当前位置: 首页 精选范文 航空航天的发展前景范文

航空航天的发展前景精选(十四篇)

发布时间:2023-09-21 09:57:21

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇航空航天的发展前景,期待它们能激发您的灵感。

航空航天的发展前景

篇1

关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(FEM)

中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02

1 力学在航空航天领域的支柱地位

作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。

时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。

展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。

2 航空航天领域力学发展新挑战

航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。

2.1 程序化

航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。

力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。

上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。

2.2 工程化

力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。

21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。

2.3 非均质化

新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。

复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。

建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。

2.4 多物理场耦合

2.4.1 电磁与力学耦合

新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。

目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。

2.4.2 温度与力学耦合

温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。

目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。

我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。

2.4.3 流固耦合

流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。

同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。

3 结语

当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。

参考文献

[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.

[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.

篇2

航空航天技术是信息、能源、制造等综合性尖端技术的集合,是一个国家综合科技实力的象征和衡量标志,在国家的军事国防中起着中流砥柱的作用。近几年“神舟”系列载人飞船的成功飞行,以及我国首架具有自主知识产权的喷气式支线飞机ARJ21总装下线等,引发了人们对航空航天技术领域的极大关注,而航空航天类专业更是吸引了不少同学和家长的眼球,被同样怀揣飞天梦想的考生所追捧。

学科优势助推人才起飞

航空航天类专业主要研究飞行器的结构、性能和运动规律,培养如何把飞行器设计制造出来并送上太空的工程技术专业人才。从狭义上讲,航空航天类专业包括飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程、探测制导与控制技术等主体学科专业。然而,无论是飞机还是航天飞行器,都是综合科学技术的结晶,涉及材料、电子通讯设备、仪器仪表、遥控遥测、导航、遥感等诸方面。因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机、交通运输、质量与可靠性工程等都是航空航天技术不可或缺的学科专业。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。

航空航天类专业对同学们的要求是“厚基础、强能力,高素质、重创新”。同学们要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力,以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。

有同学认为航空航天类专业就业覆盖面窄,如果毕业后不能进入航空航天类企业,就很难找到专业对口的工作。其实不然,航空航天高科技辐射国民经济各个部门,航空航天类专业扎实的工程技术理论与实践基础平台,促成了其拓展性宽、应用性强、适用面广的专业特点。可供毕业生选择的对口职业有很多,如飞行器设计、制造人员,科研机构研究人员,国防部门研究管理人员,各级政府部门负责航空航天相关工作的研究管理人员,民航企事业单位的技术管理人员等。毕业生不仅可从事航空航天等领域的设计、制造、研发、管理等工作,还可在民航、船舶、能源、交通、信息、轻工等其他国民经济领域施展才华,像微软、IBM、贝尔、方正、海尔等知名企业都曾纷纷到航空航天院校招贤纳才。很多民用部门也都点名要航空航天类专业的毕业生,认为他们基础扎实、学以致用。

行业繁荣点燃人才需求

航空航天科技工业是知识密集和技术密集的高技术领域,航空航天技术的广泛应用影响到政治、经济、军事、科技、文化及通信、气象、能源、探测等领域,成为社会进步的强大动力。从世界范围来看,航空航天科技工业是朝阳产业,在提升国家整体科技水平和综合国力方面起着龙头的作用。

我国经济的快速发展为航空航天工业提供了广阔的发展空间。国务院公布的《国家中长期科学和技术发展规划纲要》中,关于大型飞机、高分辨率对地观测系统、载人航天工程与探月工程等航空航天领域范畴的工程便占到16个重大专项中的4项。未来我国航空航天发展将重点开发大型飞机设计与制造成套技术,载人航天实现航天员出舱进行航天器交会对接试验活动,直至实现登月计划等。2007年大飞机项目正式上马,给我国的航空业带来了空前繁荣,带活了一批航空类企业,也为航空航天类专业毕业生带来了良好的机遇。

航空航天科技工业极具发展前景,对人才的需求会持续旺盛。据统计,2011年最被看好的12类专业之航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理,航空航天飞机总体设计与研发、发动机研发与制造,零部件研发与设计,航空航天新材料研发、制造及总装技术、计量检测技术、航空航天电子电器设备设计开发、信息及测控技术,航空航天生物技术、航空适航管理、航空维修改装,以及航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。有关人士根据教育部公布的相关信息归纳出的“最出人意料的十个高就业专业”,便将航空航天类专业列入其中。

上海作为我国新支线飞机和未来大型民用飞机设计总装基地和重要的航天基地,举办了“上海航展”,展会上举行了航空航天人才大型招聘会。据航展招聘组负责人介绍,目前航空航天项目需要大量人才,仅空客A380一个项目组的技术人员需求数量就超过六千人,而我国这方面人才缺口非常大。

近年来,以航天科技,科工集团,航空一、二集团等为代表的航空航天类企事业单位生产和科研任务饱满,条件大为改善,待遇提高很快,一些单位的员工年薪可达十几万,稍差一些的单位其员工薪资待遇也可达到当地中上水平。航空航天事业的迅猛发展,无异于为年轻学子的成长搭建了理想的平台。像航天空间设计研究院、航空材料研究院等单位都炙手可热,受到重点院校毕业生的青睐。毕业生就业地域以北京、上海、西安、成都、沈阳、哈尔滨、深圳等省会及核心城市为主。

