定律得知,干路电流I减小,路端电压U增大,可知R2两端的电压减小,V的示数减小.

并联部分电压U并=E-I(R1+r),I减小,E、R1、r均不变,则U并增大,通过R3的电流增大,则电流表A的示数减小.故B正确,ACD错误.

答案:

B

【测试题】

如图所示电路,电源中电源两端的电压保持不变,R0为定值电阻,R为滑动变阻器.闭合开关S后,在滑动变阻器滑片P向右滑动的过程中,下列说法正确的是(

)

A.电流表A1的示数变小

B.

电流表A2的示数变大

C.电压表V的示数不变

D.

小灯泡L的亮度变暗

考点:

电路的动态分析;滑动变阻器的使用;欧姆定律的应用.

解析:

当滑片向右移动时,

电源电压不变,

通过定值电阻R0、灯的电流IL不变,

即电流表A2的示数不变,电压表V的示数不变,灯泡的亮暗不变;

I=,滑动变阻器连入的电阻变小,

本支路的电流IR变大,

I1=IL+IR,

通过灯和滑动变阻器的电流之和变大,即电流表A1的示数变小.

答案:

C

【例5】

如图所示的电路,电源两端电压不变,闭合开关S后,滑动变阻器的滑片P向右滑动过程中,下列说法正确的是(

)

A.

电流表A1与电流表A2的示数相同

B.

电压表V与电流表A2示数的比值变小

C.

电压表V与电流表A2示数的比值变大

D.

电压表V与电流表A2示数的比值不变

考点:

欧姆定律的应用.

解析:

等效电路图如图所示;滑动变阻器的滑片P向右滑动,滑动变阻器接入电路的电阻

R滑变大.

电流表A1测流过灯泡的电流,电流表A2测流过电阻与灯泡的总电流,I1<I2,故A错误.

滑片右移,R滑变大,IR=变小,流过灯泡的电流I1不变,I2=I1+IR变小,

电压表V示数U不变,电流表A2示数I2变小,电压表V与电流表A2示数的比值变大,故B与D错误,C正确.

答案:

C

【测试题】

如图所示电路,电源两端电压不变,闭合开关S,当滑动变阻器的滑片P向右移动的过程中,下列说法正确的是(

)

A.电压表示数变小

B.

电流表示数变大

C.电阻R1两端的电压变小

D.

电阻R2两端的电压变大

考点:

欧姆定律的应用;滑动变阻器的使用.

解析:

读图可知,这是一个串联电路,电压表测量R1、R3两端的电压,R3是一个滑动变阻器,电流表测串联电路的电流.当滑动变阻器的滑片P向右滑动时,接入电路的阻值变大,三个电阻的阻值之和(电路的总电阻)变大,在电源电压不变的情况下,电路中的电流变小,因此,电流表示数变小,B错误.

根据串联电路的分压关系,R3两端的电压变大,则R1、R2两端的电压都要相应变小,R2两端的电压变小,总电压减去R2两端的电压,也就是电压表此时的示数,应该变大,故A、D错,C对.

答案:

C

【例6】

如图是小李探究电路变化的实验电路,其中R1、R2为定值电阻,R0为滑动变阻器,Rmax为滑动变阻器的最大阻值,电源两极间电压不变.已知R1>R2>Rmax,当滑动变阻器R0的划片P置于某一位置时,R1、R2、R0两端的电压分别为U1、U2、U0;当划片P置于另一位置时,R1、R2、R0两端的电压分别为U1′、U2′、U0′.若U1=|U1-U1′|,U2=|U2-U2′|,U0=|U0-U0′|,则(

)

A.U0>U1>U2

B.U1<U2<U

C.U1>U2>U0

D.U0<U1<U2

考点:

欧姆定律的应用.

解析:

该电路为串联电路,因为R1、R2为定值电阻,并且R1>R2,而当滑动变阻器从一端移至另一端时,通过R1、R2的电流相等,所以定值电阻两端的电压变化为U1=|U1-U1′|=IR1,U2=|U2-U2′|=IR2;即U1>U2;又因为串联电路两端的电压等于各部分电压之和,因此滑动变阻器两端电压变化量是定值电阻电压变化量之和,即U0=U1+U2.所以U0>U1>U2.

答案:

A

【测试题】

如图所示,电源两端的电压保持不变,R0为定值电阻.将滑动变阻器的滑片P置于最右端,闭合开关S.移动滑动变阻器的滑片P到某一位置,此时滑动变阻器接入电路中的电阻为R1,电压表的示数为U0,电流表的示数为I0.继续移动滑动变阻器的滑片P,使滑动变阻器接入电路中的电阻值减小为R1/3,此时电压表的示数增大到2U0,电流表的示数变为I1.则R0:R1=______.

考点:

欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电路的动态分析.

解析:

当滑动变阻器接入电路中的电阻为R1时,

则:U0=I0R0-----①

U=U0+I0R1------②

当滑动变阻器接入电路中的电阻值减小为R1,

则:2U0=I1R0-----③

U=2U0+I1×R1---④

由①②③④可得:R0:R1=1:3.

答案:

1:3

【例7】

如图所示电路,电源两端电压保持不变.闭合开关S,当滑动变阻器的滑片P向右滑动时,下列说法中正确的是(

)

A.电压表V1示数和电流表A示数的比值变小

B.电压表V2示数和电流表A示数的比值变小

C.电压表V1示数变化量和电流表A示数变化量的比值变大

D.电压表V2示数变化量和电流表A示数变化量的比值不变

考点:

欧姆定律的应用.

解析:

由电路图知:电阻R1、R2、R3串联,电压表V1测电阻R1两端的电压,

电压表V2测电阻R2、R3两端的总电压,电流表测电路电流,设电源电压为U.

动变阻器的滑片P向右滑动时,电阻R2电阻变大,设增加的电阻为R.

A、电压表V1示数和电流表A示数的比值=R1不变,故A错误.

B、电压表V2示数和电流表A示数的比值=R2+R3,R2变大,则比值变大,故B错误.

C、I=I'-I

=,

U1=(I'-I)R1=R1,

=R1,不变,故C错误.

D、U2=I'(R2+R+R3)-I(R2+R3)=(I'-I)(R2+R3)+I′R=I(R2+R3)+I′R,

=(R2+R3)+||R,>(R2+R3),由此可见当滑动变阻器的滑片P向右滑动时,不变,故D正确.

答案:

D

【测试题】

如图所示的电路中,电源电压保持不变.闭合开关S,当滑动变阻器的滑片P向右移动时,电压表V1的示数与电流表A的示数的比值将_______(变小/不变/变大),电压表V1示数的变化_______(大于/等于/小于)电压表V2示数的变化.

考点:

欧姆定律的应用;滑动变阻器的使用.

解析:

当滑动变阻器的滑片P向右移动时,电压表V1始终测量R1两端的电压U1,电流表测通过R1的电流I;

所以根据欧姆定律可知=R1,R1的阻值不变,电压表V1的示数与电流表A的示数的比值也不变.

因串联电路总电压等于各分电压之和,

所以U1=U-U2,U1=U2,即电压表V1示数的变化等于电压表V2示数的变化.

答案:

不变;等于.

模块二

多开关电路动态分析

例题精讲

【例8】

如图所示电路,R1>R2,当闭合S1断开S2,滑动变阻器的滑片P放在变阻器的中点时,电压表的示数为U0.关于此电路的下列说法中,正确的是(

)

A.

闭合S1断开S2时,若滑动变阻器的滑片P向左移动,电压表的示数将大于U0

B.

若断开S1闭合S2,同时滑动变阻器的滑片P向右移动,电压表的示数可能等于U0

C.

若同时闭合S1、S2,无论滑动变阻器的滑片怎样移动,电压表的示数总等于U0

D.

断开S1闭合S2,若使电压表的示数还等于U0,则滑动变阻器的滑片P应向左移动

考点:

电路的动态分析.

解析:

A、当闭合S1断开S2,滑动变阻器的滑片P放在变阻器的中点时,R1和变阻器的R串联在电路中,则U0=IR1=

,若滑动变阻器的滑片P向左移动,连入的电阻变小,电路中的电流变大,因R1为定值电阻,所以电压表示数变大,故A选项正确;

B、若断开S1闭合S2,同时滑动变阻器的滑片P向右移动,则R2和变阻器大于R的阻值串联,电压表测量的是电阻R2两端的电压;电压表的示数U2=I2R2,因R1>R2,若滑动变阻器的滑片P不再向右移动,根据串联电路的分压特点可知:电阻R2两端的电压会减小,则电压表的示数减小;而同时滑动变阻器的滑片P向右移动,滑动变阻器的阻值变大,电流变小,电阻R2两端的电压会再减小,则电压表的示数减小,不可能等于U0,故B选项错误.

C、若同时闭合S1、S2,因R1、R2短路,只有滑动变阻器连入,电压表测量电源电压,则无论滑动变阻器的滑片怎样移动,电压表的示数总等于电源电压,保持不变,所以不等于U0,故C选项错误.

D、若断开S1闭合S2,因R1>R2,若滑动变阻器的滑片P继续向右移动,根据串联电路的分压特点可知:电阻R2两端的电压会减小,则电压表的示数减小;若使电压表的示数还等于U0,则根据U2=I2R2可知:电流变大,滑动变阻器的阻值变小,即滑动变阻器的滑片P应向左移动,故D选项正确.

答案:

AD

【测试题】

如图所示电路,电源电压不变,开关S1处于闭合状态.闭合开关S2,将滑动变阻器的滑片P向左移动时,电压表示数将________,若保持滑动变阻器的滑片P不动,当开关S2由闭合到断开时,电压表示数将________.(均选填“变大”、“变小”或“不变”)

考点:

电路的动态分析;欧姆定律的应用;电阻的串联.

解析:

⑴开关S1处于闭合状态,闭合开关S2时,R2与R3串联,电压表测电源的电压,电流表测电路中的电流,

电源的电压不变,

将滑动变阻器的滑片P向左移动时,电压表示数将不变;

⑵保持滑动变阻器的滑片P不动,当开关S1闭合、S2断开时,三电阻串联,电压表测R2与R3两端的电压之和,

串联电路中总电阻等于各分电阻之和,

开关S2由闭合到断开时,电路中的总电阻变大,

I=,

电路中的电流变小,

U=IR,

R2与R3两端的电压之和变小,即电压表的示数变小.

答案:

不变;变小.

模块三

滑动变阻器的应用

例题精讲

【例9】

如图所示.物体M在水平导轨上平移时,带动滑动变阻器的滑片P移动,通过电压表显示的数据,可反映出物休移动距离的大小,下列说法正确的是(

)

A.物体M不动时,电流表、电压表都没有示数

B.物体M不动时.电流表有示数,电压表没有示数

C.物体M向右移动时.电流表、电压表示数都增大

D.

物体M向右移动时,电流表示数不变,电压表示数增大

考点:

电路的动态分析;串联电路的电压规律.

解析:

如图,

⑴当物体不动时,R连入电路,电流表有示数;AP间有分压,电压表有示数,所以AB都错

⑵当物体M向右移动时,不能改变电路中的电流,电流表有示数且不变;AP间电阻增大,分压增大,电压表的示数增大,所以C错、D对.

答案:

D

【测试题】

如图所示,滑动变阻器的滑片P向右滑动时,那么(

)

A.

V示数变大,A示数变小

B.

V示数不变,A示数变小

C.

V示数不变,A示数变大

D.

V、A的示数都变小

考点:

欧姆定律的应用;串联电路的电流规律;滑动变阻器的使用.

解析:

当滑动变阻器滑片P向右滑动过程时,滑动变阻器接入电路的阻值变大;

根据电阻的串联可知,电路中的总电阻变大;

根据欧姆定律可知,电压不变时,电路中电流变小,即电流表的示数变小;

根据U=IR,电阻R1两端的电压变小,故电压表的示数变小.

答案:

D

【例10】

洋洋设计了一个自动测高仪,给出了四个电路,如图所示,R是定值电阻,R´是滑动变阻器.其中能够实现身高越低,电压表示数越小的电路是(

)

A.

B.

C.

D.

考点:

欧姆定律的应用;滑动变阻器的使用.

解析:

A、由电路图可知:滑动变阻器和定值电阻串联,电压表测电源电压,示数不变.故A错误.

B、由电路图可知:电压表串联在电路中,电路无电流通过,电压表示数为电源电压,不变化.故B错误.

C、由电路图可知:滑动变阻器和定值电阻串联,电压表测滑动变阻器的电压,身高越低,滑动变阻器阻值越小,电压表示数越小.故C正确.

D、由电路图可知:滑动变阻器和定值电阻串联,电压表测定值电阻电压,身高越低,滑动变阻器阻值越小,电压表示数越大,故D错误.

答案:

C

【测试题】

小李同学设计的自动测高仪的电路如图所示.电路中

R′是滑动变阻器,R

是定值电阻,电源电压不变.其中能反映身高越高电压表示数越大的正确电路图是(

)

A.

B.

C.

D.

考点:

欧姆定律的应用;电压表的使用;串联电路的电压规律;并联电路的电压规律;滑动变阻器的使用;电路的动态分析.

解析:

A、R与R′并联,电压表测量的是并联支路两端的电压,身高越高,连入电阻越大,但电压表的示数不变,不合题意;

B、R与R′串联,电压表测量的是R′两端的电压,身高越高,连入电阻越大,分压越大(电压表的示数越大),符合题意;

C、R与R′串联,电压表测量的是R和R′串联电路两端的总电压(电源电压),身高越高,连入电阻越大,但电压表的示数不变,不合题意;

D、R与R′串联,电压表测量的是R两端的电压,身高越高,连入电阻越大,分压越大,R两端的电压越小(电压表的示数越小),不合题意.

答案:

B

【例11】

如图所示,是某同学设计的一个自动测定水箱内水位的装置,R是滑动变阻器,它的金属滑片是杠杆的一端,从水位表指针所指的刻度就可以知道水箱内水位的高低.从图中可知:水表是由________表改装而成,当水面上升时,滑片向_____滑动,滑动变阻器连入电路的电阻变______,水位表示数变______.

考点:

欧姆定律的应用;电流表的使用;滑动变阻器的使用.

