当前位置: 首页 精选范文 化学品风险评估范文

化学品风险评估精选(五篇)

发布时间:2023-09-18 16:36:43

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇化学品风险评估,期待它们能激发您的灵感。

篇1

数据库一般分为文献型数据库bibliographicaldata-bases和事实型数据库factualdatabases。其中,文献型数据库主要来源于期刊、书籍,是指能直接提供文献原文的数据库;事实型数据库的信息来源主要是人们从文献资料中分析提取出来的。与文献型数据库相比,事实型数据库是研究者对毒性资料信息进行深度加工的产物。因此,一般来讲,我们更为关注事实型数据库,事实型数据库可以提供包括物化、毒理学和/或生态毒理学等更为直接的信息。国内外用于化学品生态风险评估和人体健康风险评估的数据库以事实型数据库为主,主要分为两大类,一类为提供化学品综合信息的数据库,包括:欧洲化学物质信息系统ESIS、美国的高产量化学品信息系统HPVIS、美国TOXNET数据库、我国的潜在有毒化学品国家登记中心NRPTC数据库和化学品安全数据表数据库等;另一类为化学品毒理学数据库,主要包括:美国化学物质毒性作用登记RTECS数据库、欧洲水生毒性EAT数据库、美国的ECOTOX数据库和我国的化学物质毒性数据库等。下文将从各数据库的涵盖内容和提供的条目信息等方面,对其进行重点研究。

1.1化学品综合信息数据库

1.1.1欧洲化学物质信息系统ESIS化学物质信息系统ESIS是欧洲化学品管理局ECB开发的通过化学式、CAS编号或化学名称进行搜索的一个软件系统。ESIS包括欧洲现存商业物质的清单EINECS、高产量化学品HPCV以及低产量化学品LPCV,国际通用化学物质信息数据库IUCLID。其中,IUCLID提供2604种化学品的数据信息。技术报告中包括:一般性信息、物化数据、环境归趋、生态毒性、毒性、参考文献等方面信息。其中生态毒性主要包括对水生生物,包括水生植物、鱼类、无脊椎动物的急慢性毒性、以及对微生物的毒性、对陆生生物的毒性、生物转化等。

1.1.2高产量化学品信息系统HPVIS高产量化学品信息系统HPVIS通过高产量HPV化学品“挑战”项目为提供美国合成的HPV化学品的健康和环境效应信息的数据库。HPVIS数据库包括基于健康和环境效应数据的HPV物质的危险表征资料,HPVIS还包括基于风险的优先HPV化学物质资料,以便于随后的资料收集或者基于潜在风险的管理行为。HPVIS收集的资料包含以下四个方面的50个指标:物化特性、环境归趋和迁移、生态毒性、哺乳动物健康效应。

1.1.3TOXNET数据库TOXNET毒理学数据库由美国国家医学图书馆NLM主办,涵盖毒理学、有害化学品、环境卫生、有毒物质释放等相关领域的信息。其中,TOXLINE、DART为文献型数据库,HSDB、IRIS、CCRIS、CCRIS、ChemIDplus、GENE-TOX等数据库为事实型数据库,所有内容均免费获得。TOXNET数据库检索途径多,收录的毒理学数据和资料广泛、交互性好。TOXNET中的综合风险信息系统I-RIS包含人体健康风险评估中用到的资料,包括500多个化学物质的数据记录。IRIS数据库内容集中在危害鉴定和剂量-效应评价上。IRIS提供的数据包括USEPA的致癌分类表、个体风险、斜率因子、口服参考剂量和吸入参考浓度等。卓仁杰和万晓霞对TOXNET毒理学数据库进行了较为详细的介绍,这里就不进行赘述了。

1.1.4潜在有毒化学品国家登记中心NRPTC我国在以通讯员的身份加入了国际潜在有毒化学品登记中心IRPTC后,于1986年开始建设我国的潜在有毒化学品国家登记中心NRPTC,即我国的有毒化学品信息系统。NRPTC数据库于1990年7月在中国环境科学研究院建成并正式投入运行,为国家“七五”重点科技攻关课题。该系统包括国内和国外两部分。其中,国内部分包括55种有毒化学品的优先登记名单;国外部分包括联合国环境规划署提供的IRPTC的全部数据以及美国NIOSH提供的RTECS数据库的8.7万种化学品毒性资料。NRPTC与风险评估相关的子库包括:物化性质、环境效应、人体健康、对陆生/水生物毒性等资料[13-14]。

1.1.5化学品安全数据表数据库为履行联合国《全球化学品统一分类和标签制度》GHS和应对欧盟并实施的《关于化学品注册、评估、许可和限制制度》REACH法规的仲裁,我国还建设了化学品安全数据表数据库。化学品安全数据表数据库为我国国内最大数据表数据库,由国家质检总局进出口化学品安全研究中心和中国检验检疫科学研究院开发并进行管理。该数据库包含化学品的理化特性、健康毒性和生态毒理学信息等,现有英文数据信息5545条,中文数据信息1833条。该数据库包括材料安全数据表MS-DS的全部16项信息。

1.2化学品毒理学数据库

1.2.1美国化学物质毒性作用登记RTECS数据库美国化学物质毒性作用登记RTECS数据库是由美国国家职业安全和健康研究所NIOSH管理并的,数据库资料主要围绕评估工人暴露的化学品。这个数据库中包括了超过160000种化学物质,该数据库每年新增2000种新兴化学物质。RTECS数据库中主要包括以下六类毒性数据:直接刺激性、致突变性、对生殖系统的影响、致肿瘤性、急性毒性和多剂量毒性等,每条数据均有文献来源。RTECS为收费数据库,其开放性和共享性不如以上三个数据库。在2001年之前RTECS数据库由美国NIOSH免费提供,目前,RTECS由加拿大职业健康安全中心CCOHS提供,只能通过收费订阅方式获得。

