发布时间:2023-09-22 10:35:31
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇欧姆定律意义,期待它们能激发您的灵感。
【关键词】教材分析;科学探究;适当类比;体会与反思
教材分析及课堂教学设计思想
欧姆定律一课时初中物理电学部分的核心知识,是进一步学习电学知识和分析电路的基础,为了使学生能更好地学习本节内容,我在课堂教学过程中作了如下设计:先从生活实际引出课堂探究课题,然后与学生一起设计实验一一探究电流与电压和电阻的关系,在得出数据的基础上在进一步体会用图像法研究物理问题的优越性,在实验的基础上提高学生依据实验事实,分析、探索、归纳问题的能力,分组体验通过实验总结物理规律的过程与方法,同时通过介绍欧姆的故事,增进学生热爱科学、追求科学、献身科学的学习热情,最后自然而然得出欧姆定律的结论与公式。下面笔者就详细谈谈欧姆定律一课的课堂教学设计。
一、从生活实例中引出科学探究问题
将电源开关灯泡组成一个简单电路,灯泡发光,让学生自己动手设法改变灯的亮度,要想改变灯泡的亮度就是要改变通过灯泡中的电流,而改变灯泡中电流的方法归纳起来就两种改变电路两端电压或改变接入电路中电阻,从而引出课堂探究的问题,通过导体的电流与电压、电阻有何关系。
二、设计分组实验,用控制变量法分别探究电流与电压、电阻的关系
探究一:电阻R不变时,研究通过它的电流与其两端电压的关系
按图示电路他接好电路引导学生采用控制变量法进行分组实验
便把测量的数据填入下表
R=____Ω
然后引导学生分析数据,归纳得出结论:电阻一定时,电流与电压成正比。
探究二:保持电阻R两端电压不变时,研究通过它的电流与其电阻大小的关系
按图示电路他接好电路引导学生采用控制变量法进行分组实验
便把测量的数据填入下表
U=____V
然后引导学生分析数据,归纳得出结论:电压一定时,电流与电阻成反比。
三、适当类比,提升学生理解定律和运用公式能力
在学生分组实验探究的基础上得到欧姆定律,导体中电流与导体两端电压成正比,与导体的电阻成反比,用公式表示为I=U/R,推导出欧姆定律的变形公式U=IR和R=U/I,对于变形公式R=U/I一定要理解其物理意义,因为电阻是导体本身的一种性质,所以不能说电阻与电压成正比,不能说电阻与电流成反比,也不能说电阻与电压和电流有关,要理解电阻的大小决定于本身的材料、横截面积和长度,与加在它两端电压大小和通过它的电流大小无关,即使电阻两端不加电压,它的阻值还是本身那么大,但在不知道电阻值大小的情况下利用公式R=U/I可以算出电阻值的大小,电阻值一旦算出后,如果不考虑温度影响,电阻值就不会再发生变化。为了更好地理解公式R=U/I的物理意义,可以将电阻与密度、比热容、热值等相似的物理量进行类比。
四、课堂教学中体会与反思
通过本堂课教学实践,笔者体会到以下几点务必在教学环节中得到体现与完成:1.在探究电流与电压关系和探究电流与电阻关系时务必弄清滑动变阻器在两次实验中的作用是不同的,前者是为了改变定值电阻两端的电压,后者是换了不同阻值的电阻后每次都要重新调节滑动变阻器使电阻两端的电压保持不变。2.在探究电流与电压关系时,在学生得到实验数据后由于测量数据肯定存在误差,可引导学生以电流I为纵坐标,以电压U为横坐标,建立平面直角坐标系,根据表中数据,在坐标系中描点,画出I-U的图像,可以帮助学生较为直观地得到电阻一定时电流与电压成正比的结论。同样在探究电流与电阻的关系时也可采用图像法,这样做的好处,一是比较直观,二是可以修复实验数据测量时的误差,使学生更易得到实验结论。3.在探究电流与电阻关系时要控制电压相同,在这部分实验中,要让学生明确两个问题,一是控制的电压大小要合适,尤其是相对于电源电压而言不能太小,二是要知道选最大值多大的变阻器较为合适,当定值电阻由小换成大的或由大换成小的时滑动变阻器接入电路中的电阻应如何调节,这里的能力培养相当重要,学生一旦理解了,那么在以后考试中遇到相关的实验题做起来就会很得心应手,反之这里的实验考题将一直成为学生的考试难题。4.得到欧姆定律公式后,务必让学生理解在运用公式I=U/R时,三个量必须是同一电路上的电流、电压、电阻,即必须满足同一性和同时性,在训练学生欧姆定律公式及变形公式运用时一定要结合串联和并联电路的特点展开训练,一方面要注重训练学生看懂电路图的能力,另一方面要培养学生一题多解的能力。