解析:

⑴由电路图可知,水位表串联在电路中,说明水表是由电流表改装而成;若是电压表,则电路断路,水位表的示数不随水位的变化而变化.

⑵由图可知,当水面上升时,滑片向下移动,滑动变阻器连入电路的电阻变小,根据欧姆定律可知电路中的电流变大,即水位表的示数变大.

答案:

电流;下;小;大.

【测试题】

某同学家屋顶上安装了一个简易太阳能热水器,他设计了一种自动测量容器内水位高低的装置.如图所示,R是滑动变阻器,它的金属滑片是杠杆的一端,从水位表(由电流表改装而成)指针所指的刻度,就可知道水池内水位的高低.关于这个测量装置,下列说法中正确的是(

)

A.

水量增加,R增大,水位表指针偏转变小

B.

水量增加,R减小,水位表指针偏转变大

C.

水量减小,R增大,水位表指针偏转变大

D.

水量减小,R减小,水位表指针偏转变小

考点:

欧姆定律的应用.

解析:

由图知:

AB、水量增加,浮标向上运动,滑动变阻器接入电路的电阻R变小,通过水位表的电流变大,水位表指针向右偏转,示数变大,选项A错误、选项B正确;

CD、水量减小,浮标向下运动,滑动变阻器接入电路的电阻R变大,通过水位表的电流变小,水位表指针向左偏转,示数变小,选项CD均错误.

篇2

初中物理,对电源的内阻一般不考虑。这样就可以根据电路动态变化的原因,将问题简单划分为两种:第一种是由于电路中开关状态不同,而使电路中各电学量发生变化,解决此类问题的原则是:动态电路开关的断开与闭合电路的连接方式改变总电阻的变化总电流(电压)的变化部分电流(电压)的变化各电流表(电压表)示数的变化。第二种是因滑动变阻器的滑片移动,使电路中各电学量发生变化,解决此类问题的原则是:动态电路滑动变阻器滑片的移动滑动变阻器接入电路的阻值的变化总电阻的阻值变化总电流(电压)的变化部分电流(电压)的变化各电流表(电压表)示数的变化。

解决动态电路问题,应注意以下几点:

(1)识别电路是串联还是并联。

(2)明确各电表的测量对象及范围。

(3)串联电阻个数增多时总电阻增大(即串联电阻越多,总电阻越大),并联电阻个数增多时,总电阻减小(即并联电阻越多,总电阻越小)。

(4)在电阻的总个数不变的情况下,无论串、并联电路,部分电阻增大,总电阻随之增大。

(5)当电源电压不变时,总电流与总电阻成反比。

(6)分配关系:串联分压成正比(阻值大的电阻两端电压大)、并联分流成反比(流经阻值大的电阻的电流小)。

(7)在并联电路中,各支路上的用电器互不影响,变阻器只影响所在支路电流变化,从而引起干路电流变化。

一、滑动变阻器滑片位置变化引起各物理量变化

1.在串联电路中滑动变阻器滑片位置变化引起各物理量变化

【例1】如图1所示,闭合开关后当滑片P向右移动时,A表,V表(填“变大”、“变小”或“不变”)。

图1解析:首先判断电路类型(简单的方法为:将电流表看成导线,将电压表拆除,成为开路),此时容易看出,这是一个串联电路,串联电路中,电流处处相等,所以A表示数不变。

本电路中当滑片P向右移动时,被跨接在电压表内的电阻随着变大,依据串联分压关系知,V表示数变大。

2.并联电路中滑动变阻器滑片位置变化引起物理量变化

解析:依题意分析可知,图2所示电路为并联电路,并联电路各支路两端电压相等,等于电源电压,故电压表V示数不变。

滑动变阻器滑片P向左移动时,并联电路各支路独立工作,对R1这条支路没有影响,所以电流表A1示数不变。

滑片P左移,接入的R2阻值变小,这条支路的电流变大,干路中电流也随之变大,故A2示数变大。

二、电路开关的闭合或断开引起电路中各电学量的变化

1.串联电路中开关的断开或闭合引起的变化

【例3】如图3所示,将开关K闭合,则A表、V表的示数将如何变化?

图3解析:依题意知在开关K闭合前,R1和R2串联,电路总电阻较大,开关K闭合后,电阻R2被局部短路,电路中的电阻只有R1了,因此电路总电阻变小,电流变大,电流表的示数变大。

在开关K闭合前,两个电阻串联。电压表测量R1两端的电压,开关K闭合后,电阻R2被短路,电压表测量电源两端的电压,因此电压表的示数将变大。

2.并联电路中开关的断开或闭合引起的变化

篇3

论文关键词:信息技术,初中物理,概念教学

 

《物理课程标准》指出:“应当重视将信息技术应用到物理教学中。”在物理教学中,教师通过运用信息技术手段和方法把容易混淆或是难以理解的物理概念加以展示,使静态的知识生动化,促使学生动手、动脑,不断揭示概念所反映的客观世界的多种矛盾,分清主次、搞清楚各种矛盾的相互依存关系及发展方向,让学生既获得了知识、又掌握了方法,培养能力,从而真正实现物理概念教学的目的。

一、呈现物理情景,引入概念

建构主义认为:“学生的知识不是通过教师传授获得的,而是学生在一定的情境中,借助教师和同学的帮助,利用必要的学习资源,通过一定建构的方式获得的。”因此,在物理概念引入教学中,运用信息技术呈现物理情景,能使学生在视觉、听觉等多种感官上全方位地受到刺激,从而有效激发学生的好奇心,点燃学生的思维火花。

如,“动能”教学时,我把龙卷风、海啸、水库放水等动态视频组合在一起加以呈现,学生看到大树拔起、车辆掀翻、堤坝冲毁、房屋倒塌的画面后非常震感,也提了许多问题:“龙卷风怎么形成的?力量怎么样厉害?” “水狂泻下怎么会如此厉害?这是什么能量?”……这样以信息技术呈现物理现象,无论是视觉效果还是听觉效果,都能给学生深刻的印象,让学生对自然界物体具有的某种“能力”获得一种强烈的感受和直观的认识,从而为建立“动能”的概念打下基础。

因此,在物理概念教学中初中物理,创设与形成物理概念有关的生动的、新颖的情境,使学生感知大量的感性材料,对物理现象有一个明晰的印象,有利于学生形成正确的物理概念,加深理解物理规律。

二、揭示本质属性,理解概念

物理概念的建立过程是在物理环境中学生通过观察、实验获取必要的感性知识,并与自己认知结构中原有的概念相联系的基础上,通过同化或顺应不断加深认识和理解概念的。因此,在教学中运用信息技术为学生提供充分的感性认识的基础上,引导学生进行分析、综合、抽象,摒弃现象和过程中那些表面的、偶然的、次要的等非本质的东西,以揭示现象和过程的本质属性。

如,“重力”教学时,我先播放铅球和跳高比赛的视频录像,然后提出问题:奋力投出的铅球和跃过横杆的运动员最终会处于怎样的状态?这样的竞技项目挑战的是人类的什么极限?问题的提出,激起了学生浓厚的兴趣。待学生回答之后,再播放神舟七号航天飞船成功升上太空和宇航员在飞船舱内的生活和工作情景的视频,再一次提出问题让学生思考:在远离地球的太空中,宇航员可以用任意的姿势“漂浮”在船舱中,这又是什么原因呢?

这样,借助信息技术展示现实生活中的重力现象,丰富了学生的感知,激发了学生积极思维,在鲜明对比的情境中,抽象概括出重力概念的本质属性,使学生深刻认识到:重力是由于地球的吸引而产生的。

三、突破教学难点,深化概念

将物理学科教学与信息技术整合,利用信息技术辅助教学无疑为课程目标的实现提供了近乎完美的渠道。信息技术独有的“模拟”作用,不仅能真实生动地再现各种难以理解的、抽象的物理知识,激励学生参与教学过程,而且可以有效突破物理教学中的重点和难点问题,深化概念规律的理解。

如,“电流”一节,难点是学生无法观察到电流的形成与方向,因此,电流的概念理解起来比较困难。在教学时,我利用Flash软件进行仿真“模拟”,把电池组、小灯泡、开关、导线连成实物电路。然后闭合开关,电流(用红色线条表示)从电源正极(用“+”表示)流出,通过小灯泡时,灯泡发光,最后回到负极(用 “一”表示),形象、直观一目了然。师生通过对这一直观模拟实验的观察、分析、归纳和总结,很快就能够理解电流的形成、方向这一重点、难点,对“电流”的概念也就有了更深层次的理解。

因此,在物理教学中,教师应充分利用信息技术教学手段,根据教学内容精心设计,把抽象的、枯燥的物理知识原理转化为生动的、具体的图像,帮助学生在头脑中建立正确模型。从而有效突破教学难点,加深对物理概念的理解。

四、动态分析过程,活化概念

物理概念与规律的教学是物理教学的核心。物理现象、物理过程的相互联系及其发展趋势是靠物理规律建立的。在物理规律教学中拓展概念教学,运用信息技术的动态变化功能,进一步揭示和理解相关概念之间的相互关系,形象直观地“顿悟”概念的内涵。这有利于概念知识沿网状同化,从而达到活化概念的目的。

如,有关滑动变阻器的滑片移动时初中物理,电流表、电压表示数变化情况的判断以及变化范围的计算问题,一直是历年中考物理试题和各种物理竞赛中的热点。而学生普遍感到此类题难度大,得分率也较低。

如右图所示的电路中,滑动变阻器R2的滑片P向右移动。请分析电流表和电压表的变化情况。教师在引导学生分析时,可充分利用信息技术的动态变化功能,制成课件进行以下动态分析:把电压表和电流表等效替换,电压表等效于开路,电流表等效于一条导线。由此不难看出,电路中的电流只有一条道路,即串联电路,电压表测量的事滑动变阻器的电压。

这样,运用信息技术对电路进行动态分析,既让学生充分理解了电路的规律,也加深学生对电学部分相关概念的具体认识,深化和活化了物理概念,收到良好的教学效果。

五、加强练习反馈,巩固概念

课堂练习的检测与反馈是打造高效课堂的重要环节。通过反馈练习可以使学生深化概念,提高学习效率,加强对所学概念的理解和巩固。利用现代信息技术贮量大、速度快的特点,对学生进行有针对性的训练和检测,为学生创造了一种悦目、悦耳、悦心的效果,高效率地提高理解概念的程度。

如,九年级“惯性”一节复习检测中,我用多媒体播放飞机正确投掷救灾物质的动画视频,同时提出问题:飞机投掷救灾物质为什么要提前投掷?让学生用本堂课所学知识来回答。这样就把学生思维引向深入,不仅培养了学生分析问题和解决问题的能力,而且通过练习深化了对“惯性”概念的理解。

因此,利用多媒体信息技术图文并茂、生动直观的特点巧设练习,不仅突出了联系的针对性、有效性,而且还能极大地激发学生学习的积极性、主动性和创造性,为培养学生的创新精神和实践能力开辟了广阔途径。

【参考文献】

[1]物理课程标准(实验稿).[M].北京师范大学出版社,2001.7

[2]李韶峰.信息技术与物理概念、物理规律整合的探讨.技术物理教学,2011.1

[3]潘献明.初中物理概念教学的几点尝试.时代教育,2010.9

篇4

1.学习物理,要从基本概念做起

仔细读书,多问为什么,培养自学能力。教材的阅读。主要包括课前阅读,课堂阅读和课后阅读。课前阅读,应有的放矢,根据课本内容的不同,结合课文中提出的问题,边读边想。通过阅读,对新课内容有一个粗略的了解,弄清知识点,找出重点、难点,作出标记,以便在课堂上听教师讲解时突破,攻克难点。课堂阅读,就是在进行新课的过程中阅读,对于那些重点知识要边读边记。

2.多做习题,化技能为技巧

要想巩固已学知识,挖掘知识间的逻辑关系,培养发挥思维的变通能力,就需要多做些习题。其好处有四:①能见识不同的命题类型,有利于克服思维定式,增强迅速改变思考角度与方向的能力。②能培养仔细审题,排除不利因素干扰,寻找隐蔽条件的好习惯。③能增强思维的灵活性、层次性及深刻性。④独立做题。要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,是任何一个初学者走向成功的必经之路。

切记:做题“多”与效果“好”不成正比例关系。多做习题是指做各种不同类型的题,多方位地开辟解题思路,多练解题技巧。不是要搞题海战术,因为题海战术是害死人的。

3.学会精炼,把书读薄

章节后的复习,是把知识条理化、系统化的浓缩过程。要锻炼自己会把知识归纳汇总,把章节内容概括为有层次的几条。

①三个基本。基本概念要清楚,基本规律要熟悉,基本方法要熟练。关于基本概念,举一个例子。比如速度,它是表示物体在单位时间里通过的路程:[WTBX]v=s/t。关于基本规律,比如说平均速度的计算公式也是v=s/t。它适用于任何情况,例如一个百米运动员他在通过一半路程时的速度是10m/s,到达终点时的速度是8m/s,跑完整个100米花的时间是12.5秒,问该运动员在百米赛跑过程中的平均速度是多少?按平均速度的定义,平均速度等于v=100/12.5=8m/s。再说一下基本方法,研究初中物理问题有时也要注意选取“对象”,例如,在用欧姆定律解题时,就要明确欧姆定律用到整个电路即整体上,还是用到某个电阻即单独的某一个电阻上。

②物理过程。要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能做状态分析和动态分析,状态分析是固定的、间断的,而动态分析是活的、连续的,特别是在解关于电路方面的题目,不画电路图是很难弄清电阻是串联还是并联的。

③上课。上课要认真听讲,不要自以为是,要虚心向老师学习。不要以为老师讲得简单而放弃听讲,如果真出现这种情况可以当成是复习、巩固。尽量与老师保持一致,不能自搞一套,否则就等于是完全自学了。入门以后,有了一定的基础,则允许有自己一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。

4.对于关键的字、词、句、段落要用符号标记

只有抓住关键,才能深刻理解,才能准确掌握所学的知识。课后阅读,结合课堂笔记,在阅读的基础上勤总结、归纳。新课结束或学完一章后,结合课堂笔记去阅读,及时复习归纳,把每节或每章的知识按“树结构”或以图表形式归纳,使零碎的知识逐步系统化、条理化。通过归纳,可以把学过的知识串成线,连成网,结成体。以便加深现解,使知识得到升华,这些都是初中物理学习的基本原则。