1.2.2欧洲水生毒性EAT数据库欧洲化学品生态毒理学和毒理学中心ECETOC成立于1978年,是一个科学的,非盈利性质的非商业协会。作为一个独立的机构,ECETOC通过评估和公布有关化学品的生态毒理学和毒理学方面的信息来帮助业界降低化学品生产和使用过程中的对环境和健康产生的不良效应。ECETOC的水生毒性EAT数据库包括化学物质对淡水和海水环境中水生生物的毒性。收集的数据原则为测试方法中必须描述是否测定了毒物的浓度,主要收集了1992到2000年的公开发表数据资料。EAT数据库软件可以免费获取,包括600种物种的5460个条目,每种物质的每个条目包括50条信息,涵盖受试物种、测试条件、毒性指标、测试结果以及参考文献等。

1.2.3美国ECOTOX数据库ECOTOX数据库提供水生生物、陆生植物以及野生动物的化学物质毒性信息。ECOTOX数据库主要由美国环保局USEPA、研究与发展办公室ORD、国家卫生和环境效应研究室NHEER的中部大陆生态部MED创办。ECOTOX综合以下三个方面的数据库:AQUIRE、PHYTOTOX和TERRETOX,分别包含水生生物、陆生植物和陆生野生生物的来自于经过同行评议的文献中的毒性数据。其中,AQUIRE数据库于1981年开始创建,起初仅包括实验室的急性毒性数据,但是在20世纪90年代有较大变化,增加了野外和慢性暴露数据。1987年通过电话的形式向政府部分的相关使用人员提供数据信息,1999年开始以互联网的形式公开向公众提供数据信息。

1.2.4我国的化学物质毒性数据库化学物质毒性数据库由中科院计算机网络信息中心承担建设的综合科技信息数据库的重要组成部分。其中,“化学品安全特性数据库”主要包括常见化学物质的物化特性数据,目前含有7300多条记录,包括易燃性,易爆性,毒性,环境标准等。“化学物质毒性数据库中文文献”针对国内公开发行的约120多种的科学期刊论文,并按照一定的数据规格,由专家审核、校正数据。数据工作于2003年启动,目前含有3300余条记录。“化学物质毒性效应数据库”内容有:刺激性数据、致变、致癌与生殖效应数据、毒性数据,还有环境与职业标准、美国环保局评论和文件等,含150000多个记录。

1.3国外主要数据库的优缺点比较表1给出了上述国外数据库的优缺点比较情况。其中,欧盟的ESIS数据库信息资料相对丰富,且可以从官方网站下载到较为完备和权威的风险评估资料,可用于以风险评估为目的的数据库构建;美国的ECOTOX数据库提供较为详细、完备的水生毒理学数据信息,为化学品的生态风险评估的效应评价提供了基础性资料;而TOXNET数据库中的IRIS数据库内容集中在健康风险评估中的剂量-效应评估;美国的RTECS数据库提供的数据资料相对详细,但缺乏开放性和共享性;欧洲的EAT数据库提供较为直观的水生毒理学数据信息,但缺乏近十年的毒理学资料。

1.4海洋环境POPs数据库构建的必要性分析我国的化学品风险评估用数据库建设起步较晚,目前已有的相关的数据库主要包括:有毒化学品信息系统、化学品安全数据表数据库及化学物质毒性数据库。主要存在以下几个方面的问题:目标化学物针对性不强、数据库中用于风险评估的数据信息不全面,缺乏我国生物物种的毒理学信息资料等。如果直接采用国外数据库中的资料,可能会因为地域间物种差异性而对研究结果产生影响。因此,可充分借鉴并利用现有的国外数据库,尽早建立适合我国国情,且系统、完善、使用方便的风险评估用海洋环境POPs数据库。近几年来,我国相继启动了POPs风险评估相关的研究项目,如973课题“持久性有机污染物生态风险评估模式和预警方法体系”、“区域复合污染的生态风险评估、预警与调控策略”。本研究依托于国家海洋局海洋公益性项目“新型持久性有机污染物监测与风险评估体系示范研究”,拟构建基于化学品风险评估的海洋环境POPs数据库MPOP-TOX。