从个人长远发展来看,在航空航天类企事业单位工作,发展前景好,待遇高,成长快。随着载人飞船、探月工程、大飞机等重大项目的深入实施,必将有越来越多的青年才俊在锻炼中脱颖而出。

报考提示

我国目前开设航空航天类专业的重点院校有北京航空航天大学、南京航空航天大学、哈尔滨工业大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工程大学等。近年来,清华大学、复旦大学、上海交通大学、厦门大学等也相继设置了此类专业。开设航空航天类专业的普通院校有南昌航空工业学院、沈阳航空工业学院、郑州航空工业管理学院、中北大学、中国民航大学等。由于各个院校的发展历史、层次、实力不同,学科专业水平差异也较大,同学们应注意了解自己感兴趣的院校,根据自身实力,准确定位,合理选择。

学习航空航天类专业以及将来从事航空航天技术工作,需要具备较强的学习钻研及动手能力,要求同学们的数理化基础扎实,逻辑思维能力较强,严谨求实,乐于钻研。同学们应从实际出发,量体裁衣。

一些考生和家长误以为报考航空航天类专业,体检的标准要按照军检的标准来进行,其实不然。航空航天类专业主要是培养航空航天领域的专业技术人才,对考生的身体状况没有特殊要求,同学们只要符合《普通高等学校招生体检指导意见》,就可放心报考。

篇3

这一成功令一直紧张注视“好奇”号的美国国家航空航天局火星项目团队异常兴奋。在得知“好奇”号成功登陆火星后,美国总统奥巴马表示,“好奇”号是迄今登陆其他星球最为复杂、精密的移动实验室,标志着科技空前进步,表明即便是最艰难的挑战也无法抵挡创新和决心的脚步。奥巴马的科学顾问霍德伦认为,这是人类在太空探索上迈出的巨大一步,是一项无与伦比的成就。

这是美国国家航空航天局所发射的探测器第七次在火星着陆。“好奇”号着陆在火星盖尔陨坑内一块平坦地面,所载的一台照相机捕捉了着陆瞬间情景。对此连称“漂亮”的美国国家航空航天局局长博尔登说,“好奇”号的轮子已经开始为人类踏足火星开辟道路。

在“好奇”号登陆火星的过程中,最令人揪心的惊险过程当属进入火星大气层后的下降和着陆。在短短7分钟内,“好奇”号的时速由约2万公里下降至零,且无法人为控制,完全由一项最新着陆技术自行完成,其间充满不确定性,任何一个微小失误便将导致全盘皆输,因此美国国家航空航天局称之为“恐怖7分钟”。

此外,由于“好奇”号所发出的信号需要围绕火星运行的另外3颗探测器中转,“好奇”号着陆的信号最快也要在14分钟后才能传递到美国国家航空航天局地面控制中心。这一“度秒如年”的等待更使这一着陆的成功令人欣喜异常。

在火星表面着陆约两小时后,“好奇”号探测器发回了一张有关其“新家”盖尔陨坑的高分辨率黑白图片。“好奇”号还将发回更多图片,并将传回彩色图片。人类也因此能够更为真切地了解火星景象。

据了解,此次“好奇”号的任务目标是搜寻碳、氮、磷、硫和氧等基本生命元素,但没有计划搜寻生物或化石微生物。未来将岩石和土壤样本带回地球后,人们才能最终确认火星是否确有生命存在。

此次“好奇”号之所以选定在盖尔陨坑着陆,是因为有迹象表明,那里曾经有水存在,盖尔陨坑旁的高山富含矿物质。在经过几周“身体检查”后,“好奇”号将开始行走并登山,使用机械臂等钻探岩石、采集土壤,开展查看是否有微生物生长环境等科研工作。

火星一直被称为宇宙飞船的墓地。自上世纪60年代以来,美国、苏联及欧洲等一直进行火星探索活动,但多数失败。耗资25亿美元的“好奇”号是美国国家航空航天局一次代价最为高昂的“豪赌”,其成功与否事关美国国家航空航天局今后发展前景。由于经费紧张,美国国家航空航天局已经停止与欧洲航天局原定于2018年联合登陆火星计划。欧洲航天局因此决定与俄罗斯联手进行相关领域合作。

美国国家航空航天局希望“好奇”号此次登陆火星后能有重大发现,为今后宇航员登陆火星打好前站。

(综合8月7日《人民日报》和《北京日报》)

花 絮

美华裔少女为“好奇”命名

2009年5月27日,美国宇航局宣布,堪萨斯州小学6年级12岁的华裔学生马天琪在美国太空总署举办的为火星探测器命名的作文比赛中获得冠军,得以用“好奇”命名美国下一代火星探测器。

篇4

这项收购的对象,是一家鲜为人知的美国无人机制造商——泰坦航空航天公司,最终的成交价格可能只有6000万美元左右,不及Whatsapp收购价的零头。

但如果考虑到它未来可能带来的价值,这起收购的意义,并不会比收购Whatsapp逊色太多。

能飞5年的无人机

泰坦航空航天是一家非常年轻的公司,成立于2012年,总部位于美国新墨西哥州,专注于研发太阳能无人机。

在2013年的国际无人操控载具展览(AUVSI)上,泰坦航空航天展示了正在研发的两款太阳能无人机Solara 50和Solara 60。

这是两架硕大无比的长航概念无人机,其中的Solara50是轻型版本,有着50米的超长翼展,升级版Solara 60则有60米的翼展和更大的骨架,它们由飞机弹射器发射升空并可以通过飞机底部的滑轮着陆。