5.要学会心静,静心找问题

初中升学考试物理内容大致分四部分:力学、电学、热学、光学,其中力学大约占40%,电学占30%,光热部分约占15%,中考的分值分配基本如此,而且中考难题比较集中,一般讲,光学、热学部分不出难题,难题出在力学和电学部分,那么我们的复习就不应平均分配时间,应将主要精力放在电学和力学方面。由于每个学生的学习情况不同,成绩也就不同,所以在复习前必须明白自己在学习物理方面,知识缺陷主要在哪里,不能打无准备之仗。

6.遗忘是所有人都存在的现象,两年所学物理都记住是不太容易的,所以在找出问题攻克难点的基础上还要照顾到面。初中阶段两册书中有188个知识点,26个基本公式,23个重要实验,53个理解,因此应遵循一个原则:先死后活,不死不活,死去活来的原则,就是将这些知识点、公式、概念、规律该记的必须记住,记不住,根本谈不上灵活使用。

篇5

一、重视观察和实验

物理是一门以观察、实验为基础的学科,观察和实验是物理学的重要研究方法。法拉第曾经说过:“没有观察,就没有科学。科学发现诞生于仔细的观察之中。” 因些,要积极做实验,不仅课堂上做,课前课后还要反复地做,用“vcm仿真实验”,多做几遍实验,牢牢掌握每个化学反应的具体条件、现象、结果,加深理解和记忆,努力达到各次实验的目的。对于初学物理的初中学生,尤其要重视对现象的仔细观察。因为只有通过对观象的观察,才能对所学的物理知识有生动、形象的感性认识;只有通过仔细、认真的观察,才能使我们对所学知识的理解不断深化。例如,学习运动的相对性,老师讲到参照物时,许多同学都会联想到:坐在火车上的人,会观察到铁路两旁的电杆、树木都向车尾飞奔而去。这个生动的实例使我们对运动的相对性有了形象的认识。

在学习物理知识的过程中,我们还应该重视实验,注意把所学的物理知识与日常生活、生产中的现象结合起来,其中也包含与物理实验现象的结合,因为大量的物理规律是在实验的基础上总结出来的。作为一个刚刚开始学习物理的初中学生,要认真观察老师的演示实验,并独立完成学生的动手操作实验。

在认真完成课内规定实验的基础上,还可以自己设计实验,来判断自初中各年级课件教案习题汇总语文数学英语物理化学己设计的实验方案在实践中是否可行。例如,可以自己设计实验测量学校绿地中一条弯曲小径的长度;可以通过实验测量上学途中骑车的平均速度;还可以设计在缺少电流表或缺少电压表的条件下测量未知电阻的实验。这些都需要同学们自己独立思考、探索,不断提高自己的观察、判断、思维等能力,使自己对物理知识的理解更深刻,分析、解决问题会更全面。

二、学习物理概念,力求做到“五会”

初中将学量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和掌握,应力求做到“五会”: 会表述:能熟记并正确地叙述概念、规律的内容。

会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。 会理解:能掌握公式的应用范围和使用条件。

会变形:会对公式进行正确变形,并理解变形后的含义。 会应用:会用概念和公式进行简单的判断、推理和计算。

三、重视画图和识图

学习物理离不开图形,从运用力学知识的机械设计到运用电磁学知识的复杂电路设计,都是主要依靠“图形语言”来表述的。知识的条理化,分析解决问题的思路等问题,用通常意义上的语言或文字表达都是有局限性和低效率的。所以,按照科学的方法动手画图是学习物理的重要方法,而且对今后进一步学习现代科学技术有着重要意义。 在初中物理课里,同学们会学到力的图示、简单的机械图、电路图和光路图。“大纲”要求的画图主要分两部分:一部分画图属于作图类型题,比方说,作光路图、作力的图示、作力臂图以及画电路图等等;另一部分,根据现成的图形学会识图,所谓识图是指要注意结合条件看图,不仅要学会把复杂的图形看简单(即分析图形),更要学会在复杂的图形中看出基本图形。例如,在计算有关电路的习题时,已给出的电路图往往很难分析出来是串联、并联或是混联,如果能熟练地将所给出的电路图画成等效电路图,就会很容易地看出电路的连接特点,使有关问题迎刃而解。

四、学会“两头堵”的分析方法

物理知识的特点是由简到难,逐步深入,随着学习知识的增多,许多同学都感到物理题不好做。这主要是思考的方法不对头的缘故。 拿到一道题后,一般有两条思路:一是从结论入手,看结论想需知,逐步向已知靠拢;二是要“发展”已知,从已知想可知,逐步推向未知;当两个思路“接通”时,便得到解题的通路。这种分析问题的方法,就是我们平时常说的“两头堵”的方法。这种方法说起来容易,真正领会和掌握并非“一日之功”,还需要同学们在学习的过程中逐步地体会并加以应用。

五、注意适当分类,把知识条理化和系统化

当学习过的知识增多时,就很容易记错、记混。因此,可试着按照课文和某些辅导材料中绘制的框架图去帮助记忆和理解。

有时,适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于自己进行分析、比较、综合、概括;可以不断地把分散的概念系统化,不断地把新概念纳入旧概念的系统中,逐步在头脑中建立一个清晰的概念系统,使自己在学习的过程中少走弯路。通过这种方法,不但能够加深对基础知识的理解,而且还能收到事半功倍的效果。

学习有法,但学无定法。在学习物理的道路上,愿你结合自己的特点 独立做题要独立地(指不依赖他人),保质保量地做一些题。独立解题,可能有时慢一些,有时要走弯路,但这是走向成功必由之路。

六 物理过程。

要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。 笔记本。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。

学习资料学习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。

时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。

向别人学习要虚心向别人学习,向同学们学习,向周围的人学习,看人家是怎样学习的,经常与他们进行“学术上”的交流,互教互学,共同提高,千万不能自以为是。

要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识形成系统。

其二

一、学习物理概念,力求做到"五会"

初中将学量的重要的物理概念、规律,而这些概念、规律,是解决各类问题的基础,因此要真正理解和控制,应力求做到"五会":

会表述:能熟记并精确地叙述概念、规律的内容。

会表达:明确概念、规律的表达公式及公式中每个符号的物理意义。

会理解:能控制公式的利用范围和使用条件。

会变形:会对公式进行精确变形,并理解变形后的含义。

会利用:会用概念和公式进行简略的断定、推理和盘算。

二、器重画图和识图

学习物理离不开图形,从运用力学知识的机械设计到运用电磁学知识的复杂电路设计,都是重要依靠"图形语言"来表述的。知识的条理化,剖析解决问题的思路等问题,用通常意义上的语言或文字表达都是有局限性和低效率的。所以,按照科学的方法动手画图是学习物理的重要方法,而且对今落后一步学习现代科学技术有着重要意义。

在初中物理课里,同窗们会学到力的图示、简略的机械图、电路图和光路图。"大纲"要求的画图重要分两部分:一部分画图属于作图类型题,比方说,作光路图、作力的图示、作力臂图以及画电路图等等;另一部分,根据现成的图形学会识图,所谓识图是指要注意结合条件看图,不仅要学会把复杂的图形看简略(即剖析图形),更要学会在复杂的图形中看出基本图形。例如,在盘算有关电路的习题时,已给出的电路图往往很难剖析出来是串联、并联或是混联,如果能熟练地将所给出的电路图画成等效电路图,就会很容易地看出电路的连接特色,使有关问题迎刃而解。

三、器重察看和试验

物理是一门以察看、试验为基础的学科,察看和试验是物理学的重要研讨方法。法拉第曾经说过:"没有察看,就没有科学。科学发现出身于细心的察看之中。"对于初学物理的初中学生,尤其要器重对现象的细心察看。因为只有通过对观象的察看,才干对所学的物理知识有活泼、形象的感性认识;只有通过细心、认真的察看,才干使我们对所学知识的理解不断深化。例如,学习运动的相对性,老师讲到参照物时,许多同窗都会联想到:坐在火车上的人,会察看到铁路两旁的电杆、树木都向车尾飞奔而去。这个活泼的实例使我们对运动的相对性有了形象的认识。

在学习物理知识的过程中,我们还应当器重试验,注意把所学的物理知识与日常生活、生产中的现象结合起来,其中也包含与物理试验现象的结合,因为大量的物理规律是在试验的基础上总结出来的。作为一个刚刚开始学习物理的初中学生,要认真察看老师的演示试验,并独立完成学生的动手操作试验。

在认真完成课内规定试验的基础上,还可以自己设计试验,来断定自己设计的试验计划在实践中是否可行。例如,可以自己设计试验测量学校绿地中一条曲折小径的长度;可以通过试验测量上学途中骑车的平均速度;还可以设计在缺少电流表或缺少电压表的条件下测量未知电阻的试验。这些都需要同窗们自己独立思考、摸索,不断提高自己的察看、断定、思维等能力,使自己对物理知识的理解更深入,剖析、解决问题会更全面。

四、学会"两头堵"的剖析方法

物理知识的特色是由简到难,逐步深入,随着学习知识的增多,许多同窗都感到物理题不好做。这重要是思考的方法不对头的缘故。

拿到一道题后,一般有两条思路:一是从结论入手,看结论想需知,逐步向已知靠拢;二是要"发展"已知,从已知想可知,逐步推向未知;当两个思路"接通"时,便得到解题的通路。这种剖析问题的方法,就是我们平时常说的"两头堵"的方法。这种方法说起来容易,真正懂得和控制并非"一日之功",还需要同窗们在学习的过程中逐步地体会并加以利用。

五、注意适当分类,把知识条理化和体系化

当学习过的知识增多时,就很容易记错、记混。因此,可试着按照课文和某些辅导材料中绘制的框架图去辅助记忆和理解。

有时,适当地对概念进行分类,可以使所学的内容化繁为简,重点突出,脉络分明,便于自己进行剖析、比较、综合、概括;可以不断地把疏散的概念体系化,不断地把新概念纳入旧概念的体系中,逐步在头脑中建立一个清晰的概念体系,使自己在学习的过程中少走弯路。通过这种方法,不但能够加深对基础知识的理解,而且还能收到事半功倍的效果。

篇6

一、调整心态,端正态度。

进入初中,在学习物理时要完成由形象思维到抽象思维的转变,这一转变跨度很大,一些同学不能完成这一转变,他们感到物理难学,少数同学由于承受挫折的意志力薄弱,动摇了意志,以致于丧失了自信心,这种情况在女生中尤为严重,追其根由,是心理素质差所造成的,她们在入学前就听到了类似“初中物理很难学”和“女生学物理不如男生”、“女生学物理没有潜力”等说法。由于她们没有正确认识和充分分析这些言论,在心理上给自己设置了一个障碍,初二后她们是在尝试物理滋味的情境下学习的,这种消极的心理准备经受不了挫折和失败的,极易造成不良的结果,未战先败,丧失了自信心,使学习上的问题越积越多,精神压力越来越大,形成恶性循环,最终放弃对物理的学习。针对这种情况,首先应排除心理障碍,正确分析社会上的言论,应认识到学习物理和学习其它任何一门课程一样,都有一定的难度,如果说物理确实难学,应鼓起勇气,下决心,施展所有的本领来对付,开始时应多投入一点时间,那么就一定能学好;另外,说物理难学,对所有学生都一样,起点都相同,有什么可怕呢?心理学认为,男女生在抽象思维方面没有多大的差异,其实女生在学习物理上有自己的优势,她们细心、认真、有耐力。

二、重视课堂上的学习

课前预习能保证课上认真听讲;课堂是获得知识的重要阵地;认真做好笔记。

三、重视对所学知识的应用和巩固

要善于把学到的物理知识运用到实际中去。不注意知识的运用,你得到的知识还是死的。只有通过具体运用,才能扩展和加深自己对的知识理解,学会对具体问题具体分析,提高分析和解决问题的能力。

1.坚持独立做题

我国物理学家严济慈先生曾说过:“做习题可以加深理解,融会贯通,锻炼思考问题和解决问题的能力。一道习题做不出来,说明你还没有真懂;即使所有的习题都做出来了,也不一定说明你全懂了,因为你做习题时有时只是在凑公式而已。如果知道自己懂在什么地方,不懂又在什么地方,还能设法去弄懂它,到了这种地步,习题就可以少做。”可见学习物理必须要独立地(指不依赖他人),保质保量地做一些题。题目要有一定的数量,不能太少,更要有一定的质量独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,这是任何一个初学者走向成功的必由之路。

2.学会分析物理过程

学习物理要重视物理过程的学习,要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患。题目不论难易都要尽量画图,画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。

3.掌握科学的思维方法

(1)顺藤摸瓜法,即正向推理法,它是从已知条件推论其结果的方法。

(2)发散思维法,即从某条物理规律出发,找出规律的多种表述。这是形成熟练的技能技巧的重要方法。例如,从欧姆定律以及串并联电路的特点出发,推出如下结论:串联电路的总电阻大于任何一个分电阻,并联电路的总电阻小于任何一个分电阻;串联电路中,阻值大的电阻两端的电压大,阻值小的电阻两端的电压小;并联电路中,阻值大的电阻通过的电流小,阻值小的电阻通过的电流大。

(3)逆推法,即根据所求问题逆推需要哪些条件,再看题目给出哪些条件,找出隐含条件或过度条件,最后解决问题。

4.及时巩固所学知识

要及时复习巩固所学知识。对课堂上刚学过的新知识,课后一定要把它的引入、分析、概括、结论、应用等全过程进行回顾,并与大脑里已有的相近的旧知识进行对比,这时就要重新思考,重新看书学习。在弄懂所学知识的基础上,要即时完成作业,有余力的同学还可适量地做些课外练习,以检验掌握知识的准确程度,巩固所学知识。

四、重视学习资料的收集、整理及知识的积累

阅读适量的课外书籍;整理自己的学习资料;注重知识的积累。

五、总结复习,独立作业。

及时复习和练习是巩固知识、加强理解的重要方法,先复习后作业,既是科学的学习方法,也是学习的一种重要策略。在复习时,要回想,即按课堂教学的顺序,先回忆这节课讲了哪些内容,每个问题是怎样分析解决的,想不起来再看书、笔记,对不清楚的地方要逐点分析、推导、比较、记忆。在此基础上,按基础知识、基本技能、基本思想方法,结合自己的认识作一个简单小结,把新知识纳入自己的知识结构中。