2基于风险评估的MPOP-TOX数据库的构建

2.1POPs名单的确定构建的MPOP-TOX数据库收录的化合物拟遵循以下两个原则:1收录的化合物源自POPs公约名单或为新型/潜在的POPs2004年11月11日,《关于持久性有机污染物POPs的斯德哥尔摩公约》POPs公约对我国正式生效,POPs规定了需淘汰和削减的12种类POPs,即:滴滴涕、六氯苯、氯丹、灭蚁灵、艾氏剂、狄氏剂、异狄氏剂、毒杀芬、七氯、多氯联苯、二噁英和呋喃。2009年5月,POPs名单中又新增了十氯酮、α-六氯环己烷、β-六氯环己烷、林丹、五氯苯、六溴代联苯、六溴联苯醚和七溴联苯醚、全氟辛烷磺酸PFOS和其盐类以及全氟辛烷磺酰氟、四溴联苯醚和五溴联苯醚等9种POPs。2011年4月,公约第五次缔约方大会上硫丹又被增列至《公约》名单中,使公约受控POPs增加到22种类。最新研究表明,多环芳烃PAHs,四溴双酚ATBBPA、六溴环十二烷HBCD、全氟辛酸PFOA、三丁基锡TBTs、烷基酚等新型或潜在POPs也日益引起科学界和环境管理部门的重视。因此,上述化合物也收录于MPOP-TOX数据库。2收录的化合物为我国海洋环境优先控制污染物我国的环境优控污染物筛选工作起步较晚,仅于20世纪90年代提出了水环境优控污染物名单,本研究通过借鉴欧盟等国家和OSPAR组织等研究方法,将各种潜在污染物的排放情况、暴露情况、持久性、生物富集能力、一般毒性、“三致”毒性等作为筛选排序因子,采用基于监测和模型相结合的优先指数法COMMPS对各筛选因子权重赋值以筛选我国海洋环境优控污染物。优先指数法如式1所示式中:F1为检出频率因子,指多个污染源监测数据中污染物的检出次数占所有监测样品数量总和的比例;F2为超标程度因子,指目标污染物最大等标排放浓度与全部被评价污染物的最大等标排放浓度之比值。式中:Ci为化合物i的监测浓度第75百分位数;Cmin为用于计算暴露指数的化学物i的最小浓度值;Cmax为用于计算暴露指数的化学物i的最高浓度值;WF为权重系数,缺省值为10。EFFi=0.5×EFSd+0.3×EFSi+0.2×EFSh4式中:EFSd为直接效应指数;EFSi为间接效应指数;EFSh为人体健康效应指数。根据上述方法,利用国家海洋局多年的监测数据及部分文献数据,求算了我国近岸海域150余种化合物的综合风险指数值,并进行了排序。根据综合风险指数值的排序结果分析,并综合考虑我国当前海洋环境监测评价现状及管理需求等因素,确定11类20种化合物作为优控污染物,其中有机物包括:有机汞、三丁基锡、3种多环芳烃、3种有机卤代烃、狄氏剂、4种有机磷农药、2种PCBs、壬基酚和五氯酚。因此,除上文提及到的收录的POPs名单的化合物之外,MPOP-TOX数据库收录的化合物还包括有机汞、硝基苯、毒死蜱、甲基对硫磷、马拉硫磷、久效磷和五氯酚等筛选的我国海洋环境优先控制污染物。

2.2MPOP-TOX数据库构建的基本框架通过对有毒有害化学品的国内外风险评估相关的数据进行质量评估、收集和筛选,拟构建的MPOP-TOX数据库资料包括POPs的物化性质、环境迁移、转化和归趋等环境行为参数、环境暴露浓度、水生生物毒性、人体健康毒性五个方面。我国MPOP-TOX数据库构建的基本框架如图1所示。

2.3拟构建的MPOP-TOX数据库中的要素信息

2.3.1物化性质编辑并整理POPs的基本信息和物化特性参数,内容包括中英文名称、其他名称、CAS编号,EIENCS编号、RTECS编号、类别、分子量、分子式、结构式、SMILES编码、熔点、沸点、水溶解度、蒸汽压等。以上信息主要参考的数据库包括:美国TOXNET数据库中的ChemIDplus子数据库和HSDB子数据库、ESIS数据库的IUCLID文件等。若以上数据库中无相关参数,则查阅国内外公开发表的文献,仍无相关报道则基于定量结构-活性相关QSAR模型USEPAEPISUITETMv4.10软件预测。对于新兴化学物质而言,EPISUITE软件提供了一种方便、快捷的获取其物化性质、生物毒性等指标的方法,可以估计化学物质的物化特性、环境行为、生物毒性等。估计程序包括预测辛醇/水分配系数、土壤/沉积物吸附系数、亨利定律常数、水溶解度、生物富集因子、生物降解性、水解速率、水生生物毒性等子程序。

2.3.2环境行为编辑并整理POPs的环境迁移、转化和归趋等环境行为参数,内容包括辛醇/水分配系数KOW、辛醇/空气配系数KOA、亨利定律常数KH、酸解离常数pKa、有机碳吸附系数KOC和降解信息如:水解、光解、生物降解以及KOW、KOA、KH、pKa、KOC等环境行为参数,主要参考TOXNET数据库中得HSDB子数据库、ESIS的IUCLID文件。若以上数据库无相关参数,则查阅国内外公开发表的文献,仍无相关报道则使用EPISUITE软件预测。3.3.3环境暴露浓度编辑并整理POPs在海洋环境各介质中水体、沉积物和生物体的浓度,数据收集主要基于近年来的国家海洋局海洋环境污染监测/调查数据和本项目的监测/调查结果,同时补充国内外公开发表的文献研究结果。

2.3.4水生生物毒性编辑并整理POPs对海水以及淡水生物的生物富集、急/慢性毒性数据,并注明物种在环境中的分布情况,对广泛分布于我国海域环境中的受试生物毒性数据进行重点收集和筛选。据调查,我国海域有记录1922~2006年的海洋生物种类多达22560种,主要包括:腔肠动物、扁形动物、环节动物、软体动物、节肢动物、棘皮动物、脊索动物、硅藻、甲藻以及绿藻等十余个门类,占所有物种总数的70%左右。本数据库拟收集的受试生物门类包括以上我国海域十余个门类的受试生物。拟收集常见的物种类别包括:鱼类、甲壳类、藻类、软体类、昆虫类、两栖类、蠕虫类等。收集的信息、条目主要包括:生物物种编号、物种学名、物种俗名、物种类别、门、纲、目、科、属、种、物种的分布海域、生物龄、生物的生命阶段、毒理学指标、效应、暴露时间、化学分析、测试导则、暴露的介质类型、测试地点、pH、温度、盐度、参考文献信息等。表2给出了拟收集的毒性效应类型以及相应的含义。数据主要来源为USEPA的ECOTOX数据库、国内外公开发表的文献、本项目毒理学研究结果及QSAR方法预测补充的新型POPs水生毒理学数据。