泰坦航空航天更倾向于把他们的产品称为“大气卫星”,而不是行业内习惯的称呼“遥控无人机”或“无人机系统”。因为它们和轨道卫星一样,能够在空中长时间巡航停留。

以Solara 50为例:升空之后,它可以在20千米的高空携带一个32千克重的有效载荷,以每小时96公里的速度巡航飞行长达5年。

之所以可以不受天气和夜晚的影响不间断地工作如此长时间,是因为Solara无人机的机翼表面、升降机组和水平尾翼上,布满了总共约3000个高效率太阳能电池板。

白天飞行时,由太阳能电池板所产生的多余能量会自动存储在位于两侧机翼内的锂离子电池中,这样就可以保证为无人机夜间的续航飞行提供足够的动力。

这种超强的续航工作能力,正是泰坦航空航天认为无人机几乎可以替代大气卫星等设备,实现低成本气象监测的主要原因。

低成本多用途

目前,气象监测只有两种解决方案:发射卫星和地面监测,如果要完成大气观测和天气监测,通讯转播,海洋研究和地球成像等一些更高级的任务,发射气象卫星就成了唯一选择。

不过发射气象卫星通常要耗资数亿美元,而且无法回收利用,一旦卫星搭载的大气传感器或者仪表损坏,要么付出高昂维修成本去维修,要么只能选择遗弃它。

相比而言,无人机的成本就低得多,一套无人机系统的总成本不到200万美元,而且和卫星不同,即使是仪器设备损坏,还能让它降落,维修或更换设备后重新发射升空。

事实上,Solara无人机成本构成中最主要的部分,并不在于制造无人机,而是电池。理论上只要有足够的太阳能驱动,泰坦无人机就能够长时间地工作下去,但太阳能电池会随着时间推移逐渐老化,因此每隔5年左右就必须更换。

为了论证这个数据,在新墨西哥州,泰坦航空航天公司正用两架1/5原机大小的试验机进行试飞,今年夏季,全尺寸的机型将有可能正式上天,执行气象监测任务。

除了气象监测,泰坦航空航天公司给这两架无人机的使用定位非常广泛,Solara无人机还可以执行宇宙辐射监测、垃圾带跟踪、作物监测、海洋与大气温度监控、陨石跟踪和浮油映射等任务,另外在针对森林火灾和海上搜救等救灾方面,无人机也可以提供辅助。

比如监测森林火情,Solara无人机可以应用于森林火灾预警、火灾地点确定以及火情观测等,并且解决了传统无人机监测系统中无人机续航时间短的问题。

“太空无线路由器”梦想

如此广阔的应用前景让泰坦航空航天获得了不少战略投资者的关注,即使两年来Solara 50和Solara 60一直处在原型设计阶段,连正式的试飞和信号覆盖测试都没有进行过,泰坦航空航天还是获得了三笔融资。

不过,也正是因为无人机科研成本太高、硬件研发周期太长,一些早期投资者开始质疑这个项目的发展前景。资金紧缺之下,泰坦航空航天萌生出售想法。2014年初,Solara50完成了原型机测试,硬件设计工作结束并开始正式建造后,Facebook抛来了橄榄枝。

在外界看来,Facebook有意收购泰坦航空航天,除了Solara无人机未来的诸多应用前景之外,还有一个更迫切的想法,就是为了推进其2014年年初发起的全球互联计划,希望为全球无网络连接地区建立网络热点,提供免费上网服务。

泰坦航空航天的Solara无人机正好可以满足这个计划的硬件需求,在无人机上搭载超视距通讯系统所需的无线电中继器后,无人机就变成了一个置于空中的、信号覆盖范围极广的“无线路由器”。

因为Solara无人机的航空高度足够高,它的信号传播范围最大可达 100 海里(约 185千米),所以利用无人机在全球无网络连接地区实现组网后,它将会成为Facebook获取数十亿潜在用户的重要网络硬件接口。

如此看来,这台“太空无线路由器”的价值远远超过6000万美元。

篇5

一、瞄准地方资源发展前景,选择航空作为科技教育特色项目

根据《国家中长期教育改革和发展规划纲要(2010-2020年)》的要求,普通高中除了主要通过国家课程的教学外,还须开设一些内容丰富、形式多样的校本课程来实现育人目标。从培养一流高端科技后备人才的战略目标出发,根据学校情况和依托地方资源优势,选择突出某项特色,不但能使特色项目教育活动开展得更有深度,更具活力,而且可更好地实现我们的育人目标和促进学校的特色发展。

始于1998年的两年一届的珠海国际航空航天博览会,已经成为代表当今世界航空航天先进科技的主流和展示世界一流航空航天产业发展的盛会。每届航展的举办,不仅在珠海特别是在我校,都会掀起一股航空航天热。这使许多学生对航空航天产生了极大兴趣,甚至就此产生立志未来成为航空航天人才的热切愿望。在航展的带动下,许多新兴航空产业,如亚洲最大的珠海摩天宇飞机发动机维修企业、中航工业通用飞机产业和珠海雁洲轻型飞机制造有限公司等都陆续在珠海安家落户。特别值得一提的是珠海航空产业园于2008年破土动工。其将以“五基地一新城”作为骨架,将建中国最具综合竞争力的民用航空产业基地、世界著名的航空展览基地、国际一流的通用航空(公务机)制造基地、亚太地区综合性的航空维修基地和国内重要的民用航空数控加工基地。如今,珠海不仅具有以航空为特征的经济功能,而且具有以航空为特征的社会功能和城区形态,成为拥有相当一部分从事航空产业人口的、现代化的、宜居的珠海航空新城区,这就标示着珠海未来的航空产业有着巨大发展前景。珠海如此得天独厚的航空教育资源,使我们意识到选择航空科普作为我校科技教育中的特色项目是可行的。

