发布时间:2023-09-21 17:36:15
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇能源动力专业就业方向,期待它们能激发您的灵感。
(三峡大学机械与动力学院,湖北 宜昌 443002)
【摘 要】为了满足现代社会对能源领域应用型人才的需求,并提高学生在就业择业过程中的竞争力,三峡大学结合该校培养“高素质、强能力、应用型”人才的办学方针,对学校新建的能源与动力工程专业进行了改革,提出“弱化专业方向,提炼专业共性,增厚专业基础”的人才培养改革思路,并以此为指导制定专业人才培养方案和建立校内外实验/实践基地。实践表明,本次改革取得了较好的效果。
关键词 能源动力;人才培养;改革
基金项目:三峡大学(高等)教育科学研究项目(1307,1345);三峡大学教学研究项目(J2013008)。
作者简介:陈从平(1976—),男,湖北荆州人,三峡大学机械与动力学院,副教授。
能源是国民经济的命脉,是国家可持续发展的重要物质基础和根本保证。能源与动力工程类专业正是致力于培养能从事能源开发与利用的技术与管理人才。目前,全国有200余所高校开设了能动相关本科专业,其中大部分已经建设较为成熟,部分985和211高校的能动专业在国内已具备一定的影响力且具备鲜明特色[1]。而三峡大学的能动专业于2011年才开始立项建设,并同年开始招生。作为地方高校新开设的能动专业,在人才培养方面必须适应社会和行业需求,符合我校 “高素质、强能力、应用型”的人才培养的目标,因而,在专业建设伊始,就不能完全照搬其他高校能动专业人才培养模式,需要结合实际情况,大胆改革和创新,才能在国内同类专业中快速占领一席之地,并以高起点快速稳健发展。
1 国内外研究现状
欧洲和美国的大学将能动类专业设置在机械工程系中,且不以专业来单列,而只是机械类的一个方向,称为热流科学(Thermal and Fluid science)或能量系统(Energy system),而核工程与核技术则一般单独设立,或者设在化工系中,例如美国麻省理工学院、佛罗里达大学等,机械工程的教学与研究范围覆盖了目前国内本科生专业目录中的机械类、能源动力类的范围,这样就大大扩展了能动专业的学科基础和专业领域,以此来适应“应用型”人才培养的需求,使学生获得坚实的专业理论和宽广的专业知识。
我国能源动力类专业形成于20世纪50年代[2],当时在苏联教育体制的影响下的分为10个三级专业,经1993、1998、2012年三次修订最终合并为1个专业:能源与动力工程,使得专业覆盖面被大幅度拓展,要求本专业学生主要学习动力工程及工程热物理的基础理论,学习各种能量转换及有效利用的理论和技术,受到现代动力工程师的基本训练;具有进行动力机械与热工设备设计、运行、实验研究的基本能力。要实现以上人才培养目标,关键在于如何紧跟行业需求并结合高校自身情况,制定科学的人才培养方案并认真执行。然而,经前期大量调研结果表明,目前国内高校尤其是地方院校在能动专业人才培养上存在以下特点或不足:
(1)专业划分过细,口径太窄。大部分高校在能动专业中设置了多个专业方向,如水力发电、火力发电、清洁燃烧、供暖、制冷等,并将专业课分方向模块进行教学,这极大地限制了学生的选择空间,不利于学生专业知识拓展,使学生在择业时被固定在某个方向上,缺乏竞争力。
(2)人才定位不尽合理。经前期广泛调研发现,随着我国现阶段加快能源建设的力度,国内目前需要更多的是能源动力行业运行、维护与管理方面的技术人才[3],对于高端人才如设计研究类人才虽然稀缺,但由于能动专业实践性强的特性,一般难以由高校直接培养此类人才,即高端技术人才亦需要从工程实践中磨砺而出。所以作为地方院校,尤其新开设能动专业的地方高校,不能一味照搬985、211高校以及部分经过几十年专业建设已经具备自己鲜明特色和专业实力的高校的人才培养模式,必须紧跟行业需求,以培养应用型人才为主线,并充分利用和发挥高校自身的特色和优势。