2.3.5人体健康毒性编辑并整理化学品的人体健康毒性参数,内容包括口服参考剂量RfD/每日可接受摄入量ADI、吸入参考浓度RfC、口服致癌评价斜率因子、三致效应数据致癌效应、致畸效应、致突变作用等。毒性数据主要参考TOXNET数据库中的IRIS和HSDB子数据库、ESIS的IU-CLID文件。若以上数据库无相关参数,则查阅国外公开发表的文献。

篇2

此次列入评估清单中的83种化学品包括各种金属(如锑、铬、镉、铅、汞等)化合物、中链和长链氯化石蜡、砷、氰化物、石棉、杂酚油、甲醛、苯乙烯、苯、萘、八甲基环四硅氧烷、三氯乙烯、1,4 -二氧六环、三(2 - 氯乙基)酯(TCEP)和氯乙烯。其中,今年要评估的7种化学品分别是:锑及锑化合物、三环异色满麝香(HHCB)、长链氯化石蜡、中链氯化石蜡、二氯甲烷、N -甲基吡咯烷酮、三氯乙烯。

美国环保署表示,一些物质是根据类别列入清单,对一类化学品的评估也包括对单个化合物的考量。该署称很快将公布2013年和2014年将要进行评估的化学品名单。

美国环保署还称,对于这些被列入工作计划中的化学品,并不是说目前已经发现它们对人类健康或环境造成危险,而仅仅表明环保署打算进一步审查这些物质。“风险评估的步骤必须在法规监管行动开始之前进行。”该署表示,由于现存化学品数据较为有限,所以一些新的物质可能还会被添加到清单中。环保署将利用有毒物质控制法赋予其信息收集、测试和对相关企业的传唤权等来获取这些信息。

这份工作计划还详细介绍了美国环保署在确定候选化学品的评估程序、所用的参考资料及相关标准,按照此标准将决定化学品是否需要进一步的评估。具体的选择标准包括:因儿童健康而引起潜在关注的化学品,持久性、生物蓄积性和有毒化学品,可能的或已知的致癌物质,儿童和消费产品中使用的化学物质等。

篇3

危险化学品在其生产、储存、运输及应用的过程中,由于各种环节中管理或者设计使用上存在漏洞,导致各种特、重大事故频繁发生。因此,有必要构建相对完善的危险化学品安全管理体系,从而尽量减少危险化学品事故带来的损失。

2危险化学品重大危险源的辨识

辨识危险源是危险化学品安全管理的第一步。英国是最早系统地研究重大危险源控制技术的国家,1976年英国重大危险咨询委员会(ACMH)首次提出了重大危险源的建议标准,1979年又对标准进行了修改,ACMH等机构在重大危险源辨识、评价方面极富成效的工作,促使欧共体在1982年6月颁布了《工业活动中重大事故危险法令》(82/501/EEC),简称《塞维索法令》。1992年美国政府颁布了《高度危险化学品处理过程的安全管理》(PSM)标准,在标准中提出了130多种化学物质及其临界量[1],随后美国国家环境保护局(EPA)颁布了《预防化学泄漏事故的风险管理程序》(RMP)标准,对重大危险源的辨识提出了规定。国际劳工组织认为,各国应根据具体的工业生产情况制定适合国情的重大危险源辨识标准。参考国外同类标准,结合我国工业生产的特点和火灾、爆炸、毒物泄漏等重大事故的发生情况,以及1997年由原劳动部组织实施的重大危险源普查试点工作中对重大危险源辨识进行试点的情况,国家经贸委安全科学技术研究中心提出了国家标准《重大危险源辨识》(GB18218-2000)。国际上大多数国家和国际组织都采用限定某种物质及其数量的方法作为辨识重大危险源的出发点,为了与国际接轨,本标准采用了类似的方法,提供了爆炸性化学物质、易燃化学物质、活性化学物质和毒性化学物质的名称及其临界量[2],在国外的有关标准中,虽然都包括以上4类物质,但有的并没有明确细分。本标准临界量是参照了欧共体的标准,同时结合我国现有的有关法规及实际生产技术水平来制定的。

3危险化学品重大危险源的风险评价

重大危险源风险评价是危险化学品安全管理的关键措施之一。早期的风险评估主要关注的是对人类的风险,随着人类对环境风险的不断重视,目前的风险评估同时将环境风险作为重点评估领域[3]。近几十年来,国际上化学品风险评估技术有了显著的进展,Seveso指令中的风险评估方法一是甄别企业主要风险并制定相应的防治措施,二是进行安全分析,主要包括3个方面的内容:可能性分析,一般分析危害发生的前提条件、故障树分析(faulttreeanal-ysis);企业主要事故分析,对可能发生的主要事故进行场景描述并进行计算机模拟;制定应急预案[4]。REACH法规框架下的化学品安全评估是基于欧盟化学品风险评估技术建立的,主要包括数据采集、效应评估、PBT(持久性生物蓄积性和毒性)和vPvB(高持久性和高生物蓄积)评估、暴露评估、风险表征等5个部分[5]。对比欧盟,我国现有的化学品风险评估总体上处于较低水平,综合评估较少,深度不够,普及程度低,缺乏完善的评估程序和方法,虽然国家的《化学品危险性评价通则》给出了基本评估程序,但是该标准属于纲领性的标准,内容较粗,无法按其进行实际的评估;与此同时,对于评估的各项内容,国家也没有出台统一方法,这些不足对化学品综合风险评估的推广有很大的限制。