篇7

关键词:动态电路;滑动变阻器控制;开关控制

动态电路,在初中阶段主要有两种形式,一种是滑动变阻器控制的,一种是开关控制的,既有滑动变阻器又有开关控制的电路初中阶段不常见。下面就这两种电路结合自己多年来的教学经验谈谈自己的认识。

一、滑动变阻器控制的动态电路

这种电路的特点是,通过滑片位置的改变,来改变接入电路中的电阻(可以改变接入电路电阻的个数,也可以改变某个电阻接入电路的阻值),从而实现电压、电流、电功率等相关电学量的改变。这类电路的特点是滑片位置的改变,电路的性质不发生改变,电源电压不变,多出现在串联电路中。常见的以选择、实验、计算为主:

选择题和实验题中对于动态电路的考查通常是对故障电路进行。

例1.在如图所示电路中,当闭合开关后,滑动变阻器的滑动片P向右移动时()

A.电流表示数变大,灯变暗

B.电流表示数变小,灯变亮

C.电压表示数不变,灯变亮

D.电压表示数不变,灯变暗

分析:根据识别电路基本的方法:将电流表看成导线,通过移动节点可以看到电压表直接测量电源电压,所以滑动变阻器的滑动片P向右移动的时候,电压表的示数不会有变化;而电阻R的阻值随滑片的右移逐渐变大,小灯的电阻RL大小不变(注意:在初中阶段,灯的电阻由于温度的变化引起的变化往忽略不计),因此电路中的总电阻变大,电流变小,所以电流表示数变小。从串联电路的分压角度分析,小灯两端的电压也将变小,小灯的实际功率P=UI也将变小,所以小灯的发光将变暗。本题正确答案为D。

滑动变阻器控制的动态电路在计算题中也经常出现,解答这一类题要注意两个隐含条件:滑片位置的改变不改变电路的性质和电源总电压。

例2.(2005年甘肃)(6分)如图所示,当开关S闭合后,滑动变阻器滑片P在B端时,电压表示数为9 V,电流表示数为0.15 A;滑片P在中点C时电压表的示数为6 V.

求:(1)滑动变阻器R1的最大阻值;(2)电源电压和R2的阻值。

这是一个典型的滑动变阻器控制的动态电路,只是通过滑片位置的改变,改变了接入电路的电阻,改变了电路中相关的电学量。理解这一点之后,就可以分析滑片在不同位置时的接入电路中的电阻,再根据串联电路的基本特点,就能顺利作解答。(1)S闭合,P在B端,电路中两个电阻器R1,R2且是串联,电压表测R1两端电压。根据串联电路的特点,I1=I2=I得出I1=0.15 A,再根据欧姆定律R=U/I=U1/I1=9 V/0.15 A=60 Ω;(2)P在中点(BC段被短路)这时电路中只剩CA段这段电阻我们称它为R3,则此时电路中的电流为I=U3/R3=6 V/30 Ω=0.2 A,再根据两次电源电压不变,可列出方程:P在B端时U=0.15 A×(R1+60 Ω),P在中点时U=0.2 A×(R1+30 Ω),得出0.15 A×(R1+60 Ω)=0.2 A×(R1+30 Ω)即可解出:R1=60 Ω,U=18 V.不论哪种动态电路中,电源电压都是设定不变的,不要忘记挖掘隐含的这一条件。

二、开关控制的动态电路

这种动态电路的特点是通过开关的闭合,既可以改变电路中接入电路的电阻个数,又可以改变电路的性质,让电路在串并联之间转换,这类电路与滑动变阻器控制的电路相同,也具有电源电压不变的特点。要想正确解答这种动态电路,就要熟练掌握欧姆规律和串并联电路的特点。

如,所示电路,已知电源电压为6 V,R1的阻值为2 Ω,R2的阻值为3 Ω,R3的阻值为6 Ω。求(1)S1、S2都闭合时电流表的示数;(2)S1、S2都断开时电路的总功率。

这个题目可以说是开关控制的动态电路典型题,几乎可以说任何一本资料都以它为范本。这个题是典型的计算题,条件和电路图清晰明了,留给大家思考的只是对电路进行动态分析,下面我们按照动态电路的特点进行分析:S1,S2都闭合,电路中R1被短路,根据电路识别方法被短路的电阻看成导线,(断路的可以拆除)来绘制简化后的等效电路,简化后的电路中,很容易看出R1被短路后,剩两个电阻R2和R3并联,根据并联电路的特点,干路电流等于各支路电流之和,各支路电压与电源电压相等的特点,就可以列出如下算式:

(1)U=U2=U3=6V,I=I2+I3=U2/R2+U3/R3=6 V/3 Ω+6 V/6 Ω=3 A

(2)S1、S2都断开时电路,R3断路拆除后可以得出,R1,R2串联,再根据串联电路的特点可以列出算式:I=U/I=6V/(2 Ω+3 Ω)=1.2A,P=UI=6 V×1.2 A=7.2 W。

动态电路,是一种应用性很强的电路,生活中应用很广泛,常常会联系生活中的常用电器来考查我们,如两挡电器,像电饭煲,电热毯、电热水器等。但是不管实物电路怎么复杂,简化后都会转化成我们熟悉的基本动态电路,解题思路和解题方法基本相同。

篇8

关键词:初中物理;学习方法;学生

中图分类号:G633.7 文献标识码:A 文章编号:1992-7711(2013)13-0017

初中学生普遍感到物理难学,其实,就初中物理而言难度并不大,很多学生之所以觉得难学,多是没有掌握学习物理的方法和技巧,另外还有其他学科知识的基础薄弱和惧怕的心理因素。而如果我们掌握了科学的学习方法,就能减轻学习的负担,提高学习质量。

一、重视基础知识的理解和记忆

基础知识包括三个方面的内容:即基本概念(定义),基本规律(定律),基本方法。

要理解和掌握好物理概念,就要研究和思考这个概念是怎样引入的?定义如何?有什么物理意义?学到什么程度才能称为真正理解呢?理解的标准是对每个概念和规律你能回答出它们“是什么”、“怎么样”、“为什么”的问题;对一些相近似易混淆的知识,要能说出它们的联系和本质区别;能用学过的概念和规律分析解决一些具体的物理问题。如:对于“凸透镜”一节的概念的理解,“透镜”就是可以让光“透”过的光学元件,所以是用玻璃,等“透明”材料制成的。关于“凸透镜”、“凹透镜”的定义则从透镜的形状和“凹、凸”两个字的形状上找相似点,而关于“焦点”则是利用凸透镜会聚太阳光可以把地面上的纸“烧焦”这个角度去考虑。在理解的基础上,用科学的方法,把学过的大量物理概念、规律、公式、单位记忆下来,成为自己知识信息库中的信息。前面学过的知识,是后面学习的基础。学过的东西记住了,到时才能从大脑信息库中将信息提取出来。

反复自我检查、反复应用是巩固记忆的必要步骤。有人以为,理解了就一定能记住,这是对人的思维和记忆规律的误解。一个人的一生见过、理解过无数的事物,但只有那极少数(有人统计认为不足5%)经常反复作用在我们头脑中,而且反复应用的事物,我们才能记住。所以,每次课后的复习、单元复习、解题应用、实验操作、学期学年复习等,都应有计划地做好安排,才能不断巩固自己的记忆。

二、掌握科学的思维方法

物理思维的方法包括分析、综合、比较、抽象、概括、归纳、演绎等。在物理学习过程中,形成物理概念以抽象,概括为主,建立物理规律以演绎、归纳、概括为主,而分析综合与比较的方法渗透到整个物理思维之中,特别是解决物理问题时,分析综合方法运用更为普遍。如下面介绍的顺藤摸瓜法、发散思维法和逆推法就是这些方法的具体体现。

1. 顺藤摸瓜法,即正向推理法,它是从已知条件推论其结果的方法。这种方法在大多数的题目的分析过程都用到。

2. 发散思维法,即从某条物理规律出发,找出规律的多种表述,这是形成熟练的技能技巧的重要方法。例如,从欧姆定律以及串并联电路的特点出发,推出如下结论:串并联电路的电阻是“越串越大,越并越小”,串连电路电压与电阻成正比,并联电路电流与电阻成反比。

3. 逆推法,即根据所求问题逆推需要哪些条件,再看题目给出哪些条件,找出隐含条件或过度条件,最后解决问题。

三、重视课堂上的学习

开动脑筋勤于思考,没有积极的思考就不可能真正理解物理概念和原理。我们从初中开始,就要养成积极动脑筋想问题的习惯。

上课要认真听讲,不走思或尽量少走思。入门以后,有了一定的基础,则允许有自己以一定的活动空间,也就是说允许有一些自己的东西,学得越多,自己的东西越多。上课以听讲为主,还要有一个笔记本,有些东西要记下来。知识结构,好的解题方法,好的例题,听不太懂的地方等等都要记下来。课后还要整理笔记,一方面是为了“消化好”,另一方面还要对笔记作好补充。笔记本不只是记上课教师讲的,还要作一些读书摘记,自己在作业中发现的好题、好的解法也要记在笔记本上,就是同学们常说的“好题本”。辛辛苦苦建立起来的笔记本要进行编号,以后要经常看,要能做到爱不释手,终生保存。

四、重视对所学知识的应用和巩固

要及时复习巩固所学知识。对课堂上刚学过的新知识,课后一定要把它的引入、分析、概括、结论、应用等全过程进行回顾,并与大脑中已有的相近的旧知识进行对比,看看是否有矛盾,否则说明还没有真正弄懂。这时就要重新思考,重新看书学习。在弄懂所学知识的基础上,要及时完成作业。有余力的学生还可适量地做些课外练习,以检验掌握知识的准确程度,巩固所学知识。

要善于把学到的物理知识运用到实际中去,不注意知识的应用,你得到的知识还是死的,只有通过具体运用,才能扩展和加深自己对的知识理解,学会对具体问题具体分析,提高分析和解决问题的能力。

时间是宝贵的,没有了时间就什么也来不及做了,所以要注意充分利用时间,而利用时间是一门非常高超的艺术。比方说,可以利用“回忆”的学习方法以节省时间,睡觉前、等车时、走在路上等这些时间,我们可以把当天讲的课一节一节地回忆,这样重复地再学一次,能达到强化的目的。物理题有的比较难,有的题可能是在散步时想到它的解法的。学习物理的人脑子里会经常有几道做不出来的题储存着,念念不忘,不知何时会有所突破,找到问题的答案。

1. 坚持独立做

我国物理学家严济慈先生曾说过一段话:“做习题可以加深理解,融会贯通,锻炼思考问题和解决问题的能力,一道习题做不出来,说明你还没有真懂;即使所有的习题都做出来了,也不一定说明你全懂了,因为你做习题时有时只是在凑公式而已。如果知道自己懂在什么地方,不懂又在什么地方,还能设法去弄懂它,到了这种地步,习题就可以少做”。可见,学习物理必须要独立地(指不依赖他人),保质保量地做一些题,题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。任何人学习数理化不经过这一关是学不好的。独立解题,可能有时慢一些,有时要走弯路,有时甚至解不出来,但这些都是正常的,(下转第21页)(上接第17页)这是任何一个初学者走向成功的必由之路。

2. 学会分析物理过程

学习物理要重视物理过程的学习,要对物理过程一清二楚,物理过程弄不清必然存在解题的隐患,题目不论难易都要尽量画图,有的画草图就可以了,有的要画精确图,要动用圆规、三角板、量角器等,以显示几何关系。画图能够变抽象思维为形象思维,更精确地掌握物理过程,有了图就能作状态分析和动态分析,状态分析是固定的、死板的,而动态分析是活的、连续的。

3. 整理自己的学习资料习资料要保存好,作好分类工作,还要作好记号。学习资料的分类包括练习题、试卷、实验报告等等。作记号是指,比如练习题,一般题不作记号,好题、有价值的题、易错的题,分别作不同的记号,以备今后阅读,作记号可以节省不少时间。

4. 向别人学习。要虚心向别人学习,向同学们学习,向周围的人学习,看人家是怎样学习的,经常与他们进行“学术上”的交流,互教互学,共同提高,千万不能自以为是。也不能保守,有了好方法要告诉别人,这样别人有了好方法也会告诉你。在学习方面要有几个好朋友。

5. 归纳知识结构。要重视知识结构,要系统地掌握好知识结构,这样才能把零散的知识系统起来。大到整个物理的知识结构,小到力学的知识结构,甚至具体到章节。

篇9

不管是出于外因,还是内因,初中生都觉得电学知识学起来比较困难.如何改变这一现象呢?

本文针对初中物理中的电学知识的学习展开论述,希望可以提高学生电学部分的学习效率.

一、打牢基础

九层之台,起于垒土.再好的学习成绩,也要建立在基础知识之上.物理教学中的电学基础知识主要是指基本概念和规律,只有牢固地掌握这些基本概念和规律,才能熟练地运用这些概念和规律解决遇到的问题,进行简单的判断、推理和计算.

例如,电学中的概念包含了电流强度、电压、电阻、电功、电功率、磁感线等,这些都是电学基础知识中最基础的内容.还有电学中的一些规律:欧姆定律、焦耳定律和串、并联电路的特点等,也是最基础的内容.这些内容如果掌握不牢,那么势必在做题时会不知所措,从而无法提高学习成绩.此外,还应掌握摩擦起电、感应电流、导体和绝缘体等其他基础知识,理解他们的含义,利用这些知识解决一些电学问题.

如何打牢基础呢?死记硬背是行不通的.我们要对这些基础知识在理解的基础上达到记忆,并灵活运用,经常反过头来回顾这些基本知识,多运用、多记忆,形成根深蒂固的知识网络.只有打牢了基础,才能进一步提高电学的学习效率.