2 三峡大学能动专业人才培养模式改革
三峡大学的能动专业于2010年底才开始立项建设,并于当年从我校2010级机械设计制造及其自动化专业中分流出53位学生按照能源与动力专业人才进行培养,2011年开始以能源与动力工程专业独立招生,故截至目前实际上已有一届学生毕业(2010级),且2015年度即将毕业的学生目前绝大部分已经签订了就业协议。近五年来,学校在专业本专业建设过程中积极探索,对兄弟高校及能动相关的企事业单位进行了广泛调研,并紧密结合我校能动专业“新开设、新起点”的现实情况,培养和提炼自己的专业特色,并对本专业的人才定位和培养进行了以下改革:
(1)在人才培养与定位方面,以培养“高素质、强能力、应用型”人才为指导,制定了专业人才培养方案,着重提炼专业所覆盖知识体系的共性,拓宽专业口径、增厚专业基础、突出方向共性、弱化专业方向、提升就业能力,扩大就业口径。具体为:1)以流体机械动力学为基础,设置适用于水力发电、热力发电、风力发电中能量转换动力装备的动力学相关系列必修基础课程,突出水力发电专业课,并辅以风力发电等专业课程;2)以热-力转换原理为基础,设置适用于火力发电、生物质能发电、核电等热动力学、热交换、热传输相关的系列必修基础课程,专业课设置方面突出火电、核电,辅以生物质能相关课程。即将动力工程专业分为流体机械和热力机械两个方向,但在培养过程中,大大拓宽了专业基础必修课的范围,增加学生后续就业时行业选择的范围。
(2)在实验/时间教学方面,以厚基础、宽口径、应用型人才培养为指导,建设和整合实验、实践教学条件。取消零散的课程实验/实践,开设系列综合实验/实践课程,使实验/实践教学具有层次性、连贯性、交叉性、系统性和良好的可操作性。避免以课程为单位开设实验时的连续性差、重复度高、综合性不强、效果差的缺点,同时在一定程度上降低建设成本。此外,学校还积极开发校外实践基地,挖掘学校所在地区及周边区域广泛的能源动力行业/企业资源,作为本专业有效的实践基地。
(3)以校外实践基地建设为抓手,开发专业初期就业资源。任何一个高校新专业就业时其情况都或多或少存在不确定性,其原因主要在于社会和行业对于特定高校新专业的认识度不高。因而打开就业工作局面难度大,故无论从短期还是长远来看,都需要充分利用所建立的校外实践基地作为就业渠道,使基地发挥更大作用,这需要在基地建设过程中同时做好基地管理制度建设,以协议的形式为本新专业向基地输送人才提供保证。
3 改革效果
近五年来,学校在建设能动专业过程中不断探索,最终形成以上建设意见和改革措施,并取得了显著成效:
(1)制定了科学合理的能动专业人才培养方案,确定以掌握能源转换装备运行及转换机理为基础,在传统的专业基础课程中,将《流体机械原理》、《水轮机及调节器》、《汽轮机》等增设为专业公共基础课,在专业拓展模块课程中按水电、热电、流体机械、新能源发电等设置小学分模块供学生选修,但不限制选择模块数量。目前学生就业反馈情况表明,在弱化专业方向、增厚专业基础课程后,学生在择业过程中即使不在个人专业方向上就业,只要未跨出能动行业,就能很快适应新领域的工作。
(2)整合实验/实践教学计划和条件。如将以往随理论课程开设的《流体机械原理》、《流体力学》、《液压传动与控制》、《泵站工程》、《水轮机及调节器》等的课程实验进行专门设计,整合成32学时的《流体综合实验》课程;将《热力学》、《传热学》、《汽轮机》、《热电厂动力工程》、《锅炉原理》等课程的实验内容整合成32学时的《热工综合实验》;将《测试技术》、《控制工程》、《电厂自动化》等课程实验整合成16学时的《测控综合实验》等,并根据相关理论课开设时间将综合实验课内容分为两个学期开设。这样学生能够得到更为系统的、连贯的实践训练,相比随理论课程开设的零散实验,综合实验教学效果更好随