4危险化学品安全管理的主要政策法规

解读好有关危险化学品安全管理的相关政策法规,有助于相关的使用、管理、执法等部门更好地贯彻法规政策,把危险化学品安全管理落到实处,保障危险化学品生命周期的人员和环境安全。在从运输角度对危险化学品进行管理方面,联合国经济及社会理事会下设的危险品运输专家委员会颁布的UNRTDG,是一个国际性的危险品运输分类和标记体系,为危险货物在世界各地的安全运输提供了一套统一的管理框架。依据UNRTDG并结合不同运输方式的具体特点,有关国际组织分别制定了不同运输方式下的技术规则,主要包括适用海运、空运、铁路、公路、内河运输的《国际危规》,其技术内容中对危险品的分类、包装和标签的规定和UNRTDG基本一致,但是由于运输方式和运载工具的不同,对于运输作业程序的要求也不同。针对危险化学品整个生命周期的各个环节(运输、使用、储存等环节)的安全管理,联合国经济及社会理事会下设的全球化学品统一分类和标签制度专家委员会于2011年对GHS进行了第四次修订,GHS制度主要是针对在国际贸易中各国法规的危险性分类和标签要求不同而提出的,是指导各国控制化学品危害和保护人类与环境的规范性文件,其提供了化学品危害性的统一分类和危害信息统一公示制度两大部分内容[6]。UNRTDG和GHS是面向全球范围建议实施的,而REACH和CLP是由欧盟提出并要求强制实施的。REACH指令于2007年6月1日起实施,是欧盟对进入其市场的所有化学品进行预防性管理的法规。REACH指令要求凡进口及在欧洲境内生产的化学品必须通过注册、评估、授权和限制等一组综合程序,以更好、更简单地识别化学品的成分来达到确保环境和人体安全的目的。该指令主要有注册、评估、授权、限制等几大项内容[7]。CLP法规即欧盟1272/2008号法规,是针对欧盟化学品分类、标签、包装的一部法规[8]。CLP是欧盟也是全世界第一部为落实联合国GHS的独立完整的法律,在内容上填补了REACH针对分类与标签内容的缺失,对REACH法规起到了巩固作用。目前对于GHS的实施,各国的情况各不相同,美国劳工部下属职业安全和健康管理局(OSHA)公布了GHS指导性文件[9];日本于2005年10月公布了自己的GHS分类手册,其中具体介绍了物理危害、健康危害、环境危害3类危害标准[10]。国内对于危险化学品管理的主要依据是《危险化学品安全管理条例》(简称《条例》),2011年12月1日起施行。此项新《条例》是依据GHS定义的,是我国危险化学品管理与国际接轨的重要体现,新危险化学品名录从原来的3800多种增加到了7000多种[11]。修订后的《条例》涵盖对危险化学品的生产、储存、使用、经营、运输及废弃全过程的管理,增加了废弃危险化学品的管理。《条例》确定了统一的危险化学品名录的确定和调整机制,危险化学品名录根据化学品危险特性的鉴别和分类标准确定并适时调整,建立了生产许可证制度。

5危险废物的管理对策

危险废物管理是危险化学品管理的一部分,危险废物的豁免管理制度是降低危险废物总体环境风险的有效手段。美国的危险废物豁免管理体系较为完善,美国固体废物环境管理的基本法规是《资源保护与再生法》(ResourceConservationandRecoveryAct,RCRA)[12],其中SubtitleC专门针对危险废物环境管理方面。美国国家环境保护局(USEPA)陆续发现,某些废物按危险废物进行管理存在很多不合理的地方,因此,EPA根据实际情况多次对鉴别法则进行修订,通过补充排除和豁免条款,将某些废物排除出危险废物管理或豁免某些管理环节,并相应建立管理要求。美国的危险废物豁免管理主要包括类别排除、危险废物小量生产者的有条件豁免、低风险豁免、混合和衍生条件下的豁免、废物产生源个体豁免五大类[13]。欧盟也有危险废物豁免管理,但在技术体系上还远达不到完善的程度。我国危险废物环境风险管理及危险废物豁免理论和实践的研究还处于初级阶段,远未达到有效应用的阶段。目前,尚缺乏危险废物的环境风险评估与豁免标准,也没有建立完善的危险废物豁免体系[14]。虽然有些地方管理部门已经认识到实施危险废物风险管理的重要性,但是由于缺乏必要的基础研究和方法学支持,在制定相关的法规标准时往往缺乏针对性和可行性。近期,中国环境科学研究院的黄启飞等研究人员选取染料涂料类废物、废矿物油、电镀污泥和废酸废碱等4类典型危险废物进行研究,并得出了此4类物质的豁免量限值。对低风险的危险废物实行过于严格的管理,会给社会和危险废物生产者增加不必要的高额处理处置费用。如果这些低风险的危险废物能够得到妥善管理,是不会对人体和环境造成危害的。