二、抓好重难点解析

初中物理的学习时间是有限的,学生学习物理的精力也是有限的,而物理教学中电学内容是博大精深的,所以我们就要在有限的时间和精力下优化物理内容,抓好物理电学内容的重难点进行有针对性的学习.先要找出哪些地方是重点,哪些是难点,然后对于重点内容,放慢速度,详细、深入地讲解,反复地训练,让学生对重点内容有一个更为深入的学习.对于难点问题,要分析是否也作为电学内容的重点,如果作为重点,则需更加注意,通过对每一个细节的讲解来使学生达到深入;如果不作为重点,只需了解即可,但也需要尽量讲明白,尽量不让学生留下疑问.同时,对于难度较大的题目,教师应采用降低梯度、分设疑点的方法,会更容易达到目的.

三、提高分析能力

学习物理并非单纯是为了学习物理知识,更是为了锻炼学生的分析能力、思维能力.所以我们在教学物理电学知识时,尤其是在教学生运用电学知识分析和解决问题的时候,要引导他们分析物理现象和物理过程,在分析过程中联系所学知识,理清思路,循序渐进,抽丝剥茧,一点一点完成分析和解题.对于概念性问题,要认真读题审题,明确题中所给的条件和要求回答的问题,根据题中陈述的物理现象和过程对照所学知识选择解题所要用到的概念或规律,经过周密的思考或分析推理,作出正确判断或回答.对于计算题,应在认真审题的基础上,根据题目条件,明确解题用到的概念或规律;求出正确答案.初中物理电学计算题是重点,是中考必考的内容,而且难度一般较大(常为压轴题),可以通过典型例题分析,学会分析问题的方法和步骤,并通过适量练习,掌握这类计算题的解题的技能、技巧,提高解题能力.这样,学生在练习中锻炼了分析、解题的能力,又将分析、解题的能力运用与练习中,从而取得良好的效果.

四、重视图形和实验

1.重视图形

图形相对文字来说十分直观形象,由于物理具有抽象性,所以我们可以以图形来展示解题过程,对于复杂难解的题目辅之以图形.尤其是复杂的电路设计,需要我们运用图形来将其直观化,将抽象思维转变为形象思维,这样一来,学生才能更精确地掌握物理知识.此外,有了图就能作状态分析和动态分析,明确欧姆定律应用于某一电阻还是整个电路.另外还必须根据现成的图形学会识图,要学会在复杂的图形中看出基本图形.

2.重视实验

篇10

在学习过程中应该达到哪些具体要求,应该注意哪些问题,下面我们分几个方面具体分析。

一、彻底理解和记忆基本概念和规律

理解和掌握物理概念、物理规律就需要对概念、规律的提出、建立有一定的了解,对概念、规律内容的各种表达形式(文字的和数字的)有清楚的认识,能理解它们的确切含义,理解它们的成立条件和适用范围,会应用它们分析解决问题。

二、找出解决问题归属于哪个物理过程

物理学是研究物质结构和运动基本规律的学科。在高中主要研究的基本物理运动是匀速直线、匀变速直线运动、平抛运动、圆周运动和机械振动等。每种运动都有各自解决问题的规律和方法,只要分析出是什么运动,就可以采用相应的规律和方法来解决。

在高考中物理计算题都是综合题,解这类题时,要注意把复杂的过程分解为若干基本过程,再分别对这些简单的过程进行解答,这样题目的难度就降低了。

三、画好物理草图

对应于一个物理过程,必存在一个过程图,那么我们在分析物理过程的时候,何不借助于图形的帮助,画一个清晰明了的过程图,能够帮助我们更精确地掌握物理过程。有了图就能作状态分析和动态分析,状态分析是固定的、死的、间断的,而动态分析是活的、连续的。

画图可以说是解物理题的一大法宝。如果我们在平时养成一个良好的习惯,每做一道题,第一步就开始画图,它就能逐渐变成一种习惯性的解题步骤,从而增强我们的过程分析能力。

四、学会读题,找到解决问题的“钥匙”学生经常反映读不懂题意,其主要原因之一在于不知道重要词语或句子的含义和作用,找不出其中的隐含条件。

良好的方法是学生提高学习效率的金钥匙。老师讲课要注重方法的实用性,使学生尽快有效地理解,掌握所学的知识。如类比法是物理教学中常用的方法,可帮助学生理解一些难懂的概念、规律和方法。不少学生对用比值定义的物理量常常理解不正确(如电容、电阻),其原因是只注意了数学形式,忽视了物理意义。怎么办呢?我想绝大部分学生对初中物理中的匀速直线运动的“速度”是比较清楚的,它是用比值定义的,我们就以此为例,进行类比,以加深其理解。物理学具有较强的规律性、逻辑性。有些公式学生容易混淆,造成记忆错误。如气体的三个实验定律,死记太伤脑筋,可以借助规律记忆法,让学生学会用“理想气体状态方程”推出三个实验定律的方法,学会了推导的方法就摆脱了烦琐的记忆。

五、要勤于动手

动手有两方面:(一)动手做实验。通过实验,对许多抽象的物理概念和定律有丰富生动的感性认识,易于理解;通过动手操作,知道怎样正确使用常用仪器,掌握一些基本测量方法,将大大提高我们的实验能力;在实验中养成良好的实验习惯和品质,将来才能成为一个优秀的生产者和科学工作者。(二)动手做必要的练习。做练习是学好物理知识的必要环节。我国物理学严济慈说:“做练习可以加深理解,融会贯通,锻炼思考问题和解决问题的能力。一道习题做不出来,说明你还没有真懂。”

六、认识全面,分析要细

对学生来说,由于总结、归纳能力差,对知识点认识不全、分析不细是影响学习的另一重要因素,这就需要老师平时注意培养这方面的能力。比如关于“电阻”的问题,尽管比较简单,但归纳起来内容也很丰富:用电阻定律来计算电阻;用“伏安特性曲线”来表示电阻;串、并联电路中任一电阻的变化对电路的总电阻、电流、路端电压的影响;闭合回路内某一可变电阻值为多大时它消耗的功率最大等等,这些有关电阻的问题都只有通过练习、总结才能熟练掌握。对重、难点的理解,不能局限在书本上,要把书吃透,把书中的话拓开,把抽象的东西用练习具体化,在练习过程中加深理解,又在具体的练习中通过总结、归纳、升华,从而做到对重难知识点的全面认知和细致分析。

篇11

具体分析如下:

一、判定总电阻变化情况的规律

(1)当外电路的任何一个电阻增大(或减小)时,电路的总电阻一定增大(或减小)。

(2)若电键的接通或断开使串联的用电器增多时,总电阻增大;若电键的接通或断开使并联的用电器增多时,总电阻减小。

(3)在图1中所示分压电路中,滑动变阻器可以视为由两段电阻构成,其中一段与用电器并联(以下简称并联段),另一段与并联部分相串联(以下简称串联段)。设滑动变阻器的总阻值为R,灯泡的电阻为R灯,与灯泡并联的那一段电阻为R

并,则分压器的总电阻为:R总=R-R并

由上式可以看出,当R并减小时,R总增大;当R并增大时,R总减小。由此可以得出结论:分压器总电阻的变化情况,与并联段电阻的变化情况相反,与串联段电阻的变化情况相同。

(4)在图2中所示并联电路中,滑动变阻器可以看作由两段电阻构成,其中一段与R1串联,另一段与R2串联,则并

联总电阻R总= 。

①如果存在两支路电阻对称的情况,当两支路电阻相等时,阻值最大,当R1+RAC=R2+RBC时乘积最大,R总最大,则滑动变阻器从一端滑到另一端时,电阻先增大后减小。

②如果两支路不存在电阻对称,则阻值是单调变化的,如R1+RAB?R2,则触头从A到B滑动时,电阻一直是增大的

二、根据全电路欧姆定律,分析总电流的变化情况和路端电压的变化情况。因此电源的电动势E和内电阻r是定值,所以,当外电阻R增大(或减小)时,由I= 可知电流减小(或增大),由U=E-Ir可知路端电压随之增大(或减小)。

三、根据串、并联电路的特点和局部电路与整个电路的关系,分析各部分电路中的电流强度I、电压U和电功率P的变化情况。一般来说,应该先分析定值电阻上I、U、P的变化情况,后分析变化电阻上的I、U、P的变化情况。

例1.如图1所示,当可变电阻R0的滑动片向右移动时,下列判断正确的是:

A.电压表的读数变小

B.电流表的读数变小

C.电压表的读数增大

D.电流表的读数增大

分析与解:由图可知,当滑动片P向右移动时,R0变大,使整个外电路的电阻R变大,根据闭合电路欧姆定律I=E/(R+r)可知电路总电流I减小,路端电压U=EIr增大,则电压表的读数变大,选项C正确.根据串联电路的特点,R2两端的电压U2=U-IR1,因U、I,则U2,通过电阻R2的电流I2=U/ R2变大.根据并联电路的特点,通过R0的电流I0=II2,因I、I2,则I0,电流表的读数变小,选项B正确.故本题的正确选项为B、C.

点评:电路动态分析的基本思路是:“部分整体部分”,即从某个电阻的变化入手,由串并联规律先判断外电路总电阻的变化情况,然后由闭合电路欧姆定律判断总电流和路端电压的变化情况,最后由部分电路的欧姆定律判断各支路的电流、电压变化情况.

例题2、如图所示,当滑动变阻器R3的滑片C向B方向移动时,电路中各电表示数如何变化?(电表内阻对电路的影响不计)

解析:滑动变阻器R3的滑片C向B方向移动时,外电路电阻增大,由得总电流(I1)减小,电源内部降压减小,由 U=E-得路端电压U4增加,由U1=IR1得电阻R1电压U1减小,由U2=U4-U1得AB间电压U2增加,再由 得R2支路电流I2增加,最后由I3=I1-I2得滑动变阻器中电流I3减小。

路端电压随外电阻变化的根本原因是由于电源有内阻,若电源的内阻r=0,这样的理想电源,它的路端电压不随外电阻的变化而变化,初中讨论的都是这样的电源。但是实际中(高中阶段)的电源都有内阻,正是由于r≠0,才导致了路端电压随外电阻的变化而变化。

篇12

关键词: 分层导学 以诱达思 教学方法 物理教学

一、“分层导学、以诱达思”教学法的可行性

新的课程标准提到“面向全体学生,提高学生科学素养”的理念,就是要以学生终身发展为本,以提高全体学生科学素养为目标,为每个学生的学习与发展提供机会,关注学生的个体差异,使每个学生学习科学的潜能都得到发展。

为此结合本校学生的特点(在同一个教学班中有考100分的学生但同时也存在着只考30分的学生)思考如何实现“面向全体学生,提高学生科学素养”的理念。学校提出了“分层导学、以诱达思”的教学方法,强调以问题为中心,以学生为主体,以老师为主导展开教学的方法。老师经过精选,将教材中的一些重要的知识点设置成分层次的问题,学生通过自学教材和自己的一些生活经验回答老师精选的问题,老师再通过学生在回答问题中暴露出来的问题进行精讲,并对学生有问题的知识点设置相应题目进行精练。这样学生通过自学书本就能掌握的知识,教师在教学中就可以少说甚至是不说,而对于学生不会或有疑问的知识可以有针对性地进行讲评训练。

二、“分层导学、以诱达思”教学法在物理教学中的应用

(一)分层学中“导学提纲”的设置

初中物理教学内容的选择,应选择贴近学生生活,符合学生认知特点的素材,通过从自然、生活到物理的认识过程,激发学生求知欲,让学生领略自然现象的美妙与和谐,培养学生终身探索的兴趣。例如在电阻与变阻器的导学提纲设置。

老师演示小蜜蜂调音量大小,风扇调速器使用,自制用滑动变阻器调节灯泡的亮度。这些都与电阻有关,今天我们一起研究什么是电阻。(教师演示)

1.导体对电流的?摇?摇 ?摇?摇?摇?摇作用叫电阻,用符号?摇?摇?摇?摇 ?摇?摇表示,电阻的国际单位是?摇?摇 ?摇?摇?摇?摇,简称?摇?摇?摇?摇 ?摇?摇,用符号?摇?摇 ?摇?摇?摇?摇表示,在电路图中的符号是。

2. 1kΩ=?摇?摇?摇 ?摇?摇?摇Ω?摇?摇?摇 1MΩ=?摇?摇?摇 ?摇?摇?摇Ω

3.请你设计一个简单易懂、易观察的电路图研究你身边的物体电阻是大了还是小了?

实验后的结果:电阻大的有?摇?摇 ?摇?摇?摇?摇,电阻小的有?摇?摇?摇 ?摇?摇?摇

我们把?摇?摇?摇 ?摇?摇?摇导电的物体称为导体,把?摇?摇?摇?摇 ?摇?摇导电的物体称为绝缘体。

那你觉得是导体好呢?还是绝缘体好??摇?摇?摇?摇?摇?摇。

要是有人触电了你要不要救他?要救你打算怎么救?

活动:刚刚研究了物体有的电阻大有的电阻小,那导体电阻的大小与哪些因素有关?课本92页实验探究。

猜想:电阻大小可能与?摇?摇 ?摇?摇?摇?摇有关。

要验证这些猜想,按照课本P92图15-2所示的电路,实验中通过观察?摇?摇?摇 ?摇?摇?摇反映电阻的大小。

需要的导体编号如右图。本实验应采用?摇?摇?摇 ?摇?摇?摇法。

a.铜丝b.铁比c.镍铬d.镍铬

本导学提纲的处理上可以让学生通过自学书本25分钟完成并投影出学生答案,让学生讲评就可以。这样不仅完成了知识的教学过程,更重要的是,让学生充分发挥自己的能动性,主动参与学习过程,体会到学习的乐趣和成就感。更强调在实际应用物理知识的兴趣和能力同时,也是对科学求知欲、科学探究勇气的培养,让学生要能读书而不只是能读书。

(二)基础知识的全面检测与过关

本内容的设置主要是为了将学生在刚才的自学过程中遇到的问题进行进一步的巩固训练引导说明。

思考:1.做完以上实验时,大家能否回答出一开始的演示实验小蜜蜂调音量大小,风扇调速器使用,用滑动变阻器调节灯泡的亮度。这些都在调什么呢?

2.一根导线的电阻为R,对折后接入电路,它的阻值变原来的?摇?摇?摇?摇 ?摇?摇;若把它均匀拉长一倍,则它的阻值变为原来的?摇?摇?摇 ?摇?摇?摇。

3.家里用的白炽灯灯丝如果断了,有时摇一摇又会重新接上,接上后会更亮还是更暗

4.你觉得家里的灯泡是刚开灯时容易烧断,还是工作一会儿后容易断呢?