(3)目前已在学校所在地区及周边能动企业建立本专业的实践/实习基地,且已经有效运行,如安能(宜昌)热电(生物质能发电)、长江电力(葛洲坝)、安能(襄阳)火电、三峡电厂、清江的隔河岩电站、高坝洲电站、向家坝电站、黄龙滩(十堰)电站、湖北宜化集团、宜昌安琪酵母、黑旋风工程机械等20多家能源企业和流体机械设计制造企业,可完全满足学生毕业实习、生产实习及其他培训的接待需求,极大地缓解了专业实践条件建设需要大投入的困难。
(4)专业就业情况良好,第一届毕业生(2010级,共53人)就业率达100%,其中除4人继续攻读硕士研究生外,15人进入水力发电厂,17人进入火电、生物质能电厂,6人进入电力部门事业单位,11人进入与流体机械及能源装备设计、制造相关企业。其中17人(32.1%)在本专业校外实践基地相关企业就职。截止2015年3月中旬,第二届毕业生(2011级,共81人)已签就业协议的达72人,已确定攻读硕士研究生5人。学校以专业调研、毕业生就业企业回访等多种形式,进一步拓宽和加深了与行业内相关企事业单位的联系,并就用人单位对我校毕业生在生产实践过程中的综合素质和表现进行跟踪回访,结果表明学生的综合能力水平总体较高。
4 结语
能源动力类专业是实践性、技术性很强的专业,且专业覆盖的技术领域非常广泛,针对具体的应用领域其技术专业性又较强,而高校在该专业人才培养的过程中一方面不可能面面俱到,设置过多的专业方向,另一方面又不能过于集中,而使得学生的专业知识领域过窄,导致就业方向没有选择余地。因而,在人才培养过程中要更多地考虑专业领域的共性,增厚专业基础,拓宽专业口径,使学生获得尽量宽广的专业综合知识,才能具备一定的竞争力,以适应现代能源动力领域对专业人才的需求。
参考文献
[1]徐翔,余万,陈从平,方子帆,李响,赵美云.三峡大学“能源与动力工程”专业培养方案的制订与完善[J].科教文汇:上旬刊,2014(6):60-61.
[2]刘会猛,黄荣华,王兆文,成晓北,叶晓明.强化工程素养着力能力培养——能源动力类专业教学模式改革初探[J].科教文汇:上旬刊,2012(5):63-64.
【关键词】能源与动力工程 课程体系 教学内容
【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2013)09-0253-02
能源动力是国民经济的支柱产业。进入21世纪,世界经济迅猛发展,化石能源日趋枯竭,能源短缺以及环境问题日益严峻。提高能源利用效率,保护环境,开发新能源和可再生能源,保证能源的可持续供应,对能源科技提出了新的挑战。能源科技发展需要一大批合格的专门人才。高等学校能源与动力工程专业应不断进行课程体系改革和教学内容优化,为能源动力行业培养出满足行业要求的专门人才。根据高等教育教学改革的要求以及行业发展趋势,中国矿业大学能源与动力工程专业在人才培养模式、课程体系设置和教学内容优化等方面进行了一系列改革,积累了一些经验,在此成文,与同行交流。
一、能源与动力工程专业课程体系改革面临的挑战
1.能源动力学科领域的拓展对人才知识结构提出了新要求