6结语

篇4

我国目前虽然建立了化学品管理标准体系,但有些方面还是相对薄弱,化学品管理标准化工作仍亟待补充和强化,以应对日趋严格的化学品管理工作要求。

(一)化学品风险评估标准化学品风险评估是化学品风险管理的核心技术手段,我国已逐步引入了风险评估的管理概念。2010年环保部颁布实施的《新化学物质管理办法》强调了新化学物质管理要实现由危害评估向风险评估的转变,新化学物质常规申报所需材料中也包括风险评估报告。2011年国务院修订的《危险化学品安全管理条例》中也要求对危险化学品进行环境危害监督和环境风险评估。基于化学品管理工作对风险评估提出的日益严格的要求,亟需制定统一有效的化学品风险评估标准,为相应法规的实施提供技术支撑。

(二)化学品测试条件标准化我国已转化吸收了大量国际通用测试方法标准并研制了基于我国特有物种的自主创新测试方法标准,而受试动物和测试环境等条件因素对这些标准的执行具有重大影响。目前国内对于用于毒性检测方面的实验动物使用缺乏相关标准,这对于实验数据的国际互认具有一定的影响。我国测试条件的标准化工作目前处于起步阶段,相对薄弱,今后会加强对测试条件标准化的研究工作,进一步规范测试条件,推动实验数据的国际互认。

(三)化学品事故应急处理标准近年来化学品安全事故屡有发生,如物流领域的圆通毒邮件事件和环境保护领域的“山西特大苯酚泄露”等,对人民生命财产造成巨大损失。化学品事故与其它事故相比,其后果更严重,因此怎样将化学品事故所造成的影响和损失减少到最小(即应急处理),已成为全社会所关注的问题。我国对化学品事故应急处理已有一定的研究基础和实际经验,但尚未相关标准,化学品事故应急处理亟待规范。(四)化学品风险分析技术标准国际上对化学品管理的研究持续进行,联合国还专门设立了相关论坛。人类对化学品及其影响的认知仍处于初级阶段,目前化学品的人类试验数据不足1/3,同时动物福利越来越被关注,化学品风险分析技术的研究从未间断。化学品风险分析技术标准研究将越来越侧重于动物替代方法标准。

二、化学品管理标准化工作存在的问题

虽然我国化学品管理标准化工作已经取得较大成绩,但仍存在一些问题,工作形势依然严峻。

(一)法律法规较为薄弱,标准执行力度有待加强我国化学品管理方面的法律较为薄弱,日常化学品管理工作主要依靠标准支撑。目前尚未建立对化学品实施统一、专门的化学品管理国家法律,也没有设立统一的国家级化学品安全管理部门,管理工作主要以各个主管部门颁发的条例和强制性国家标准为依据,这是政策法规和机构机制层面的重要缺失,是导致重复管理或者管理缺失的重要根源。应健全法规体系,协调各层级标准,严格执行,使之发挥应有作用。

(二)化学品环境安全标准建设不足化学品环境安全是指保证公众赖以生存的水、空气和土壤等生产和生活环境的舒适,不被化学物质污染和保证环境质量,保护生态环境中生存的动植物和其他生物,维持生态平衡,避免由于环境污染对当代和后代的生命和健康带来危害。目前中国的水污染、土壤污染和大气污染事件频发,此外生态环境受到化学品的潜在危害,化学物质还在大量进入环境,对野生动物的生长、发育和繁殖造成不可逆转的严重影响,对人类与自然的和谐生态文明建设构成严重威胁。我国环境安全标准建设处于起步阶段,以环保行业标准(HJ)为主,国家标准相对薄弱且较为零散,对化学品环境安全管理工作的支撑作用较为薄弱。

(三)化学品健康安全标准建设不足化学品健康安全指保护在工作场所接触化学品的职业人群健康,保护社会公众的身体健康,防止化学品中毒以及保障食品等消费产品的安全,避免有毒有害化学物质可能对人体健康造成的损害。在我国由化工生产引发的职业病中毒及发病率高,一些高危险化学品和强致癌物的使用没有得到严格的管理和限制,使重大恶性职业中毒时有发生。我国化学品健康安全标准建设基础较为薄弱,应加强针对不同人群的健康安全标准建设,保护一线工作者和消费者等的健康安全。

(四)化学品特性数据缺失和实验室管理标准作用发挥不完全化学品特性数据是化学品风险评估和化学品管理的重要基础和依据,目前国际国内化学品特性数据缺失均较为严重。我国尚未加入数据的国际互认体系,我国的化学品试验数据也未被国际认可,由此造成的数据壁垒也对化学品管理工作造成一定障碍。我国虽已制定了基于OECD的良好实验室规范系列标准,但标准的作用发挥不完全,加入国际互认体系仍需大量工作。

(五)化学品全生命周期管理不足无论是传统的“从摇篮到坟墓”的生产到废弃处置的过程,还是现阶段提出的“从摇篮到摇篮”的化学品循环经济概念,都涉及到化学品全生命周期的管理,而我国现有的标准主要集中在生产和运输等环节,在消费和循环再生等方面管理力度不足,对化学品全生命周期的管理过程有所欠缺。这为化学品的潜在危害暴露埋下了重要隐患。