二、依托地方资源优势,构建航空校本新课程

为满足学生对高新科技产业之现代航空业的喜爱,在构建航空校本新课程前,我们先对这些资源进行了一个选择、引入和转化的开创过程。在此过程中,我校根据教育目标采取寻找机会、及时跟进等办法,把一些优势资源逐步转化为航空科普教育校本新课程。

在我校开创的航空科技教育新项目里,航空爱好者们组织的航空航天俱乐部,是学生喜爱的一种活动组织形式。学生航空航天俱乐部实行“三自”管理模式,即由学生“自主管理、自我教育、自主发展”,自己选举产生俱乐部管理人员,自主策划一些活动。航空航天俱乐部名为“志翔”,是由学生自己命名的,意喻志在飞翔。我们在学校科技楼上配备了用于展示航空科普知识、组织学生动手制作、陈列学生活动成果的2间专用工作室,其中一间为探究室,安装了一架AU-1轻型飞机和一架直升飞机模拟器。高仿真度的操控、电子装置和前方投影显示屏,使“飞行员”登上驾驶室,就能身临其境地驾驶“飞机”从世界上任何一个著名机场起飞、降落。

为开展好俱乐部活动,我校积极寻找校外航空课程资源,分别与珠海雁洲公司、北京理工珠海航空学院等企业和院校签订航空科技教育基地的协议。根据协议。专业人员定期来校给俱乐部授课与讲座;指导我校教师编写航空科普校本课程;帮助学校进行航空科普设备的安装、调试和操作培训,举办航空科普夏令营等活动。在校友和社会各界人士的支持下,我校还设立了珠海一中航空俱乐部活动基金。

我校开设的航空校本课程还有航模制作,在现有本校科技教育专职教师基础上,我们专门聘请珠海市著名航模教练来给学生授课与指导。直接利用航展举办活动也是航空校本课程的--+突出亮点。航展期间学校除鼓励学生们利用假日前往观展外,还在校园内举办以航空科普为主题的科技节活动。如邀请航空专家来我校进行科普讲座和指导、举行航空知识航展摄影作品竞赛及有关航展主题征文活动等。

2008年珠海第七届航展期间,我们结识了中航集团领导和第一飞机设计研究院总设计师唐长红。在他们的帮助下,我校在2009年7月成功举办了西安航空夏令营。学生在中航集团第一飞机设计研究院、飞机试飞院和西安飞机设计研究院等三地,进行实地参观、学习和体验。活动中,我校航模队又跟他们的业余航模协会建立长期联系。我们邀请“小鹰500”民用飞机总设计师龚国政来校讲座,同时聘请他为“志翔”航空航天俱乐部专家顾问。就这样,我校航空科技课程资源链在这种机遇和跟进的开创过程中不断延伸发展。在学校航空科技教育校本课程实施中,最突出的是航展期间举办的大型主题活动。2008年11月第七届航展期间,我校在校体育馆与中航集团、中央人民广播电台中国广播网联合举办了“振翅长空、梦翔蓝天”航空知识擂台赛。

在科技创新活动中,我校航空爱好者用遥控航模创新研制的“智能警用直升机”获第21届广东省青少年科技创新大赛一等奖。使用遥控直升机模型为装载工具研制的“森林火情遥控探测装备”获得第25届珠海市青少年科技创新大赛一等奖,得到珠海市森林防火指挥部的赞扬和支持,并由市防火指挥部邀请当地航模厂家与学校合作共同参与继续研制,装备研制成功后将在本市乡、镇森林防火部门试用。

我校每年暑假期间举办的航空夏令营,是航空爱好者期盼的科普实践活动,继西安航空夏令营之后,我校在珠海雁洲轻型飞机制造公司内举办的“放飞梦想”航空科普夏令营,也是一次内容极其丰富的航空科普实践活动。活动中,学生们结合实物倾听了轻型飞机的构造、发动机工作原理和飞行原理的介绍,观看了发动机拆、装演示;在专家的指导下,观看了该公司生产轻型飞机的全过程;听专家讲座、观看内部录像资料;学习操纵APOLLOSM飞机模拟器飞行,并分组进行操纵比赛;进行航模制作及放飞比赛。整个活动过程中,学生亲身体验和操作实践的机会特别多,内容紧紧围绕航空,活动形式新颖、生动、直观。活动过后,学生都很有感触,并表示要立志航空事业的发展。

三、着眼经济社会长远发展,为国家培养后备人才

近年来,我国航空产业发展很快,但要从一个航空大国提升为航空强国,还需作出很大努力。如作为航空产业基础的我国通用航空还相当薄弱,据了解,到目前止,美国每百万人拥有通用飞机743架,巴西是56架,而我国只有0.5架,为此,我国通用航空产业应以更快的速度发展。珠海的国际航展、航空产业园、十字门商务区等国际产业的发展,吸引了海内外大批大型航空产业在珠落户。中航集团通用航空公司总部和中国通用航空研究院也都迁居珠海。珠海市立足当前着眼未来,在抓紧落实《广东省航空产业发展规划(2010-2025)》和《珠海航空产业园发展规划》时提出:要以航空业抢占新兴产业制高点。这预示着珠海航空产业将会以更快的速度发展,同时也急需更多的航空人才,特别是高端航空人才。