2012年,教育部对本科专业的招生门类、专业目录进行了调整,热能与动力工程专业更名为能源与动力工程。从2013年起,全国本科专业将按照2012版教育部新颁布的本科专业目录招生。专业名称的改变,并不仅仅是改变了称谓,而是随着时代的发展,该专业内涵发生了很大的改变。原来的热能与动力工程强调的是热能与动力的转换,而现在能源与动力工程专业涵盖的范围则更宽广了,由过去传统的能量转化与利用领域,发展到今天的能源生产、燃烧污染治理、新能源的开发与利用等多个领域,与化学、环境工程等学科的交叉关系越来越密切。近些年来,新能源与可再生能源的开发利用方兴未艾,形成了庞大的研究队伍和产业,如太阳能、风能、垃圾发电,脱硫脱硝等行业,为毕业生提供了广阔的就业市场,急需高校能提供这方面的人才。现有的专业培养方案中课程设置和教学内容已经不能满足能源动力行业时展的要求,需要做出相应的调整。然而,在目前培养计划中总学分压缩、课程门数减少的情况下,增加新领域课程,必将会对原有的课程设置造成冲击。
2.人才培养的“宽口径”和“零距离”之间存在矛盾
能源与动力工程专业是一个宽口径专业,涵盖了原来的热能工程、热能工程与动力机械、热力发动机、制冷及低温工程、流体机械与流体工程、水利水电动力工程、工程热物理、能源工程和冷冻与冷藏等,这些专业在内涵上存在很大的差异。“宽口径”培养模式避免了过去那种专业面过于狭窄的问题,使人才具有宽广的知识面,增强了就业的适应性,这也直接产生了不利的方面。在目前专业课程门数和学时都有限的情况下,毕业生在哪一方面都不专,不能满足企业对人才知识结构的要求,在工作现场还要经过很长时间的理论学习和实习过程,很难满足用人单位的要求。由于缺乏完善的岗前培训和有效的继续教育制度,我国国有大中型企业一般不乐意接受“宽口径”的毕业生,希望毕业生一毕业能尽快胜任工作岗位,甚至是“零距离”对接[1]。
3.课程体系设置模式不能满足大学生的个性化发展需求
大学生在成长的过程中,形成了不同的人生观、价值观,对自己未来所从事的职业有喜好厌恶,如有的喜欢动力机械,有的喜欢制冷空调,还有的喜欢热力发电;另外,对个人的发展方向也有不同选择,如有的要考研,有的要就业,还有的要创业。高等教育应该支持大学生个性化发展,在培养方案和课程体系设置上应该提供他们可以自主选择的空间,使他们能够按照自己的兴趣爱好去选择发展方向和未来从事的职业。目前课程体系设置模式单一,所有学生四年学习的课程几乎都一模一样,教学内容差别不大,学生几乎都是一个培养模式,不能满足不同类型学生的需求,限制了学生的个性发展,也不利于创新精神的培养。
4.实践教育环节与课程教学之间存在冲突
为全面落实《国家中长期教育改革和发展规划纲要(2010-2020)》,深入贯彻总书记在清华大学建校100周年上的讲话精神,为了培养具有较强实践能力和创新精神的高素质人才,高校强化了实践教学环节,内容不断丰富,形式不断拓展,在实践育人工作总体规划、深化实践教学方法改革、系统地开展社会实践活动、加强实践育人基地建设等方面取得了很大的成绩。但是实践育人特别是实践教学依然是高校人才培养中的薄弱环节,与培养拔尖创新人才的要求还有差距。在总学分和学时减少的情况下,如果一味地强化实践教学,增加实践教学学分,则不得不压缩理论课程的学分和学时,甚至得减少理论课程门数,这样培养的人才很难做到“厚基础”, 违背了人才培养目标。另一方面,实践教育环节和理论教学环节相脱节,必然影响实践教育环节的效果。此外,在教学内容方面,也应及时更新。国外高水平大学能及时更新教学内容,反映本学科新的研究领域和前沿技术。如美国佐治亚理工学院将MEMS技术引入了换热器课程,将先进的能量转化技术,如燃料电池、生物质能转换、热电转换等引入了热力学课程。和国外相比,我们教学内容就显得陈旧,不利于人才培养。
二、课程体系构建与教学内容优化措施
1.增设新领域核心课程,完善人才知识结构
能源与动力工程专业课程体系改革,要根据能源动力学科新的拓展领域,广泛深入调研,充分了解能源动力专业的发展趋势以及涉及的主要学科领域,掌握新领域的学科内涵和新兴行业对人才培养的需求,以确定未来人才必备的知识结构。在满足总学分和学时限制的条件下,补充完善培养方案中的课程设置,优化教学内容,将新领域的课程与原专业课程整合,制定适应学科领域扩展、满足未来人才市场需要的课程体系,使毕业生具有完善的知识结构,增强毕业生就业竞争力。