(六)化学品管理标准更新不及时我国化学品管理工作主要依托于标准和法规政策,但这些法规和标准的更新不够及时。如现行《危险化学品名录》为2003年有国家安全生产监督管理总局颁布实施,在2012年启动了修订工作,但至今未正式实施。国家标准也同样存在相对滞后问题,一是大多数标准标龄较长,标龄5年以上(即2009年及以前)的标准有277项,占比74.3%;二是标准制修订程序和周期较长,从立项到平均耗时3年多,但国际规章修订周期一般为2年(中文版比英文版滞后1年),导致国家标准相对滞后。

三、化学品管理标准化工作发展建议

(一)健全标准体系,强化主管部门协调联动,加强监管力度现阶段化学品管理标准化工作当务之急是加快完善相关法律法规和标准体系,同时要协调各主管部门管理职能,加强各部门间的联动,解决管理职能交叉和空白问题,加强监管力度,消除安全隐患。此外要充分调动行业协会和企业的积极性,配合化学品管理工作。

(二)加强信息化标准建设,促进信息共享中国尚未建成完整统一的化学品信息采集和共享的平台或数据库,各主管部门之间的信息沟通不畅,权威性不够,同时查阅国际数据较为不便,这些都对国内化学品管理工作造成了一定制约。因此加强化学品管理信息化标准建设,促进信息共享和传递,整合和过滤信息资源,统一的化学品管理信息化标准能提高化学品管理的工作效率,优化工作效果。

(三)建立反馈机制我国化学品管理工作是由各主管部门自上而下进行的,在执行过程中遇到的问题和自下而上的诉求暂时没有通畅和统一规范的反馈途径,导致主管部门不能及时了解标准执行效果和基层反馈意见,久而久之会使标准不适应化学品管理工作的发展。因此应建立规范有效的反馈机制,充分收集各相关方对化学品管理标准的意见和建议,及时对相关工作做出相应调整,促使化学品管理工作进入良性循环,促进化学品管理工作的长足发展。

(四)加强实验室能力建设我国化学品检测实验室能力建设起步较晚,现有的GLP实验室承载能力远不能满足巨大的数据需求量,管理部门面临严重的数据缺失问题。此外,国际间数据互认是化学品管理工作的重要发展趋势,但我国至今尚未建立协调统一的GLP实验室国家认可制度,这对推进我国加入经合组织GLP国际互认体系,实现化学品安全检测数据的国际互认构成了严重阻碍。

篇5

    各国一般将化学品分为现有化学品与新化学品。所谓现有化学品是指各国化学品法律关于新化学品申报审查制度建立以前已经上市销售和使用的化学品。新化学品是指在其投产、进口或商业流通之前,不在一个国家或地区现有的化学品清单之列的化学品,通常是指尚未在该国或地区生产和使用的新开发或进口的化学品。20世纪70年代新化学品申报登记制度建立之初,全世界经济领域中生产、流通、使用的化学品已有近10万种,但其中只有一小部分经过了初步的风险评估。自20世纪90年代以来,发达国家和地区不断加强对现有化学品的风险规制,例如,1993年,欧盟了《关于现有化学品风险评价和控制的793/93号条例》;2006年,欧盟通过了一项新的《关于化学品注册、评估和许可的1907/2006号法规》(REACH法规)。REACH法规将同时适用于新化学品和现有化学品的管理,该法规规定了为期11年的过渡期完成对现有化学品的检验和评估,并为过渡期制定了严格的工作程序和时间表,要求产量较大的现有化学品需要优先注册;产量较小,但人类较为关注的化学品也应该优先注册。2003年9月12日,原国家环境保护总局了《新化学物质环境管理办法》(2009年12月30日进行了修订),对新化学物质实施申报登记和跟踪控制制度,至此,我国建立了对新化学物质的环境风险评估与风险管理制度。但对于现有化学品,我国尚缺乏相关的风险评估信息,风险管理是缺位的。2002年,原国家环境保护总局了《中国现有化学物质名单》(IECSC),到2009年,该名单共收录45355种现有化学品。此前,主要依据危险化学品分类,我国系统建立了《危险化学品名录》,共收录了近4000种危险化学品,而对在《危险化学品名录》以外的大量生产和使用的现有化学品,未能进行有效的风险评价和管理,导致国际上早已或正在禁止、限制的高环境与健康风险的有毒化学品,仍在中国个别地区生产和使用。在现有化学品的规制方面,我国应当在以下两个方面加以改进:第一,加速现有化学品环境风险的评估。鉴于现有化学品数目巨大,我国应当采取优先原则,对通常意味着高暴露风险、高产量的化学品优先开展制度化或组织化的危害性质测试,为有效地进行风险管理提供科学评估的信息。第二,完善现有化学品的分类管理制度。我国现行《危险化学品名录》中危险化学品主要依据联合国《危险货物运输建议书》中危险货物一览表确定,而联合国《危险货物运输建议书》的分类体系是为了控制危险货物安全运输制定的,对急性毒性以外的其他健康危险性,特别是致癌、致突变和致畸性三种特殊毒性没有制定分类判定标准。例如,我国危险化学品中的“有”主要是以急性中毒指标LD50为标准,无法充分囊括当今化学品环境管理主要关注的那些常规判定为“低毒”甚至“无毒”,但却以低浓度、生物蓄积性对人类和生态系统产生长期潜在毒性影响的PBT或EDCs等有害化学品[1]113。因此,《危险化学品名录》应当根据联合国《全球化学品统一分类和标签制度(GHS)》修改完善危险化学品的分类和管理范围,并推动对经评估确认的高风险的“优先有毒化学品”采取淘汰或限制等风险管理措施。