篇6

据悉,J31作为未来5至10年内中国战斗机开拓国际军贸市场的主打产品,承担着中国在国际战机市场抢占一席之地的重任,其优异的性能也引起了多国的注意和兴趣。无论是对于我国军工产业和中航系整体产业格局而言,还是资本市场的相关概念板块而言,都是利好。

今年以来,军工股备受关注,“中航系”股票更是以冠压群雄之势走在军工板块之首,成飞集成(002190)、中航飞机(000768)等涨幅居前。截至11月6日,中航旗下22家A股上市公司平均涨幅达到84.75%,个股涨幅最高达到292%,最低10.72%,累计涨幅跑赢大盘。而中航国际控股、中航科工、中国航空工业国际3家港股表现也不弱,平均涨幅77.75%,最高达到131.59%。

据了解,过去6年,中航工业对旗下资产进行了大规模的整合并购和优化重组,“中航”概念也强势横空出世,如中航飞机、中航重机、中航光电、中航电子等,形成了包括防务、飞机、航电、通用航空及贸易物流等多个产业板块在内的多样产业格局。

篇7

公司的主要竞争优势

1、人才和研发优势

公司充分发挥自身在粉末冶金复合材料领域的强大技术优势,凝聚了一批国内顶尖的新材料人才队伍。其中公司的创始人黄伯云先生曾为我国“863”计划新材料领域首席科学家、中国工程院院士、2004年度国家科技发明奖一等奖获得者。公司现有享受国务院特殊津贴者3人,博士、博士后18人,硕士21人。拥有中级以上技术职称的人数占员工总数的17.39%。与博云新材保持长期合作的中南大学国家级研发机构包括:粉末冶金国家重点实验室、轻质高强结构材料国防科技重点实验室、粉末冶金国家工程研究中心、国家有色金属粉末冶金产品质量监督检验中心等。

2、国家产业政策重点支持优势

博云新材研制的高科技产品涉及的行业被国家列为优先重点发展的行业,符合国家产业政策的发展要求。公司还承担了国家重点工业性实验、国家高新技术产业化示范工程等十余项国家、省、市级科研项目。公司生产的高科技粉末冶金复合材料产品打破了国外竞争对手长期垄断的格局,有利于我国新材料产业赶超世界先进水平,尤其是公司的航空产品(军用、民用飞机刹车副)和航天产品,确保了国家航空战略安全,同时在国防上具有重要战略意义。

3、细分产品市场优势

公司首获国内大型干线飞机一波音757飞机炭/炭复合材料飞机刹车副的PMA证书,公司开发生产的图一154飞机刹车副,获得俄罗斯图波列夫设计局颁发的生产许可证,公司开发的波音737-700/800飞机Goodrich机轮用粉末冶金刹车副是国内唯一取得民航产品生产许可证(PMA)的产品。博云汽车生产的环保型高性能汽车刹车片已配套多家汽车主机厂,近年来的销售额成持续上升局面。博云东方生产的高性能级进冲压模具材料占国内市场份额持续稳定增长。

4、可持续发展优势

博云新材开发的粉末冶金复合材料产品已在航空航天、汽车、高端冲压模具等应用领域得到了市场的充分认可,成功打入了原来由国外企业垄断的细分领域。公司开发的高性能粉末冶金复合材料产品通过在当前航空航天、汽车、高端冲压模具三个领域的应用,为公司产品拓展在其它领域的应用奠定了坚实的技术基础。公司产品未来将逐渐应用于高速列车、工程机械、船舶、石油、化工等领域,保证了公司的可持续性发展能力。

5、价格优势

博云新材的竞争优势尤其体现在产品的价格上。公司生产的粉末冶金复合材料产品主要与国外厂家进行竞争,飞机刹车副、环保型高性能汽车刹车片的价格为国外同类产品的60%左右,高性能模具材料价格为国外同类产品的50%左右,具有明显的价格优势,性价比高。

募集资金用途

篇8

中国大学生薪酬排名榜_20xx大学生专业就业率排名20xx年中国大学毕业生薪酬排行榜计算出了各高校毕业生毕业五年后的平均薪酬。其中,清华大学 毕业生平均薪酬14918元位居榜首。

20xx大学生专业就业率排名

NO.1 计算机科学与技术

毕业生/年:100000人以上

青睐指数:

就业前景:

计算机科学与技术专业是近些年来随着计算机的广泛应用发展起来的,国际互联网Internet的发展,网络时代的到来,使计算机的功能不仅仅只是替代人脑的一些脑力运算工作,还成为了信息时代人们进行交流的重要工具。

NO.2 通信工程

毕业生/年:30000—50000人

青睐指数:

就业前景:

该学科是信息科学技术发展迅速并极具活力的一个领域,尤其是数字移动通信、光纤通信、Internet网络通信使人们在传递信息和获得信息方面达到了前所未有的便捷程度。

重点院校推荐

重点高校:武汉大学、华中科技大学、武汉理工大学、哈尔滨工业大学、东南大学、山东大学、电子科技大学、西南交通大学、西安电子科技大学、西北工业大学、天津大学、浙江大学、河海大学、湖南大学、南昌大学、郑州大学北京交通大学、北京航空航天大学、北京邮电大学。