2.按专业大类统一基础课程设置,分设专业方向模块
在课程体系设置中,为了解决学生专业知识结构宽泛而不专的问题,还是要分设专业方向[2]。但为了防止回到以前的老路,防止专业面过于狭窄,不同专业方向的通识教育课和专业大类基础课程应统一设置。在此基础上,根据不同的专业方向设置不同的模块化课程,每个专业模块化课程的门数不宜过多,设3-4门,10个学分左右即可,同时设置大量应用性强的专业选修课,强化实践环节,这样就解决了“宽口径”和“零距离”之间的矛盾。
3.建立柔性的课程体系,满足大学生的个性化发展需要
建立柔性的课程体系,使课程体系构建多样化、课程设置分层次,以满足不同类型学生的个性发展需求[3]。通过设置不同的专业方向模块,学生可以按照自己对未来从事行业预期和职业喜好加以选择。培养计划分研究型和应用型。“研究型”培养计划的学时分配适当向基础课、专业基础课倾斜,实践教育环节要注重学生创新能力的培养。“应用型”培养计划的学时分配应适当向传授专门应用技术的专业课倾斜,实践教育环节注重培养学生应用所学专业知识的能力。同时,增加选修课程门数,选修课程也分研究型和应用型,满足毕业生继续深造和就业的不同需要。
4.优化教学内容和方法,理论教学和实践环节相结合
在强化实践环节的同时,一定要保证理论课程有足够的学分和学时。在总学分减少和实践学分增加的前提下,可以适当压缩德育课程学分,保证专业基础理论课程学分。同时,改革应用性很强的专业技术课程的教学内容和方法,这类课程都设置课程设计环节,学生在课程学习的同时开展课程设计,通过工程设计将理论教学和实践环节有机结合起来。另外,及时修订教学大纲,与时俱进,及时将本学科最新的研究领域、前沿技术在教学内容上得到反映。
三、结束语
课程体系改革和教学内容优化是一项长期艰巨的任务,需要在高等教育实践中不断探索、完善。能源与动力工程专业人才培养要解决的问题,有和其它专业共性的方面,也有其特殊性。能源与动力工程专业课程体系改革要满足国家高等教育人才培养目标的总体要求,可以借鉴其它专业成功的改革经验,还要结合专业自身的特点,探索出更多行之有效的措施。
参考文献:
[1]张力,杨晨. 能源动力类专业工程教育改革初探,中国电力教育,2011,(21):152-154
[2]于娟, 吴静怡. 能源动力专业的高等工程教育研究与实践,中国电力教育,2011,(27):158-160
[3]方文彬. 试论大学课程体系个性化,黑龙江高教研究,2010,(5):131-133
西安交大虽然在最近几年的排名中有所下滑,但是排名什么的有没有真正的参考价值并不好说。首先从学校角度来说,西安交大作为C9(即九校联盟,中国首个顶尖大学间联盟,联盟成员包括北京大学、复旦大学、哈尔滨工业大学、南京大学、清华大学、上海交通大学、西安交通大学、浙江大学、中国科学技术大学等9所高校)之一的学校,实力是不容置疑的。西安交大是理工科为主的综合性学校,工科的实力最强,其中电气、能动、机械等都是全国数一数二的。我高考那年的最低分数线并不特别高,可能是其他地方的同学都不想来西北这么远的地方上学。但是我觉得光从学校角度考虑的话,还是不错的选择。
我的专业是能源动力系统及自动化,简称就是能动,专业排名是和清华不分上下的。大一大二大家都是一样,学习基础课程、专业基础课程,当然也有全校选修与辅修课。大三之前,也就是我现在这个阶段将进行分模块,即选择更小的方向,包括热、冷和新能源。热主要从事火力发电、内燃机等方面的工作,冷包括制冷、压缩机、流体机械等,新能源可能会单独成为一门专业。这些更小的方向就看你以后是读研还是考虑出国再做决定。就业的话,与能源、发电、制冷甚至航天研究方面相关的单位都有。能源动力系统及自动化是一个就业面非常广的专业,而且主要是面向大中型的国有企业和研究所。