    二、确立化学品环境自愿协议制度

    环境自愿协议是环境自我管制之一种,所谓社会自我管制系指个人或团体本于基本权主体之地位,在行使自由权、追求私益之同时,亦志愿性地兼负起实现公共目的之责任。在概念特征上,社会自我管制包含着两个核心内涵:“自愿性”与“公益取向性”。环境自愿协议(VEAs)包括单边承诺(UC)、公共志愿计划(PVS)和协商性协议(NA)[2]。单边承诺包括单个企业或者产业协会的环境改善计划;公共志愿计划是由公共部门设定好一定的加入条件和行为标准,由企业来选择是否参与;协商性协议则是由政府有关部门与工业行业或企业经过协商签署协议,旨在通过协议的实施达到节能减污和环境保护的目的。环境自愿协议体现了当代环境法中的合作原则,透过规制者与被规制企业的协商与合作,可以有效弥补法律的局限性,实现环境管理的针对性、灵活性和提高规制效率。《中华人民共和国清洁生产促进法》(以下简称《清洁生产促进法》)第二十九条首次规定了环境自愿协议制度,在化学品的基本立法中也应确立该项制度。事实上,环境自愿协议中的“单边承诺”已在我国化学产业界得以实践,“责任关怀”即是一个例证。责任关怀(RC)是全球化工行业自发地在健康、安全和环境保护三大方面(简称HSE)所采取的行动计划,旨在不断改善化工行业在环保健康以及安全领域的表现。RC运动由加拿大化学生产者协会(CCPA)于1985年首次发起,相继被美国化学品制造商协会(CMA)以及欧盟和日本等国家和地区性组织化学工业协会所采纳,后在国际化学品协会理事会(ICCA)的正式推动下,至今已在全球50多个国家和地区实施。2007年中国石油和化学工业协会发起的中国石油和化工行业推进“责任关怀”行动正式启动,中国石油和化学工业协会与国际化学品制造商协会联合了《责任关怀实施准则》,该准则包括社区认知和应急响应准则、储运安全准则、污染防治准则、工艺安全准则、职业健康安全准则、产品安全监管准则六个方面。2008年5月29日,在国际化学品制造商协会(AICM)组织下,杜邦、拜耳、壳牌、巴斯夫、三菱化学、罗门哈斯等24家跨国化工巨头在京共同签署《“责任关怀”北京宣言》,承诺将保障经营过程的安全和环境友好,通过分享信息,推广严格的环境、健康和安全管理体系、业绩指标和验证流程等方式,在中国树立可靠的化工行业形象。目前我国承诺实施“责任关怀”的有化工、石化行业的43家企业以及南京化学工业园区管理委员会等三个工业园区管委会。

    三、建立化学品污染物排放与转移登记(PRTR)制度

    在化学品的规制过程中环境信息是非常重要的,只有掌握充分的相关信息,政府才能进行有针对性的规制;只有化学品信息的充分公开,才能满足公众的知情权,减少化学品的风险和危害。质言之,化学品信息的申报、收集与公开是政府、企业与公众三者之间相互信赖与合作的基石。OECD国家的污染物排放与转移登记(PRTR)制度是这方面比较成功的范例(见表2)。PRTR制度是指建立一个从各类排放源向环境排放和通过废弃物转移的各种指定极危险化学物质的报告和登记制度,并将收集的数据向社会公众散发和用于化学品环境管理。虽然各国的PRTR制度不尽相同,该制度的设计取决于各国具体的需要、条件和环境目标。但是,各国的PRTR制度仍然具有以下四个共通点:①化学物质或污染物的清单;②排放与转移的多媒介(大气、水、土壤)或综合性报告;③由固定或移动污染源报告汇总成污染物数据库;④污染物资料与数据可以为公众所获得[3]。最早的PRTR制度是1974年荷兰开始实施的“排放目录制度(EIS)”,1986年美国实施作为PR-TR的“有毒物质排放清单(ToxicReleaseInvento-ry,TRI)制度”之后,该制度在OECD国家得到了广泛的运用。在PRTR制度的发展历程中,美国的有毒物质排放清单制度是富有深远影响的典范。美国1986年制定的《紧急规划和社区知情权法》授权联邦环保局制定有毒物质排放清单,每个符合该法第三百一十三条的企业必须于1988年及其后每年的7月1日前向环保局局长和州委派的特定官员提交排放清单上所列的每种有毒化学品排放情况的年度报告。清单上的有毒化学物质从开始的大约329种增加到了2000年的约650种[4]。企业的年度报告是向公众开放的,《紧急规划和社区知情权法》第三百一十三条第十款规定:“联邦环保局局长须根据提交的数据资料,建立全国有毒化学物质存储数据库并进行维护,任何人都可以以有偿方式通过计算机或其他手段获得这些数据资料”。目前我国企业环境信息以自愿公开为原则、强制公开为例外。《清洁生产促进法》确定了污染严重企业的“黑名单”制度,被列入“黑名单”的企业必须向公众公布主要污染物的排放情况。2007年,原国家环境保护总局制定的《环境信息公开办法(试行)》也只是鼓励企业自愿公开环境信息,强制公开的对象仍然是《清洁生产促进法》所框定的污染物排放超过国家或者地方排放标准、或者污染物排放总量超过地方人民政府核定的排放总量控制指标的污染严重的企业。我国应当在排污申报登记制度的基础上创设PRTR制度,目前上海市、天津市被选为试点城市,在全国配合开展化学品PRTR制度的试点工作。