通过这些题目练习和学生的分组讨论,诱导学生有较高的智力投入,因而有利于激发学生的潜能、深入领会和掌握探究的学习过程,而且有利于提高学生的探究技巧,发展学生的探究能力,从而体会到探究过程中的失败与成功的乐趣。爱因斯坦曾说:“结论几乎总是以完成的形式出现在读者面前,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也很难达到清楚地理解全部情况。”可见成功与失败过程都是学生非常需要去感受的。通过学生的分组讨论,形成宽松、民主、和谐的教学气氛,在合作中竞争,即变个人竞争为小组竞争。为了达到集体优胜的目的,每个成员都要动手动脑,积极参加讨论,为本组的成功尽最大的努力。这样既给了学生机会和权利又赋予了他们义务和责任,并能激发起学生的表达欲望。同时,在合作竞争中,能促进组员间团结协作,相互激励,彼此帮助,更重要的是不再让学生只会埋头苦读苦思苦想,而是注重培养学生的合作意识,从小培养学生的团队精神。

学生不仅分层掌握了课本的知识,更重要的是让学生经过自己的学习努力思考,从书本上静态的知识引申到了生活中,特别是老师每天上课中都在用到的小蜜蜂调音量大小,让学生感觉到物理确实有用,物理就在身边。引导学生关心生活,关注社会。只有将所学的知识内容与现代科技联系在一起,才能让学生感受到物理知识的应用价值,以及对人类社会带来的正、反两个方面的作用,从而培养学生树立正确的科学价值观。

(三)以诱达思

“以诱达思”,顾名思义就是要通过不同方式的诱导学生的思考和学习,但要让学生思考什么问题呢?

1.让学生思考学习目的:一有考试结束,经常听到老师和家长交流时夸这个孩子是非常聪明的,只要他能认真一点就一定能够取得更大的进步。所以我也一再地思考:为什么我们的孩子都很聪明,却对学习不在意,对学习抱着无所谓的态度呢?而作为老师我是先教书好,还是先育人好呢?我想所有老师都是有共同观点的,那就是先做人而后才学习知识。通过老师和学生的以心换心的交流,让学生知道学习的重要性,定好学习目标,有了目标才会有学习动力。

2.让学生思考好的学习方法:好的学习方法才可能提高学习速度与学习效率。老师应该诱导学生思考总结一些特殊题型的解题方法与解题思路。也应该让学生总结每一块知识点的学习方法:如力学要注意画力的示意图;电学基础知识非常重要,同学力求做到“四会”:会表述:能正确地叙述并熟记概念、规律的内容,明确每个符号的物理意义,概念、规律的表达公式;会理解:能掌握公式的应用范围和使用条件;会变形:会对公式进行正确变形,并理解变形后的含义;会应用:会用概念和公式进行简单的判断、推理和计算。重视画图和识图学习物理离不开图形,复杂电路设计,都是主要依靠“图形语言”表述的。画图能够变抽象思维为形象思维,更精确地掌握物理过程。有了图就能作状态分析和动态分析,明确欧姆定律应用于某一电阻还是整个电路。另外必须根据现成的图形学会识图,要学会在复杂的图形中看出基本图形。例如,在计算有关电路的习题时,已给出的电路图往往很难分析出是串联、并联或是混联,如果能熟练地将所给出的电路图画成等效电路图,就能很容易地看出电路的连接特点,使有关问题迎刃而解。

3.让学生学会反思:美国的生物学家做了一个实验,他们先在两个玻璃瓶中一个装5只苍蝇,一个装5只蜜蜂,然后将玻璃瓶的底部对着有光亮的地方,而将开口朝光亮较暗的一方。几个小时后,科学家们发现,5只苍蝇找到了开口的一端跑掉了,而5只蜜蜂在撞击瓶底无数次后全部死在玻璃瓶里。这是为什么呢?研究分析:按照蜜蜂的生活经验,它们总是认为有光源的地方就有出口,所心每一次总是全力以赴地冲向光源方向,即使是冲在前面的同伴经过几次撞击终于殒命瓶底,它们也不假思索地前赴后继。而苍蝇没有这样的经验,更重要的是几次在瓶底碰壁后,它们改变了单一的线路,终于在瓶口找到了出路。可见思考不仅是思考现有知识的结构并掌握现有知识,更应该思考这些经验知识是否正确、是否完整、是否需要改进,而不是单纯地让学生掌握知识。

可见由于学生水平的分层、知识难度的分层,就要求教师在教学中对现有的知识进行分层处理,对教学方法进行分层处理,从而可以适应不断变化的知识与技能。但是在分层教学中又不能将知识硬塞给学生,而应以设置的问题诱导学生思考,从而在不断的思考中提升自己的学习水平。

参考文献:

[1]苏明义.初中物理课程标准解析与教学指导[M].北京师范大学出版集团,2012:7,12.

篇13

2021高考物理必考知识点总结有哪些你知道吗?要学好任何一门课程,都要有适合自己的、良好的学习方法,只有这样才会得到事半功倍的学习效果。共同阅读2021高考物理必考知识点总结,请您阅读!

高考物理必考知识点总结Ⅰ、复习要点

一、整理知识体系

现行高中物理教材主要分:力、热、电、光、原子五个部分.综合复习中,既可以根据各部分的内容特点,分别整理出各自的体系或主要线索,也可以不受传统的五部分限制,重新归纳、整理。例如,高中物理主要内容可概括为四大单元(物理实验与物理学史单元除外)。

(一)力和运动

物体的运动变化(包括带电粒子在电场、磁场中的运动)与受力作用有关。其中力的种类计有:重力(包括万有引力)、弹力、摩擦力、浮力、电场力、磁场力(分安培力和洛舍兹力)以及分子力(包括表面张力),核力等。每种力有不同的产生原因及其特征。物体的运动形式又可分为:平衡(包括静止、匀速直线运动、匀速转动)、匀变速运动(包括匀变速直线运动、平抛、斜抛)、匀速圆周运动、振动、波动等。每一种运动形式有不同的物理条件及基本规律(或特征)。力和运动的关系以五条重要规律为纽带联系起来。

(二)功和能

1.功重力功、弹力功、摩擦力功、浮力功、电场力功、磁场力功、分子力功、核力功。

2.能注意不同形式的能及能的转换与守恒。

3.功能关系做功的过程就是能从一种形式转化为另一种形式的过程。

功是能的转化的量度。

(三)物质结构

(四)应用技术的基础知识现行高中物理有关应用技术的基础知识有:声现象(乐音、噪声、共鸣等多、静电技术(静电平衡、静电屏蔽、电容储电等)、交流电应用(交流电产生、特征、规律、简单交流电路、三相交流电及其连接、变压器,远距离送电等)、无线电技术初步(电磁振荡产生、调制、发送、电谐振、检波、放大、整流等)、光路控制与成像(光的反射与折射定律、基本光学元件特性及常用光学仪器)、光谱与光谱分析、放射性及同位素、核反应堆等。经过这样的归纳、整理,全部高中物理知识可浓缩在几张小卡片纸上,便于领会和应用。

Ⅱ、归纳思维方式

分析问题最基本的思维方式有两种:综合法和分析法.

综合法是从已知量着手,根据题中给定的物理状态或物理过程。“顺流而下”,直到把待求量跟已知量的关系全部找出来为止。

分析法则“逆流上朔”。从题中所要求解的未知量开始。首先找出直接回答题目所求的定律或公式。在这些关系式电。除了待求的未知量外,还会包含着某些过渡性的未知量。然后再根据这些过渡性来知量与题中已知条件之间的关系,引用新的关系式,逐步上朔,直到把所有的未知量都能用已知量表示出来为止。有些问题(如静力平衡问题等),它的物理过程并不能很明确地分成几个互相衔接的阶段或者各个过程中的未知量互相交织,互有牵连,此时常可以不分先后。只根据问题所描述的物理状态(或物理过程)的相互联系。列出用某个状态(或过程)有关的独立方程式,联立求解。原则上,任何一个题目都可以从这两种思维方式着手求解。值得注意的是,解决具体问题时,不必拘泥于刻板的程式,而是应该侧重于对问用中所描述的状态(或过程)的分析推理,着力找出解题的关键所在,并以此为突破口下手.同时应联合运用其他的思维技巧,如等效变换,对称性、反证法、假设法、类比、逻辑推理等。

Ⅲ、综合数学技巧

运用数学技巧,包含着极其丰富的内容。总体上要求能运用数学工具和语言,表述物理概念和规律;对物理问题进行推理、论证和变换;处理实验数据;导出球验证物理规律;进行准确的演算等。就解决某帧体的物理问回而言,要求能灵活地运用多种数学工具(如方程、此例、函数、图象、不等式、指数和对数、数列、极限、极值、数学归纳、三角、平面解析几何等)。综合复习中可全面概述其在物理中的典型应用,并侧重于比例、函数及其图象(包括识图、用图、作图)、以及运用数学递推方法从特解导出通解等。必须注意,运用数学仅是研究物理问题的一种有力的工具,侧重点还是应放在对问题中物理内容的分析上.对大多数能从物理本质上着手解决的问题,一般不必要求作严格的数学论证。

Ⅳ、检查知识缺陷

整理体系、抓住主线索后,还需做好检查知识缺陷的工作。应注意自觉看书,尤其不能疏忽那些应用性强、包含(或隐含)着物理内容的“知识角落”。如对某些实验的装置、原理的理解;某些自然现象的解释;物理原理在生产技术上的应用以及与高中物理有关的科技新动态和重要的物理学史实等.不少学生由于缺乏良好的学习习惯戏迷恋于复习资料中,往往会在这些方面失分。如以往考试中解释太阳光谱中暗线的形成);分光镜的结构;低压汞蒸汽光谱;三相变压器及超导现象;直线加速器;日光灯接法;电磁感应现象的发现者等。在综合复习中应予以足够的重视。

热学辅导

热学包括分子动理论、热和功、气体的性质几部分。

一、重要概念和规律

1.分子动理论

物质是由大量分子组成的;分子永不停息的做无规则运动;分子间存在相互作用的引力和斥力。说明:(1)阿伏伽德罗常量NA=6.02X1023摩-1。它是联系宏观量和微观量的桥梁,有很重要的意义;(2)布朗运动是指悬浮在液体(或气体)里的固体微粒的无规则运动,不是分子本身的运动。它是由于液体(或气体)分子无规则运动对固体微粒碰撞的不均匀所造成的。因此它间接反映了液体(或气体)分子的无序运动。

2.温度

温度是物体分子热运动的平均动能的标志。它是大量分子热运动的平均效果的反映,具有统计的意义,对个别分子而言,温度是没有意义的。任何物体,当它们的温度相同时,物体内分子的平均动能都相同。由于不同物体的分子质量不同,因而温度相同时不同物体分子的平均速度并不一定相同。

3.内能

定义物体里所有分子的动能和势能的总和。决定因素:物质数量(m).温度(T)、体积(V)。改变方式做功――通过宏观机械运动实现机械能与内能的转换;热传递――通过微观的分子运动实现物体与物体间或同一物体各部分间内能的转移。这两种方式对改变内能是等效的。定量关系E=W+Q(热力学第一定律)。

4.能量守恒定律

能量既不会凭空产生,也不会凭空消旯它产能从一种形式转化为别的形式,或者从一个物体转移到别的物体。必须注意:不消耗任何能量,不断对外做功的机器(永动机)是不可能的。利用热机,要把从燃料的化学能转化成的内能,全部转化为机械能也是不可能的。

5.理想气体状态参量

理想气体始终遵循三个实验定律(玻意耳定律、查理定律、盖?吕萨克定律)的气体。描述一定质量理想气体在平衡态的状态参量为:温度气体分子平均动能的标志。体积气体分子所占据的空间。许多情况下等于容器的容积。压强大量气体分子无规则运动碰撞器壁所产生的。其大小等于单位时间内、器壁单位面积上所受气体分子碰撞的总冲量。内能气体分子无规则运动的动能.理想气体的内能仅与温度有关。

6.一定质量理想气体的实验定律

玻意耳定律:PV=恒量;查理定律:P/T=恒量;盖?吕萨克定律:V/T=恒量。

7.一定质量理想气体状态方程

PV/T=恒量

说明(1)一定质量理想气体的某个状态,对应于P一V(或P-T、V-T)图上的一个点,从一个状态变化到另一个状态,相当于从图上一个点过渡到另一个点,可以有许多种不同的方法。如从状态A变化到B,可以经过的过程许多不同的过程。为推导状态方程,可结合图象选用任意两个等值过程较为方便。(2)当气体质量发生变化或互有迁移(混合)时,可采用把变质量问题转化为定质量问题,利用密度公式、气态方程分态式等方法求解。

二、重要研究方法

1、微观统计平均

热学的研究对象是由大量分子组成的.其宏观特性都是大量分子集体行为的反映。不可能同时也无必要像力学中那样根据每个物体(每个分子)的受力情况,写出运动方程。热学中的状态参量和各种现象具有统计平均的意义。因此,当大量分子处于无序运动状态或作无序排列时,所表现出来的宏观特性――如气体分子对器壁的压强、非晶体的物理属性等都显示出均匀性。当大量分子作有序排列时,必显示出不均匀性,如晶体的各自异性等。研究热学现象时,必须充分领会这种统计平均观点。

2.物理图象

气体性质部分对图象的应用既是一特点,也是一个重要的方法。利用图象常可使物理过程得到直观、形象的反映,往往使对问题的求解更为简便。对物理图象的要求,不仅是识图、用图,而且还应变图一即作图象变换。如图P-V图变换成p-T图或V-T图等。

3.能的转化和守恒

各种不同形式的能可以互相转化,在转化过程中总量保持不变。这是自然界中的一条重要规律。也是指导我们分析研究各种物理现象时的一种极为重要的思想方法。在本讲中各部分都有广泛的渗透,应牢固把握。

三、基本解题思路

热学部分的习题主要集中在热功转换和气体性质两部分,基本解题思路可概括为四句话:

1.选取研究对象.它可以是由两个或几个物体组成的系统或全部气体和某一部分气体。

(状态变化时质量必须一定。)

2.确定状态参量.对功热转换问题,即找出相互作用前后的状态量,对气体即找出状态变化前后的p、V、T数值或表达式。

3、认识变化过程.除题设条件已指明外,常需通过究对象跟周围环境的相互关系中确定。

4.列出相关方程.