NO.3 电子信息工程

毕业生/年:80000—100000人

青睐指数:

就业前景:

信息产业是一项新兴的高科技产业,有着巨大的潜力和广阔的发展前景。随着工业经济向知识经济的转化,信息产业必然会成为世界第一大产业,而电子信息工程就是信息产业的重要基础和支柱之一。

重点院校推荐

重点高校:清华大学、北京航空航天大学、天津大学、大连理工大学、大连海事大学、南京理工大学、浙江大学、中国科学技术大学、暨南大学、重庆大学、电子科技大学、西安电子科技大学、中国农业大学、西南交通大学、安徽大学、东北大学、南京信息工程大学、新疆大学。

NO.4 电气工程及其自动化

毕业生/年:30000—50000人

青睐指数:

就业前景:

该专业培养具有工程技术基础知识和相应的电气工程专业知识,具有解决电气工程技术分析与控制问题基本能力的高级工程技术人才。

重点院校推荐

重点高校:北京航空航天大学、中国农业大学、上海交通大学、哈尔滨工业大学、东南大学、河海大学、浙江大学、合肥工业大学、山东大学、中国石油大学(华东)、华中科技大学、重庆大学、西南交通大学、西安交通大学、清华大学、北京交通大学、华北电力大学、天津大学、大连海事大学、中国矿业大学(北京)、大连理工大学、武汉大学、河北工业大学。

NO.5 机械设计制造及其自动化

毕业生/年:80000—100000人

青睐指数:

就业前景:

机械设计制造及其自动化是研究各种工业机械装备及机电产品从设计、制造、运行控制到生产过程的企业管理的综合技术学科。

篇9

关键词: 航空材料;腐蚀;防治

中图分类号:V250.2 文献标识码:A 文章编号:1671-7597(2012)0220034-02

腐蚀现象在人们在社会生产及使用到的各种材料中都普遍存在,因为腐蚀所导致的原材料无法使用给社会带来了不可估量的各方面损失。航空材料由于其工作的环境复杂多变,构成材料互相配合的影响,在飞行器制空、停放阶段都会受到种类繁多、程度不一的腐蚀,导致飞行器运营成本的增加,对其功能的完整性与使用的安全性构成严重危害。有调查资料显示,每年因航空材料腐蚀的问题,而造成的大量修理、维护费用,甚至航空器重大坠毁事故的数量都不在少数。所以对航空材料腐蚀问题及防治措施的研究,对于航空业发展有着至关重要的作用。

1 航空材料腐蚀类型与相应措施

航空器包括很多不同种类的航空材料,这些材料所处的工作环境各不相同,导致对航空材料产生腐蚀的原因也是多种多样的。腐蚀类型可分为以下几种。

1.1 电化学腐蚀

电位差与电解质溶液是形成电化学腐蚀的两个基本条件。在飞行器的结构之中,承担功能的不同,所以不同结构所使用的材料性质也不同。比如,飞行器的表面材料大多使用具优良延展性、相对强度低的铝合金材料、起落架及龙骨梁则选用强度高的合金钢材料。材料不同,它们的电极电位也不同,如果它们接触就有可能产生腐蚀的隐患;就算是同种类的材料,由于其内部杂质的存在或其自身就是由不同电极电位多相组成,因此也存在着腐蚀隐患。因此从航空材料的构成来说,客观就可能存在着电化学腐蚀问题。

作为中远程运输的交通工具,飞行器工作的特点直接决定了它的工作环境的变化要大于其他交通工具。飞机在工作中经常穿越温度、温度相差很大的气候地带,尤其是我国幅员广阔,有着亚热带及热带湿润型气候,航空材料难以避免的要在潮湿的环境中工作,还会因为昼夜温差的变化,在结构中积水。空气里的二氧化碳、二氧化硫等气体包附在航空材料的表面,发生电离而产生电解质溶液,使航空材料产生吸氧腐蚀现象。同时飞行器内部有大量连接间隙,形成电化学腐蚀蔓延。

1.2 承力结构应力腐蚀

它是指应力与腐蚀环境的共同作用下对材料的破坏方式。应力腐蚀只会发生在特定腐蚀环境与材料体系之中,它的特点是造成破坏的静应力大大低于材料屈服强度,断裂形式是不产生塑性变形的脆裂,拉应力是其主因。

以飞机起落架应力腐蚀例,起落架是飞行器主要受力结构之一,当飞行器停放时,起落架轮轴受到拉应力的作用,可能在腐蚀介质下产生应力腐蚀现象。起落架的材质通常为镀铬高强钢,其强度高、耐磨损但硬度较脆,易在飞行器的起降突变负荷作用下缺陷掉落而失去效果。清洗、结露等会使起落架轮轴积水,其杂质也容易在起降或是清洗时附在轮轴位置,形成应力腐蚀溶液,从而造成应力腐蚀。在飞行器上易产生应力腐蚀部位还有:厨房、厕所下方区域,湿气的长期聚焦,容易出现腐蚀;机身顶部,由于冷凝水聚集作用再加受拉伸应力,易产生应力腐蚀;机下下部,舱门口、厨房、货舱附近的部位易出现腐蚀;框架、桁条及止裂带;机身蒙皮,在应力、湿气双重作用下,产生蒙皮鼓包、变形、丢失紧固件,易出现裂纹;压力隔框,经常出现于位置较低部位,尤其是排水设施不够及未维护的部位;大翼及安定梁,对梁上各种位置腐蚀的探测、修理非常困难;翼中段、承压舱板;货舱门的平衡弹簧应力性腐蚀。