当然,所有专业都一样,你必须考虑清楚自己适合做科研还是立即工作。如果你觉得自己适合做科研,你可以选择读研(学校有保送研究生制度,但一般都要求读到博士毕业)。如果你觉得自己不适合读研,喜欢与人打交道,你可以选择直接就业。因为读研往往会使你的选择越来越窄,你越专业化,就业方向也就越狭窄了。当然,这些都是后话。
在选择专业的时候,你可能会听说一些热门的专业,比如电气和ACCA。如果你分数不是特别高,这两个专业可能不会被录取。学校也有转专业的政策,大一结束后你可以转到除ACCA外的其他专业。也就是说,你进了大学努力一年,还是有机会进电气这个专业的。到大二还有一次机会转专业,是管理学院的招生和经禾金融实验班的招生。这两个专业只从本校大二的理工科学生中录取。当然,任何专业不是说你报上就前途一片光明了,再热门的专业也不是人人都能找到好的工作。
学习生活方面,学校的学习氛围比较浓厚,但也不乏各种学生会和社团活动。图书馆和自习室从开学到期末人都比较多。大型活动的话,每年都有“交大之星”的选秀活动,今年已经是第33届了。学校实行“书院制”,将不同专业的学生分在一个书院,增进不同专业间的联系。
[关键词]能源与动力工程;教学模式;工程热力学;传热学
[中图分类号] G642 [文献标识码] A [文章编号] 2095-3437(2017)01-0052-03
伴随着人类社会对可持续发展日益加强的关注,能源与环境的矛盾成为每个国家的核心关注点,其迫切要求中国的能源动力工程高等教育建立与国家经济发展相适应的工程教育体系与结构,提高能源动力工程技术人才的培养质量。
中国能源动力类专业形成于20世纪50年代,初期为满足动力、发电应用等国民生计的迫切需求,而成立了锅炉、汽轮机、内燃机等专业,后续随国家需求而成立了制冷、核电等专业。国内高校设立工程热物理专业的高峰期为20世纪七八十年代,其后专业发展迅速。2012年,教育部颁布实施了《普通高等学校本科专业目录(第四版)》,能源动力类二级学科门类下列的专业仅为能源与动力工程专业,使得本专业本科成为一个“大能源”范畴内的专业。这种专业上的调整体现了一种需求的调整,在面向全球化的能源发展与挑战时,具备更加广阔视野、全面知识体系的人才更加符合社会需求。邱洁对这种调整对能源与动力工程专业课程体系的影响进行了简要论述,并总结了相关挑战与机遇。
一、专业现状概述
(一)专业内涵的拓展
原有的热能与动力工程专业关注热能与动力的转化及效率问题,核心关注热量这种能源形式。随着可再生能源及新的能源利用形式的迅猛发展,专业内涵愈发深厚。各种能源形式彼此的转换及过程中伴生的能质交换规律等都成为本专业覆盖范围,这对于原有的学科体系产生了一定的影响。故专业内涵的拓展迫切要求学科进行相应的调整,在培养计划方面进行适当更新。
(二)培养目标的调整
近年来,随着可再生能源、能源与环境等主题的发展,对相关新兴领域人才的需求日益加大。社会作为人才的接收市场,对急需人才的类型释放了大量信号。然而,作为人才输送主力的高校,往往并没有及时对培养方案做出适当调整,课程更新方面也相对较慢。事实上,在课程数和学时有限的条件下,在各高校学科内特色研究方向和优势方向沿袭下,相关调整的余地很小。
(三)差异化需求的影响
传统教学模式在面对日渐差异化的学生需求时,不能“丰盈”学生的个性化发展。事实上,随着高等教育进程的不断推进,个性化教育的呼声渐起。重视人才发展的差异性,探索个性化教育理论与实践,在很多高校的人才培养模式改革文件中有所体现。具体到能源与动力工程这个“大能源”专业,有些学生倾向于传统专业好就业,有些学生倾向于新型产业想创业,有些学生格外看重前沿科研想出国、考研,这一方面来源于个人认识和喜好,另一方面也来源于自身经济等不同方面的压力。这种差异化的需求在现阶段传统培养模式下,很难被满足。这不仅是课程设置方面存在局限,在课堂教学、实验和实践等方面也同样存在很多局限。