欧姆定律是指,在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。该定律是由德国物理学家欧姆在1826年4月发表的《金属导电定律的测定》论文提出的。
随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆。
麦克斯韦诠释欧姆定律为,处于某状态的导电体,其电动势与产生的电流成正比。因此,电动势与电流的比例,即电阻,不会随着电流而改变。在这里,电动势就是导电体两端的电压。因为物质的电阻率通常相依于温度。根据焦耳定律,导电体的焦耳加热与电流有关,当传导电流于电体时,导电体的温度会改变。电阻对于温度的相依性,使得在典型实验里,电阻相依于电流,从而很不容易直接核对这形式的欧姆定律。
(来源:文章屋网 )
关键词:规范;知识的补充与拓展;灵活运用和融会贯通
中图分类号:G633.7 文献标志码:A 文章编号:1674-9324(2014)34-0116-02
教科书中所给的两道例题具有很强的代表性,第一个例题是让学生体会:当串联电路中一个电阻改变时,电路中电流及另一个电阻两端电压会随之改变。例题二让学生体会:当并联电路一个支路电阻改变时,干路中电流会发生变化,但另一个电路电流和电压不会发生变化。两个例题做下对比,解决了学生疑惑。下面笔者从以下几方面谈谈本节教学的注意事项以及心得体会。
一、仔细分析题目
分析题目是思维能力的展示,是对知识的具体运用。首先让学生熟练掌握欧姆定律的内容及形变公式,然后对电路进行分析判断,确定电路特点,然后再根据电流电压电阻关系解答。
二、规范解题
初中学生接触物理学习时间不长,对于会做的题目往往不知怎样表达,有时表达顾此失彼造成丢分。究其原因是解题不规范,所以养成规范的解题习惯,对提高教学成绩和养成严谨的思维能力尤其重要。本节中,利用该定律解题应注意:(1)I,U,R都是指同一导体或同一段电路在同一状态下的物理量。(2)利用好该定律的两个变形公式U=IR,R=U/I。(3)单位必须统一用国际单位的主单位。(4)在I,U,R下方标上角标,表示不同的导体,或者同一导体的不同时刻。(5)要有必要的文字表达,在物理语言的表达上要严谨、有序。
三、注意知识的补充与拓展
以例一为例:电阻R1为10欧,电源两端电压6伏,开关S闭合后,求:(1)当滑动变阻器R接入电路中的电阻R2为50欧时,通过R1的电流I;(2)当滑动变阻器接入电路中电阻为20欧时,通过R1的电流I。本题中,由于电阻串联,通过R1的电流与总电流相等,由于知道总电压U,只要知道总电阻就可以了,我就提问学生:总电阻是多少呢?学生异口同声回答:R1+R2。我又问,为什么是两个电阻之和呢?此时学生无语,引起认知冲突。这时,我把学生带入最近发展区,得出串联电路电阻关系。串联电路电阻关系U=U1+U2;电流关系:I=I1=I2,得U/I=U1/I1+U2/I2。由欧姆定律可知R=R1+R2。所以也可以求出通过R1电流I=U/R=6/60=0.1(A)。同理可以求出当R3=20欧时电流I=0.2A。此时老师可以让学生分别求出两个小题滑动变阻器两端电压和电阻R1两端电压分别是多少。当滑动变R2=50欧时,U1=I1xR1=0.1x10=1(v),U2=I2xR2=0.1x50=5(v);当滑动变阻器电阻R3=20欧时,U1=I1xR1=0.2x10=2(v),U3=I3xR3=0.2x20=4(v)。引导学生比较两种情况下电阻与各自电压关系发现:第一种情况下U1/R1=U2/R2;第二种情况下:U1/R1=U3/R3。由此得出串联电路电压比等于各自电阻比,即:U1/U2=R1/R2。