1.3 发动机的高温腐蚀

发动机的主要腐蚀表现形式是高温氧化腐蚀。推力大、效率高、油耗低、寿命长是航空发动机发展趋势。只有对涡轮进口燃气温度进行提升,才能供给出需要的增压比与流量比,实现提升推力的同时降低油耗。所以发动机的涡轮叶抗高温腐蚀的性能非常关键。对此可采取几种方法进行防护:保障性能前提之下,提高叶片本身熔点和高温抗氧化的能力;使用与基体材料具有良好亲和力、高温性能佳的保护涂层;采用气冷技术,令冷却的空气在涡轮叶片表面构成保护型气膜。

镍基超合金是当前在航空航天领域中发展最成熟、应用最广泛的材料。它具备优良的综合机械性:高温强度、室温的韧性及抗氧化性能,但它的极限应用温度为1100至1150摄氏度,已达其熔点85%,再提升其使用温度潜力较小。现今对新型高温结构的材料使用温度要达到1600摄氏度左右,铌、钼基硅化物合金因其在高温强度与低温损伤的容限良好平衡,而显示出巨大的发展前景,可代替目前的镍基合金材料。所以最近几年国内外将铌、钼基结构的材料作为研发涡轮叶片继承材料的主方向。

在涂层保护领域,目前大多使用等离子喷涂技术、渗铝或硅涂层。在我国航空用发动机行业,用等离子喷涂制作热障涂层的技术已经在新型航空用发动机涡轮叶片与隔热屏等部件上成功被应用。同时渗铝、硅技术由于工艺简单、与新材料亲和力佳,也得到了相应的大发展。

好的气冷设计可以在现有材料基础之上对叶片表面温度进行有效降温,但因冷却必须在叶片的内部进行气道设计,并在叶片表面布置相当数量的气孔,不但要合理规划分布气道,还要对叶片实施相对复杂的强度实验与设计。

1.4 意外腐蚀

飞行器在工作中还会遇到意外腐蚀的情况,这种情况与飞行器本身材料、设计、工作环境没有关系,根本就是人为原因而造成的。比如机上承载强腐蚀性物质,发生泄漏而造成飞行器发生腐蚀。

通过编制详细的操作流程与有关部门加强监督管理,并制定相应的强制性规定规范,并由专人进行负责落实便可完全避免人为因素而造成的腐蚀现象。

2 航空材料腐蚀与防治研究

我国对航空材料腐蚀与防护研究、应用于上世纪50年代开始,经过这些年的发展,取得了一定的成果。

2.1 自然环境

这种研究是在极端的环境或是典型的环境条件之下,对航空材料进行适应性研究。在户外的暴露实验是其基本方法,也是研究的基础。我国对航空材料上常用的铝合金材料进行了户外暴露实验。研究结果表明,铝合金经过3年暴露在海洋、工业、湿热地区和潮湿大气中后,会在表面产生腐蚀物。

2.2 户内加速实验

自然环境户外暴露实验是评估材料在大气中腐蚀程度的方法,但其实验周期长,还不足以满足材料的研制、腐蚀的控制、防护材料研究的要求。为满足我国航空航天领域对迅速评估材料环境的适应性要求。我国某研究院研发了综合环境实验机,并相应发展出了针对航空铝合金材料的综合加速实验表谱。研究显示,与传统加速实验相比较,该综合加速能更好模拟航空用铝合金材料的大气腐蚀现象。

2.3 腐蚀机理与测试技术

航空材料在力学与环境因素的双重影响下可能诱发因应力腐蚀而造成重大事故,所以开展相关应力腐蚀测试与研究是一项重要内容。当前已经发展出了部分应力腐蚀敏感的测试标准。这些标准在研究航空材料和飞行器应力腐蚀问题上起着重要的作用。

2.4 发动机高温防护

发动机的高温防护涂层通常可分为扩散及包覆涂层两种。我国目前研发出许多种发动机的部件使用涂层,如渗AL、AL-SI料浆涂层、MCRALX包覆型涂层、封严涂层等等,其中有些已经批量生产。

2.5 表面处理

当前在航空航天业中普遍采用的表面处理技术有电镀、阳极化、缓蚀用剂等等。为满足航空行业需要,我国对高强度的钢低氢脆无氰镀镉进行应用研究。研究发现其各项指标均好于氯化铵镀镉镀层。

防腐蚀涂层是目前提高飞行器适应性最重要的手段之一,我国防腐蚀涂层也正朝着高性能、环保的方向发展着,国内防腐蚀密封剂等方面也取得了较大进步。

3 航空材料腐蚀问题防治体系

腐蚀防护技术已经过多年的发展。从金属成为航空器的结构主材料以来,由于腐蚀原因造成的相关维护成本大大增加,甚至导致严重的航空事故,航空材料腐蚀的防护技术重要性日益提高。腐蚀防护技术从单纯的对腐蚀零部件进行修复到预防性的喷保护漆及防水保护等。但依然处于被动的状态,腐蚀防护工作相对落后,而且时常会有疏漏情况,缺乏对腐蚀的主动控制。