二、本专业学生存在的问题
(一) 本科生对本专业背景了解不深
其表现为学生不知道专业与国计民生有何关系,故无法在其中定位自己。没有定位,便没有思想原点,不知从何出发开展职业规划、人生规划,故往往感到茫然,无所适从。
(二) 本科生对个人发展路径了解不深
其表现为学生不知道本科所学有什么具体应用,个体的学习如何与群体、行业、社会和国家的发展相关联,想认真发力却不知道如何操作、朝哪里发力,缺乏方法的引导。在被动学习模式下积累的经验,在本科主动学习的情境下不能很好适应,往往造成心理困境。
(三) 本科生对国内外科技发展态势了解不深
其表现为学生无法将自己对未知的探索与国内外快速发展的科技态势相关联。在面对能源与动力工程这种涵盖学科多、支撑面广、国内外发展快速的专业时,一方面渴望求知,另一方面又被繁杂的关系牵扯,造成精力分散,无法突破。
(四) 本科生参与竞争的意愿不大、程度不深
尽管目前在能源领域,国内外针对本科生的科研竞赛纷纷设立及开展,但仍无法发动所有学生参与,造成部分积极的学生参与多个项目,而大多数学生只局限于自己生活的小圈子,缺乏参与竞争的意愿和动力。
三、教学模式的创新实践
(一)“熔炼互激”教学模式
针对上述问题,近年来,天津大学能源与动力工程专业教学团队通过反复实践与研讨总结,以激发学生学习与创新热情为出发点,提出了“熔炼互激”这一新的教育模式。
关键词:CDIO;项目;课程体系
1将CDIO引入能源动力类课程体系的必要性
CDIO工程教育模式以构思(Conceive)、设计(Design)、实施(Implement)、运行(Operate)全过程为载体培养学生的工程能力—包括个人的学科知识和推理能力、个人能力、人际团队能力、工程系统能力与现代企业对工程人才的需求相适应。以往大学课程体系的设置过分注重单学科课程的理论性和知识的系统性,课堂教学以教师讲授教材知识为主,学生学习兴趣不浓,目标性不强,往往被动接受,学生的主动性难以调动,不适合培养学生独立思考的能力、自学的能力、解决问题的能力以及工程应用的能力。理论学习和工程应用相脱节,学生感觉学习理论空洞,不知如何应用,毕业生缺乏工程实践设计能力,不能满足现代企业需求,面临巨大的就业压力。针对这种现状,将CDIO工程教育模式引入能源动力类课程体系,注重培养学生工程设计能力,将理论课程与实践环节相互关联,全面培养学生的工程能力势在必行。
2基于CDIO工程教育模式的能源动力类课程体系的构建
沈阳理工大学能源动力类课程体系以项目设计为主线,项目分为3个层次,一级项目贯穿于整个本科教育阶段,使学生完整的得到构思、设计、实现、运作等方面的系统训练,一级项目所包含的知识、能力由二级、三级项目和课程组成。一级项目设初级和高级两个阶段,初级阶段是工程导论项目,这个项目让一年级的新生了解能源动力类产品的构思、设计、实施、运行4个过程的生命周期,高级阶段即毕业设计,学生独立完成一个能源动力类产品的构思、设计、实施和运作的完整过程,一级项目包含本专业主要核心课程,体现本专业主要能力。二级项目是一组课程的知识的综合应用,引导一组相关课程的学习,重点突出某项能力要求。三级项目则是针对单门课程的综合实验和课程设计,增强学生对该门课程内容的理解。沈阳理工大学能源与动力工程专业以应用大型工程软件进行车用内燃机及其零部件产品设计、开发和制造的能力培养为特色,以热工、力学和机械理论为基础,以计算机和控制技术为工具,培养既具有动力机械工程基本理论知识和基本技能,又具有扎实的内燃机方向的理论知识和基本技能,能从事汽车发动机研究、设计、制造、试验以及生产、经营、管理等方面工作,具有较强工程实践能力,德、智、体全面发展的高级应用型人才。为实现上述培养目标和专业特色,沈阳理工大学能源与动力工程专业基于CDIO理念的二级项目课程体系如图2所示,三级项目课程体系见表1。另外,在此基础上,还开设了工程岗位实践和生产实习等实践课程,让学生深入到企业,了解相关生产企业产品的生产过程与现代企业的运转过程及企业对人才的要求和标准。