老师点拨学生认识到,串联电路中,当一个电阻改变时,另一个电阻两端电压和电流都要改变,可谓“牵一发而动全身”。以例二为例:电阻R1为10欧,与滑动变阻器组R并联电路,电源电压12V,开关S闭合后,求:(1)当滑动变阻器R接入电路中电阻R2=40欧时,通过R1的电流I1和总电流I;(2)当滑动变阻器接入电路中电阻R3=20欧时,通过R1电流I1和总电流I。本题由于电阻与变阻器组成并联,所以它们两端电压U1=U2=U=12V。以第一小题看,由欧姆定律得,通过R1的电流I1=U1/R1=12/10=1.2A;通过R2的电流I2=U2/R2=12/40=0.3A;总电流I=I1+I2=1.2+0.3=1.5(A)。我此时问学生:由欧姆定律,总电流I可以用总电压U与总电阻R的比求得,那么并联电路总电阻是多少呢?这时学生很快回答:等于两个电阻之和。我没有否定学生的回答,而是让他们用总电压除以总电流看看总电阻是多少,和想象的是否一样?即:R=U/I=12/1.5=8(欧)。通过计算同学们发现并联电路总电阻并不等于各电阻大小之和,不但比它们的和要小,而且比任何一个都要小。但又找不出到底有什么关系。我把三个电阻大小依次列出来:8 10 40。让学生发现三个数据关系,当我意识到没有学生发现时,我又把三个数写成倒数形式。这时熊可佳同学首先发现:1/8=1/10+1/40。我虽然欣喜,对她给予了表扬,但并没急于下结论。而是让学生用同理计算第二题,发现同样的规律。此时我告诉学生并联电路电阻的关系:总电阻的倒数等于各支路电阻倒数之和。即1/R=1/R1+1/R2。
当满足学生一时的求知欲时,学生的好奇心被进一步调动,老师趁热打铁,让学生找找两种情况下,电阻和通过它们的电流的关系。以第一小题中,R1=10欧,I1=1.2安;R2=40欧,I2=0.3安。学生马上就发现:I1/I2=R2/R1。即,并联电路电流比等于电阻比的倒数。通过数据,可以进一步引导学生发现:并联电路中,当一个支路电阻改变时,只能改变本支路电流,对其他支路的电压,电流没有影响。这也是我们经常说的并联电路各支路地位平等,相互不影响。
关键词:欧姆定律 高中物理教学方法
一、教材分析
《欧姆定律》的内容,在初中阶段已经学过,高中阶段《物理》安排这节课的目的,主要是让学生通过课堂演示实验再次增加感性认识;体会物理学的基本研究方法(即通过实验来探索物理规律);学习分析实验数据,得出实验结论的两种常用方法――列表对比法和图象法;再次领会定义物理量的一种常用方法――比值法。这就决定了《欧姆定律》教学的教学目的和教学要求。教学不全是为了让学生知道实验结论及定律的内容,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中是如何控制实验条件和物理变量的,从而让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。
《欧姆定律》的内容在全章中的作用和地位也是重要的,它一方面起到复习初中知识的作用,另一方面为学习闭合电路欧姆定律奠定了基础。《欧姆定律》实验中分析实验数据的两种基本方法,也将在后续课程中多次应用。因此也可以说,《欧姆定律》是后续课程的知识准备阶段。
通过《欧姆定律》的学习,要让学生记住欧姆定律的内容及适用范围;理解电阻的概念及定义方法;学会分析实验数据的两种基本方法;掌握欧姆定律并灵活运用。《欧姆定律》内容的重点是进行演示实验和对实验数据进行分析。这是教学的核心,是教学成败的关键,是实现教学目标的基础。《欧姆定律》教学的难点是电阻的定义及其物理意义。尽管用比值法定义物理量在电场一章中已经接触过,但学生由于缺乏较多的感性认识,对此还是比较生疏。从数学上的恒定比值到理解其物理意义并进而认识其代表一个新的物理量,还是存在着不小的思维台阶和思维难度。对于电阻的定义式和欧姆定律表达式,从数学角度看只不过略有变形,但它们却具有完全不同的物理意义。有些学生常将两种表达式相混,对公式中哪个是常量哪个是变量分辨不清,要注意提醒和纠正。