光学辅导

光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.

一、重要概念和规律

(一)、几何光学基本概念和规律

1、基本规律

光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线――表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速――光传播的速度。光在真空中速度最大。恒为C=3×108m/s。丹麦天文学家罗默第一次利用天体间的大距离测出了光速。法国人裴索第一次在地面上用旋转齿轮法测出了光这。实像――光源发出的光线经光学器件后,由实际光线形成的.虚像――光源发出的光线经光学器件后,由发实际光线的延长线形成的。本影――光直线传播时,物体后完全照射不到光的暗区.半影――光直线传播时,物体后有部分光可以照射到的半明半暗区域.

2.基本规律

(1)光的直线传播规律先在同一种均匀介质中沿直线传播。小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。

(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。

(3)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。

(4)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射

角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。

(5)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.

3.常用光学器件及其光学特性

(1)平面镜点光源发出的同心发散光束,经平面镜反射后,得到的也是同心发散光束.能在镜后形成等大的、正立的虚出,像与物对镜面对称。

(2)球面镜凹面镜有会聚光的作用,凸面镜有发散光的作用.

(3)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。隔着棱镜看到物体的像向项角偏移。棱镜的色散作用复色光通过三棱镜被分解成单色光的现象。

(4)透镜在光疏介质的环境中放置有光密介质的透镜时,凸透镜对光线有会聚作用,凹透镜对光线有发散作用.透镜成像作图利用三条特殊光线。成像规律1/u+1/v=1/f。线放大率m=像长/物长=|v|/u。说明①成像公式的符号法则――凸透镜焦距f取正,凹透镜焦距f取负;实像像距v取正,虚像像距v取负。②线放大率与焦距和物距有关.

(5)平行透明板光线经平行透明板时发生平行移动(侧移).侧移的大小与入射角、透明板厚度、折射率有关。

4.简单光学仪器的成像原理和眼睛

(1)放大镜是凸透镜成像在。u

(2)照相机是凸透镜成像在u>2f时的应用.得到的是倒立缩小施实像。

(3)幻灯机是凸透镜成像在f

(4)显微镜由短焦距的凸透镜作物镜,长焦距的透镜作目镜所组成。物于物镜焦点外很靠近焦点处,经物镜成实像于目镜焦点内很靠近焦点处。再经物镜在同侧形成一放大虚像(通常位于明视距离处)。

(5)望远镜由长焦距的凸透镜作物镜,辕焦距的〕透镜作目镜所组成。极远处至物镜的光可看成平行光,经物镜成中间像(倒立、缩小、实像)于物镜焦点外很靠近焦点处,恰位于目镜焦点内,再经目镜成虚像于极远处(或明视距离处)。

(6)眼睛等效于一变焦距照相机,正常人明视距约25厘米。明视距离小子25厘米的近视眼患者需配戴凹透镜做镜片的眼镜;明视距离大于25厘米的远视25者需配戴凸透镜做镜片的眼镜。

(二)物理光学――人类对光本性的认识发展过程

(1)微粒说(牛顿)基本观点认为光像一群弹性小球的微粒。实验基础光的直线传播、光的反射现象。困难问题无法解释两种媒质界面同时发生的反射、折射现象以及光的独立传播规律等。

(2)波动说(惠更斯)基本观点认为光是某种振动激起的波(机械波)。实验基础光的干涉和衍射现象。

①个的干涉现象――杨氏双缝干涉实验

条件两束光频率相同、相差恒定。装置(略)。现象出现中央明条,两边等距分布的明暗相间条纹。解释屏上某处到双孔(双缝)的路程差是波长的整数倍(半个波长的偶数倍)时,两波同相叠加,振动加强,产生明条;两波反相叠加,振动相消,产生暗条。应用检查平面、测量厚度、增强光学镜头透射光强度(增透膜).

②光的衍射现象――单缝衍射(或圆孔衍射)

条件缝宽(或孔径)可与波长相比拟。装置(略)。现象出现中央最亮最宽的明条,两边不等距发表的明暗条纹(或明暗乡间的圆环)。困难问题难以解释光的直进、寻找不到传播介质。

(3)电磁说(麦克斯韦)基本观点认为光是一种电磁波。实验基础赫兹实验(证明电磁波具有跟光同样的性质和波速)。各种电磁波的产生机理无线电波自由电子的运动;红外线、可见光、紫外线原子外层电子受激发;x射线原子内层电子受激发;γ射线原子核受激发。可见光的光谱发射光谱――连续光谱、明线光谱;吸收光谱(特征光谱。困难问题无法解释光电效应现象。

(4)光子说(爱因斯坦)基本观点认为光由一份一份不连续的光子组成每份光子的能量E=hν。实验基础光电效应现象。装置(略)。现象①入射光照到光电子发射几乎是瞬时的;②入射光频率必须大于光阴极金属的极限频率ν。;

③当ν>v。时,光电流强度与入射光强度成正比;④光电子的最大初动能与入射光强无关,只随着人射光灯中的增大而增大。解释①光子能量可以被电子全部吸收.不需能量积累过程;②表面电子克服金属原子核引力逸出至少需做功(逸出功)hν。;③入射光强。单位时间内入射光子多,产生光电子多;④入射光子能量只与其频率有关,入射至金属表,除用于逸出功外。其余转化为光电子初动能。困难问题无法解释光的波动性。

(5)光的波粒二象性基本观点认为光是一种具有电磁本性的物质,既有波动性。又有粒子性。大量光子的运动规律显示波动性,个别光子的行为显示粒子性。实验基础微弱光线的干涉,X射线衍射.

二、重要研究方法

1.作图锋几何光学离不开光路图。

利用作图法可以直观地反映光线的传播,方便地确定像的位置、大小、倒正、虚实以及成像区域或观察范围等.把它与公式法结合起来,可以互相补充、互相验证。

2.光路追踪法用作图法研究光的传播和成像问题时,抓住物点上发出的某条光线为研究对象。

不断追踪下去的方法.尤其适合于研究组合光具成多重保的情况。

3.光路可逆法在几何光学中,一所有的光路都是可逆的,利用光路可逆原理在作图和计算上往在都会带来方便。

实验辅导

物理学是一门以实验为基础的科学。近年来对学生物理知识的各种全面测试中(如高考等)也非常重视对学生实验能力的考查。因此,物理实验的`复习是整个总复习中不可缺少的一个重要组成部分.

一、实验的基本类型和要求

中学物理学生实验大体可以分为四范其要求如下:

1.基本仪器的使用除了初中已接触过的常用仪器(如天平秤、弹簧秤、压强计、气压计、温度计、安培计、伏特计等)外.高中又学习了打点计时器、螺旋测微器、游标卡尺、万用电表等,要求了解仪器的基本结构,熟悉各主要部件的名称,懂得工作(测量)原理,掌握合理的操作方法,会正确读数,明确使用注意事项等.

2.基本物理量的测量初中物理中巴学过长度、时间、质量、力、温度、电流强度、电压等物理量的测量,高中物理进一步学习了对微小长度和极短时间、加速度(包括g)、速度、电阻和电阻率、电动势、折射率、焦距等物理量的测量。

要求明确被测物理量的含义,懂得具体的测量原理。掌握正确的实验方法(包括了解实验仪器、器材的规格性能、会安装和调试实验装置、能选择合理的实验步骤,正确进行数据测量以及能分析和排除实验中出现的常见故障等),妥善处理实验数据并得出结果。

3.验证物理规律计有验证共点力合成的平行四边形定则、有固定转动轴物体的平衡条件、牛顿第二定律、机械能守恒定律、玻意耳定律等。

其要求与物理量的测量相同,着重注意分析实验误差,并能有效地采取相应措施尽量减少实验误差,提高准确度。

4.观察、研究物理现象,组装仪器如研究平抛运动、弹性碰撞、描绘等势线、研究电磁感应现象、变压器的作用、观察光的衍射现象。

把电流计改装为伏特计等.其中,对观察型实验,只要求会正确使用仪器,显示出(或观察到)物理现象,并通过直觉的观察定性了解影响该现象的有关因素。对研究型实验(包括组装仪器),要求不仅能使用仪器,掌握正确的实验研究方法,把有关现象的物理内客反映出来;或把有关参数测量出来,还能够通过具体的测量作进一步的定量研一究或实验设计。

二、实验的设计思想

在中学物理实验中涉及的主要设计思想为:

1.垒积放大法把某些物理量(有时往在是难以直接测量的测量的微小量)累积后测量,或把它们放大后显示出来的一种方法。

如通过若干次全振动的时间测出单摆的振动周期;把员杨螺杆的微小进退.通过周长较大的可动到度盘显示出来(螺旋测微器)等。

2.平衡法根据物理系统内普遍存在的对立的、矛盾的双方使系统偏离平衡的物理因素,列出对应的平衡方程式,从而找出影响平衡的一种方法如用天平测质量、验证有固定转动因乎衔条件、验证玻意耳定律等。

3.控制法在多因素的物理现象中,可以先控制某些量不变,依次研究某一个因素对现象产生影响的一种方法。

如牛顿第二定律实验。可以先保持质量一定,研究加速度与力的关系等。

4.转换法用某些容易直接测量,(或显示)的量(或现象)代替不容易直接测(或显示)的量(或现象)。

或者根据研究对象在一定条件下可以有相同的效果作间接的观察、测量。如把流逝的时间转换成振针周期性的振动;把对电流、电压、电阻的测量转换成对指针偏角的测量;用从等高处抛出的两球的水平位移代替它们的速度等。

5.留迹法把瞬息即逝的(位置、轨迹、图象等)记录下来的一种方法。

如通过纸带上打出的小点记录小车的位置Z用描述法画出平抛物体的运动轨迹;用示波器显示变化的波形等。

三、实验验数据处理

数据处理是对原始实验记录的科学加工。通过数据处理,往往可以从一堆表面上难以觉察的、似乎毫无联系的数据中找出内在的规律,在中学物现中只要求掌握数据处理的最简单的方法.

1.列表法把被测物理量分类列表表示出来。

通常需说明记录表的要求(或称为标题)、主要内容等。表中对各物理量的排列月惯上先原始记录数据,后计算果。列表法可大体反映某些因素对结果的影响效果或变化趋势,常用作其他数据处理方法的一种辅助手段。

2.算术平均值法把待测物理量的若干次测且值相加后除以测量次数。

必须注意,求取算术平均值时,应按原测量仪器的准确度决定保留有效数字的位数。通常可先计算比直接测量值多一位,然后再四会五入。

3.图象法把实验测得的量按自变量和应变量的函数关系在坐标平面上用图象直观地显示出来.根据实验数据在坐标纸上画出图象时。

最基本的要求是:

(1)两坐标轴要选取恰当的分度

(2)要有足够多的描点数目

(3)画出的图象应尽是穿过较多的描点在图象呈曲线的情况下,可先根据大多数描点的分布位置(个别特殊位置的奇异点可舍去),画出穿过尽可能多的点的草图,然后连成光滑的曲线,避免画成拆线形状。

四、实验误差分析

测量值与待测量真实值之差,称为测量误差。主要来源于仪器(如性能和结构的不完善)、环境(如温度、湿度、外磁场的影响等)、实验方法(如实验方法粗糙、实验理论不完善等)、人为因素(如观测者个人的生理、心理习惯、不同观察者的反应快慢不一等)四方面。在中学物理中只要求定性分析实验误差的主要原因,了解绝对误差和相对误差的概念。

高考物理必须掌握的16种题型技巧01.直线运动问题

题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题。

思维模板

解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

02.物体的动态平衡问题

题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板

(1) 解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;

(2) 图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。

03.运动的合成与分解问题

题型概述:运动的合成与分解问题常见的模型有两类。一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。

思维模板

(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。

(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

04.抛体运动问题

题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.

思维模板

(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;

(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解。

05.圆周运动问题

题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况。

思维模板

(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力。

(2)竖直面内的圆周运动可以分为三个模型:

①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;

②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;

③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v

06.牛顿运动定律综合应用问题

题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高。

思维模板

以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律。对天体运动类问题,应紧抓两个公式:

GMm/r2=mv2/r=mrω2=mr4π2/T2 ①

GMm/R2=mg ②

对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化。

07.机车的启动问题

题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析。

思维模板

机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f。

这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力)。

08.以能量为核心综合应用问题

题型概述:以能量为核心的综合应用问题一般分四类:

第一类为单体机械能守恒问题,

第二类为多体系统机械能守恒问题,

第三类为单体动能定理问题,

第四类为多体系统功能关系(能量守恒)问题。

多体系统的组成模式:

两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体。

思维模板

能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律。

(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;

(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;

(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取。

09.力学实验中速度的测量问题

题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量。

速度的测量一般有两种方法:

一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度。

思维模板

用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:

①vt/2=v平均=(v0+v)/2,

②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt。

10.电容器问题

题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面。

思维模板

(1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关。

(2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd)

(3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连)。

11.带电粒子在电场中的运动问题

题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计算题。

思维模板(1)处理带电粒子在电场中的运动问题应从两种思路着手

①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量。

②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择)。

(2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力

①质子、α粒子、电子、离子等微观粒子一般不计重力;

②液滴、尘埃、小球等宏观带电粒子一般考虑重力;

③特殊情况要视具体情况,根据题中的隐含条件判断。

(3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口。

12.带电粒子在磁场中的运动问题

题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种:

(1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;

(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;

(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主.