3案例解析基于CDIO能源动力类课程体系改革的实施方案
3.1项目的实施方案
为保证基于CDIO课程体系的运行,课程的安排以阶段项目为中心组成课程模块,使学生通过课程模块的学习能够顺利完成阶段项目。一级项目第一阶段:在学习工程设计导论的基础上,将学生分为若干个小组,由指导教师引导学生通过查阅资料制定一个典型零部件或机构的初步设计计划书,并由指导教师向学生讲解CDIO的内涵与思想,使学生了解CDIO理念及工科学生应具备的学科知识和推理能力、个人能力、人际团队能力和工程系统能力,以及完成这一项目需要哪些知识模块和能力,使学生对将要学习的专业课程及将要参与的CDIO实践活动具备初步的认识,从而有目的的学习,通过具体的实践过程将理论与实践有机地结合起来,调动主动学习的积极性解决问题。一级项目第二阶段:进行概念模型设计—零部件三维实体造型和虚拟装配结合二级项目1完成,初步了解产品结构,学会应用建模工具描述产品,掌握基本的工程基础知识。一级项目第三阶段:进行零部件的细致设计、系统及零部件的理论分析、虚拟试验及制造工艺设计结合二级项目2完成,学会运用数学、自然科学、基础性以及专门性工程知识综合应用于解决复杂工程问题,并得出实证性结论,为复杂工程问题设计解决方案,创造、选择适当的现代工程及信息技术工具(包括仿真和建模工具)将其应用于复杂的工程活动中。一级项目的第四阶段:高级阶段即毕业设计—学生独立完成一个能源动力类产品的构思、设计、实施和运作的完整过程,进一步体验设计与创新。在项目的实施过程中,除了使学生掌握了相关的工程知识、学科知识,产品、过程、系统的建造能力外,还可以通过企业调研、工作任务分析会、小组合作、项目阶段总结项目技术文档的编制、项目汇报使学生的个人能力、团队协作能力、沟通能力(包括语言交流、书面交流、图表交流、电子及多媒体交流)、终身学习能力得到全面提升。
3.2学习效果考核
为保证学习质量,每一阶段的项目都要有项目成果,编写相应的技术文档和项目总结报告,项目取得了预期效果方可进行下一阶段。考核注重学生在个人人际交往能力,产品、过程、系统建造能力以及学科知识等方面的学习。
3.3工程实践场所保障
支持和鼓励学生通过动手学习产品、过程、系统的建造能力,学习学科知识。汽车实验中心包括热工基础实验室、汽车构造实验室、汽车电子实验室、汽车振动实验室、发动机综合性能实验室、车辆故障诊断、检测及维护实验室、汽车及其典型零部件制造工艺实验室面向学生全面开放,学生进入实验室只需进行登记,就可在实验室开展实践、实验活动,为学生提供了良好的工程实践、实验场所。
3.4教师教学能力保障
要求教师均有企业实践经历,参与企业的生产过程,教师通过企业锻炼提高个人人际交往能力以及产品、过程、系统建造能力。另外教师也组成指导团队,由经验丰富、责任心强的教师担任组长,定期开展教学研讨,通过相互交流和相互学习,不断提高教师对学生的指导能力。
4课程体系改革所取得的成效
(1)教学改革实践得到了学生的肯定,学生的工程实践能力得到明显提高,已毕业学生受到用人单位的好评。(2)学生学习方式及学习兴趣发生了转变,从传统的接受式学习向主动、探讨、合作、有目的的学习转变,激发了学生的创造力,在校期间,很多学生设计、制造出多项创新设计成果。(3)教学质量有明显提高,改革成果得到学校的认可。如内燃机原理课程被评为校优秀课,内燃机原理课程改革获校教学成果三等奖。