二、关于教法和学法
《欧姆定律》教学采用以演示实验为主的启发式综合教学法。教师边演示、边提问,让学生边观察、边思考,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,教师可给予恰当的思维点拨,必要时可进行大面积课堂提问,让学生充分发表意见。这样既有利于化解难点,也有利于充分发挥学生的主体作用,使课堂气氛更加活跃。
通过《欧姆定律》的学习,要使学生领会物理学的研究方法,领会怎样提出研究课题,怎样进行实验设计,怎样合理选用实验器材,怎样进行实际操作,怎样对实验数据进行分析及通过分析得出实验结论和物理规律。同时要让学生知道,物理规律必须经过实验的检验,不能任意外推,从而养成严谨的科学态度和良好的思维习惯。
三、对教学过程的构想
为了达成上述教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性和自觉性,对一些主要教学环节,有以下构想:
1.在引入新课提出课题后,启发学生思考:物理学的基本研究方法是什么(不一定让学生回答)?这样既对学生进行了方法论教育,也为过渡到演示实验起了承上启下作用。
2.对演示实验所需器材及电路的设计可先启发学生思考回答。这样既巩固了他们的实验知识,也调动他们尽早投入积极参与。
3.在进行演示实验时可请两位学生上台协助,同时让其余同学注意观察,也可调动全体学生都来参与,积极进行观察和思考。
4.在用列表对比法对实验数据进行分析后,提出下面的问题让学生思考回答:为了更直观地显示物理规律,还可以用什么方法对实验数据进行分析?目的是更加突出方法,使学生对分析实验数据的两种最常用的基本方法有更清醒更深刻的认识。到此应该达到本节课的第一次,通过提问和画图象使学生的学习情绪转向高涨。
5.在得出电阻概念时,要引导学生从分析实验数据入手来理解电压与电流比值的物理意义。此时不要急于告诉学生结论,而应给予充分的时间,启发学生积极思考,并给予适当的思维点拨。此处节奏应放慢,可提问请学生回答或展开讨论,让学生的主体作用得到充分发挥,使课堂气氛掀起第二次,也使学生对电阻的概念是如何建立的有深刻的印象。
6.在得出实验结论的基础上,进一步提出欧姆定律,这实际上是认识上的又一次升华。要注意阐述实验结论的普遍性,在此基础上可让学生先行,以锻炼学生的语言表达能力。教师重申时语气要加重,不能轻描淡写。要随即强调欧姆定律是实验定律,必有一定的适用范围,不能任意外推。
7.为检验教学目标是否达成,可自编若干概念题、辨析题进行反馈练习,达到巩固之目的。然后结合课本练习题,熟悉欧姆定律的应用,但占时不宜过长,以免冲淡前面主题。
四、授课过程中几点注意事项
1.注意在实验演示前对仪表的量程、分度和读数规则进行介绍。
2.注意正确规范地进行演示操作,数据不能虚假拼凑。
3.注意演示实验的可视度。可预先制作电路板,演示时注意位置要加高。有条件的地方可利用投影仪将电表表盘投影在墙上,使全体学生都能清晰地看见。
4.定义电阻及欧姆定律时,要注意层次清楚,避免节奏混乱。可把电阻的概念及定义在归纳实验结论时提出,而欧姆定律在归纳完实验结论后。这样学生就不易将二者混淆。
5.所编反馈练习题应重点放在概念辨析和方法训练上,不能把套公式计算作为重点。
6.注意调控课堂节奏,避免单调枯燥。
参考文献:
关键词:物理定律;教学方法;多种多样
关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。
(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。
(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。
(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。
(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。