思维模板

在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法。

(1)圆心的确定:因为洛伦兹力f指向圆心,根据fv,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示)。

(2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即?φ=α=2θ

(3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度。

13.带电粒子在复合场中的运动问题

题型概述:带电粒子在复合场中的运动是高考的热点和重点之一,主要有下面所述的三种情况:

(1)带电粒子在组合场中的运动:在匀强电场中,若初速度与电场线平行,做匀变速直线运动;若初速度与电场线垂直,则做类平抛运动;带电粒子垂直进入匀强磁场中,在洛伦兹力作用下做匀速圆周运动。

(2)带电粒子在叠加场中的运动:在叠加场中所受合力为0时做匀速直线运动或静止;当合外力与运动方向在一直线上时做变速直线运动;当合外力充当向心力时做匀速圆周运动。

(3)带电粒子在变化电场或磁场中的运动:变化的电场或磁场往往具有周期性,同时受力也有其特殊性,常常其中两个力平衡,如电场力与重力平衡,粒子在洛伦兹力作用下做匀速圆周运动。

思维模板

分析带电粒子在复合场中的运动,应仔细分析物体的运动过程、受力情况,注意电场力、重力与洛伦兹力间大小和方向的关系及它们的特点(重力、电场力做功与路径无关,洛伦兹力永远不做功),然后运用规律求解,主要有两条思路:

(1)力和运动的关系:根据带电粒子的受力情况,运用牛顿第二定律并结合运动学规律求解。

(2)功能关系:根据场力及其他外力对带电粒子做功的能量变化或全过程中的功能关系解决问题。

14.以电路为核心的综合应用问题

题型概述:该题型是高考的重点和热点,高考对本题型的考查主要体现在闭合电路欧姆定律、部分电路欧姆定律、电学实验等方面.主要涉及电路动态问题、电源功率问题、用电器的伏安特性曲线或电源的U-I图像、电源电动势和内阻的测量、电表的读数、滑动变阻器的分压和限流接法选择、电流表的内外接法选择等。

思维模板

(1)电路的动态分析是根据闭合电路欧姆定律、部分电路欧姆定律及串并联电路的性质,分析电路中某一电阻变化而引起整个电路中各部分电流、电压和功率的变化情况,即有R分R总I总U端I分、U分

(2)电路故障分析是指对短路和断路故障的分析,短路的特点是有电流通过,但电压为零,而断路的特点是电压不为零,但电流为零,常根据短路及断路特点用仪器进行检测,也可将整个电路分成若干部分,逐一假设某部分电路发生某种故障,运用闭合电路或部分电路欧姆定律进行推理。

(3)导体的伏安特性曲线反映的是导体的电压U与电流I的变化规律,若电阻不变,电流与电压成线性关系,若电阻随温度发生变化,电流与电压成非线性关系,此时曲线某点的切线斜率与该点对应的电阻值一般不相等。

电源的外特性曲线(由闭合电路欧姆定律得U=E-Ir,画出的路端电压U与干路电流I的关系图线)的纵截距表示电源的电动势,斜率的绝对值表示电源的内阻。

15.以电磁感应为核心的综合应用问题

题型概述:此题型主要涉及四种综合问题

(1)动力学问题:力和运动的关系问题,其联系桥梁是磁场对感应电流的安培力。

(2)电路问题:电磁感应中切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,这样,电磁感应的电路问题就涉及电路的分析与计算。

(3)图像问题:一般可分为两类:

一是由给定的电磁感应过程选出或画出相应的物理量的函数图像;

二是由给定的有关物理图像分析电磁感应过程,确定相关物理量。

(4)能量问题:电磁感应的过程是能量的转化与守恒的过程,产生感应电流的过程是外力做功,把机械能或其他形式的能转化为电能的过程;感应电流在电路中受到安培力作用或通过电阻发热把电能转化为机械能或电阻的内能等。

思维模板

解决这四种问题的基本思路如下:

(1)动力学问题:根据法拉第电磁感应定律求出感应电动势,然后由闭合电路欧姆定律求出感应电流,根据楞次定律或右手定则判断感应电流的方向,进而求出安培力的大小和方向,再分析研究导体的受力情况,最后根据牛顿第二定律或运动学公式列出动力学方程或平衡方程求解。

(2)电路问题:明确电磁感应中的等效电路,根据法拉第电磁感应定律和楞次定律求出感应电动势的大小和方向,最后运用闭合电路欧姆定律、部分电路欧姆定律、串并联电路的规律求解路端电压、电功率等。

(3)图像问题:综合运用法拉第电磁感应定律、楞次定律、左手定则、右手定则、安培定则等规律来分析相关物理量间的函数关系,确定其大小和方向及在坐标系中的范围,同时注意斜率的物理意义。

(4)能量问题:应抓住能量守恒这一基本规律,分析清楚有哪些力做功,明确有哪些形式的能量参与了相互转化,然后借助于动能定理、能量守恒定律等规律求解。

16.电学实验中电阻的测量问题

题型概述:该题型是高考实验的重中之重,每年必有命题,可以说高考每年所考的电学实验都会涉及电阻的测量.针对此部分的高考命题可以是测量某一定值电阻,也可以是测量电流表或电压表的内阻,还可以是测量电源的内阻等。

思维模板

测量的原理是部分电路欧姆定律、闭合电路欧姆定律;常用方法有欧姆表法、伏安法、等效替代法、半偏法等。

高三物理必背知识点整理1.动量和冲量

(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv.是矢量,方向与v的方向相同.两个动量相同必须是大小相等,方向一致.

(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft.冲量也是矢量,它的方向由力的方向决定.

2.动量定理:物体所受合外力的冲量等于它的动量的变化.表达式:Ft=p′-p或Ft=mv′-mv

(1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向.

(2)公式中的F是研究对象所受的包括重力在内的所有外力的合力.

(3)动量定理的研究对象可以是单个物体,也可以是物体系统.对物体系统,只需分析系统受的外力,不必考虑系统内力.系统内力的作用不改变整个系统的总动量.

(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力.对于变力,动量定理中的力F应当理解为变力在作用时间内的平均值.

3.动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变.

表达式:m1v1+m2v2=m1v1′+m2v2′

(1)动量守恒定律成立的条件

①系统不受外力或系统所受外力的合力为零.

②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞问题中的摩擦力,爆炸过程中的重力等外力比起相互作用的内力来小得多,可以忽略不计.

③系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量的分量保持不变.

(2)动量守恒的速度具有“四性”:①矢量性;②瞬时性;③相对性;④普适性.

4.爆炸与碰撞

(1)爆炸、碰撞类问题的共同特点是物体间的相互作用突然发生,作用时间很短,作用力很大,且远大于系统受的外力,故可用动量守恒定律来处理.

(2)在爆炸过程中,有其他形式的能转化为动能,系统的动能爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能.

(3)由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程简化处理.即作用后还从作用前瞬间的位置以新的动量开始运动.

篇14

关键词:运用 多媒体技术 提高 物理教学效果

物理学是以实验为主要手段进行教学的学科,与其它学科有明显的不同。随着社会的进步,科学技术的发展,信息教育技术以其独有的先进特性进入各个学科的教学。信息教育技术,尤其是多媒体技术的运用,在整合物理学科教学中具有很大的作用。例如:多媒体计算机技术、网络技术、视频实物展台、多媒体投影仪等现代信息教育技术媒体,在物理实验中具有直观形象、化小为大、化远为近,改变时空、动静变化、快慢可调、重复再现等功能,为以实验为主要教学手段的物理学科插上了理想的翅膀,对于整合物理学科教学,优化课堂教学过程,提高物理课堂教学效果具有很重要的作用。

一、运用多媒体技术的“超文本”功能,提高物理教学效果

超文本(Hypertext)是按照人脑的联想思维方式,用网状结构非线性地组织管理的一种先进技术,是多媒体系统的一种固有特性。多媒体计算机技术的“超文本”强大功能,为物理教学提供了非常优越的条件。教学中,有时板书较多、例题及解题过程要规范、实物图、电路图或一些画面要出示等,如果按照传统的教学方法去写、画,会浪费许多宝贵的时间。利用先进的多媒体计算机“超文本”技术,就可以克服弊端。许多的计算机软件,如:Word、PowerPoint及网页工具FrontPage、Dreamweaver等软件都具有超文本(超链接)功能,为课堂教学提供了很好的工具。例如:利用PowerPoint演示文稿软件,把讲课用的视频资料、例题分析、解题步骤、板图、练习题等,都用幻灯片的形式存储成不同的单元或专题学习网站,再用超链接的方法进行链接到需要的部分。当教师讲到需要用的部分时,就可以很方便的调出需要的内容。通过使用多媒体技术的超文本功能,制成电子教案,可以有效地提高课堂教学效果。

二、用多媒体技术的“放大”作用,提高物理教学的演示效果

在物理教学中有许多演示实验的可见度很小,由于可见度小,很难使每个学生都观察清楚,这就很大程度上降低了演示实验的效果,影响了物理教学效果。例如:在讲电流表和电压表的读数教学时,把表盘放大,改变指针的位置和量程,让学生练习读数,效果很好。在磁感线、通电螺线管的磁场等教学中,教师的演示实验是在平面上进行的,要让学生在座位上看清楚是不可能的,所以教师需要采取拿着实验让学生看或让学生到前边讲台上去观看等方法,这样做既麻烦又浪费时间。如果适时地利用多媒体投影仪进行放大既方便又节省时间,效果又好。演示时只需把磁体放在视频实物展台上,磁体上边再放上一块玻璃板,在玻璃板上撒些铁粉,轻轻振动玻璃板,即可以在荧幕上看到清楚的磁感线的分布情况。观察通电螺线管的磁场时,把螺线管磁场演示仪也放在视频实物展台,通电后可以非常清楚地看到铁屑在油中的运动情形及最后的分布状况。同理也可以演示同名磁极和异名磁极间的相互作用,即生动效果又好,同时节省了宝贵的时间,增加了课堂的知识密度。再如,液化现象,一般用乙醚做常温加压液化演示,可见度很小,使用视频实物展台演示效果也很好。演示时用装有乙醚的注射器,放在载物台上,调节镜头使成像最清楚,推动或抽动活塞做加压液化和减压汽化实验,就明显地看到液化和汽化现象,使抽象难做的有毒的实验获得很好的效果。总之,利用多媒体技术的放大作用来提高可见度小的演示实验,都可以收到很好的演示实验效果。

三、利用多媒体技术的“扩大时空”作用,提高物理教学的效果

在物理教学中有时需要教师举出许多生活事例,让学生在头脑中复现许多生活现象,而那些生活现象有的学生能及时的复现,而有的学生可能忘记或是在平时根本就没有注意,从而影响教师的讲课。如果教师适时地利用多媒体技术的“扩大时空”即“化远为近”的独特作用,适时地利用事先制作成的视频音像资料,播放一段古代的、近代的、过去的、他人先进的教学资料片段,就能活跃课堂气氛和提高物理教学的效果。例如:在讲船闸时放一段“葛洲坝船闸”工作原理的资料片。在讲物体浮沉条件的利用时,用光盘展现潜艇上浮、下潜、悬浮的全过程,学生感到有兴趣极了,个个瞪大眼睛。这种效果是学生看书无法比拟的。对于提高教学效果都具有很大的帮助。在进行激发学习兴趣的教学时,可以适当地放一段物理史学资料片,以再现古代、现代科学家的刻苦追求精神,达到进行思想教育的目的。这是只有多媒体技术才能做到的,它明显优于一般教师的简单、枯燥的讲授效果。因此,运用多媒体技术的“扩大时空”作用,有利于提高物理教学的效果。

四、利用多媒体技术的“再现”作用,提高物理教学的效果

初中物理教学是以实验为主要方式进行的,有的实验在教学中做了演示实验或是学生探究实验,在复习时由于时间的延长而忘记或记不太清是不可避免的,有的实验是不适宜重复做的,尤其是在复习课时更不可能把平时教学时的演示实验都重做一遍。因此,利用多媒体技术的“再现”优势就可以达到复习的目的,既节省时间又提高效果。利用播放音像资料片(自制或购买的教学光盘)的方法把一些实验“再现”出来,教师还可以边讲边分析。例如: “凸透镜成像规律”是重点又是难点。在进行复习教学时可以先让学生回忆成像规律,然后再利用CAI课件来演示凸透镜成像的规律,达到复习巩固实验的目的,从而提高课堂教学效果。再如,天平各部分名称和调节、使用方法实验等都可以利用多媒体技术的“再现”特点进行复习教学。

五、利用多媒体技术的“模拟”作用,提高物理教学的效果

多媒体计算机技术的高速度发展,在教育教学中也迅速应用起来。计算机辅助教学,计算机网络技术的应用也在快速的发展,使得教学信息的传递、加工、处理方式也得到了进一步的改进,对于提高物理教学效果具有很大的作用。多媒体计算机技术在物理课堂教学中可以对实验仪器的结构进行自由拆分;对实验原理进行动态分析具有模拟实验,突出教学重点、化解教学难点的辅助教学效果。例如:在《滑动变阻器》一节的教学中,滑动变阻器的线圈、接线柱、滑片之间的关系是教学难点,滑动变阻器原理、接法、作用是教学重点。如果恰当的采用计算机辅助教学,对滑动变阻器进行动态组装,使学生对滑动变阻器的结构及各部件之间的关系一目了然,并收到较好的教学效果。用计算机辅助教学手段模拟实验,并把电池组、小灯泡、开关、滑动变阻器、电流表用导线连成实物电路。当开关闭合,导线中通过电流部分由灰色变成红色,尤其是演示滑动变阻器的滑片向左右移动时,通过电流部分的导线长度也随之改变,效果就更明显。通过对“模拟”实验的分析、总结、归纳,很快地突破滑动变阻器阻值变化引起电流改变的教学重点、难点,真实地“模拟”了实验现象,因为在实际的实验中,电流虽然是真实存在的,但是它确实是看不见摸不着的,学生是观察不到的,只有靠学生自己去想象,这种抽象的知识信息,增加了知识理解的难度,对于大多数学生来说是有很大难度的。而用计算机进行实验的“模拟”,较好地将抽象的知识变成具体形象的知识信息,很快地突破滑动变阻器阻值变化引起电流改变的教学重点、难点,取得较好的教学效果。再如,讲摩擦起电时,要涉及原子的结构,这对学生来说是非常抽象的,可以利用课件模拟核外电子围绕原子核高速旋转的情况等等。

六、利用丰富的网络资源,搞好探究性学习

课程标准中,学生越来越多地参与到探究性学习中,在探索过程中,他们不是机械地记忆信息,而是根据某项“任务”,自主搜索、分析、组合与探究有关的信息,从而培养获取信息、处理信息的能力和基本的科学素养。