航空材料的腐蚀从根本上说是自然现象,无法真正的避免其出现,只能利用有效手段进行控制。现代的腐蚀防护技术偏向保证航空器在使用寿命内其材料不会因为腐蚀原因而失去效果。为更好的实现这个目标,必须要从对型号的论证时期就对航空材料腐蚀防护的工作进行总体性的规划,按飞行器总体需要编制防护大纲,并以此开展该型号飞行器的腐蚀防护操作。

如:某型号飞行器中大量采用了复合材料,那么所编制的大纲中应该对复合材料腐蚀的特性做出详细说明,介绍其防腐蚀方法并对其进行分级;到细节设计的阶段时,专业技术人员要依据大纲的要求,编制结构防护腐蚀手册与先材手册,对飞行器设计人员实行结构设计与选材上的辅助作用,以避免在飞行器中出现容易腐蚀的结构与选材工作的失误,并对易腐蚀的关键部位进行详细的防护设计;在装配制造阶段,专业防护人员必须根据大纲的要求,配合质保人员编制生产工艺,避免在生产、装配过程中因不当操作而造成腐蚀隐患,消除其过程中的残留应力,并对暴露部件腐蚀的防护工作加以指导;在飞行器服役时期,编制腐蚀维护的相关手册,对航空材料腐蚀的维护等级进行切分,制定相应的腐蚀检查方法与其处理措施,最大程度消除飞行器腐蚀隐患,使之运行正常。至此,从飞行器的型号开发到正常使用,其防腐蚀工作可作为一套防护体系。

防护体系还应具有自我完善的功能,建立相应的数据资料库,将从型号开发往后各阶段的工作反馈资料收集入库,资料库的完整性随着型号的积累而稳步提升,最终可以为腐蚀防护工作提供极大的帮助以及理论实践的基础,将腐蚀带来的航空材料的破坏降到最低。

4 结语

对航空材料的腐蚀有四种,如果任其发展,任意一种都将造成灾难性的航空事故。我国目前对航空材料的腐蚀及防治研究已经取得了一定的成果,但仍然需要积极引入、研发防腐蚀的各类新技术,从飞行器的设计选型到交付使用的整个过程、阶段都积极应用、推广防腐蚀的新技术,以保障航空材料的质量,为我国航空航天事业的发展提供有力的理论及实践基础。

参考文献:

[1]刘星北、陈颖、胡锦旋、张佳佳、刘亚奇,浅谈国内航空材料的腐蚀与防护[J].民用飞机设计与研究,2009.

篇10

关键词:碳纤维及复合材料;特性;应用

中图分类号:TQ342+.74 文献标识码:A 文章编号:

碳纤维是一种新型非金属材料。碳纤维既可作为结构材料承载负荷,又可作为功能材料碳纤维主要是由碳元素组成的一种特殊纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。近年来,在航天、航空、汽车、环境工程、化工、能源、交通、建筑、电子、运动器材等众多领域得到广泛的应用。

1碳纤维及复合材料的产品形式

碳纤维材料的产品有四种形式:丝束、布料、预浸料坯和短纤维。布料是有碳纤维制成的织物。预浸料坯是将碳纤维按照一个方向一致排列,并将碳纤维或布料用树脂浸泡使其转化成片状。碳纤维的主要用途是与塑料、金属、陶瓷等基体复合,制成碳纤维复合材料。根据用途不同,按照不同的配比,将不同的碳纤维产品和树脂一起应用将形成碳纤维强化塑料,其加工方法有缠绕成型法、树脂转注成型法(RTM)、薄片缠绕法。碳纤维与最合适的树脂及预制工艺的结合使得碳纤维的应用更加具有吸引力。

2碳纤维的特性

碳纤维与钻石一样,是主要由碳元素组成,具有以下特性:轻质高强,其比重为铁的四分之一,强度为铁的10倍,尤其是高弹模量碳纤维,其抗拉强度比钢材大68倍,弹性模量比钢材大1.8~2.6倍,如日本东丽已开发出高强型T1000系列碳纤维,其抗拉模量为295GPa,拉伸强度达7.05 GPa,而高强高模量M5J型碳纤维,抗拉模量达640 GPa,化学性能非常稳定,耐高温和低温以及耐腐蚀性高,在600℃高温下其性能保持不变,在-180℃低温下仍很柔软,不与恶劣环境下酸、碱、盐发生腐蚀性反应;可加工性能好。例如:由于碳纤维布质轻又可折弯,可适应不同构件形状,成型很方便,可根据受力需要粘粘若干层,而且施工时不需要大型设备,也不需要采用临时固定,对原结构无新的损伤。此外,碳纤维的其他特性还包括高强度的X穿透性、高抗热性、导电性及抗腐蚀性能等。

3碳纤维材料的应用

3.1航空航天领域

由于碳纤维性能优越,其复合材料具有高比强度、设计性好、结构尺寸稳定、抗疲劳断裂性好和可大面积整体成型,以及特殊的电磁性能和吸波隐身的特点,鉴于其在工业化生产初期,成本非常高的高科技航空航天及军事领域,如用于生产军用、民用飞机以及战略导弹和运载火箭等。在航空领域,碳纤维用于包括水平和垂直机尾,地板梁等材料,它们被称为基础结构材料,除了基础结构材料外,碳纤维还用于副翼、螺旋桨、升降机、引擎和其他部件。在20世纪80年代早期,碳纤维作为结构材料开始被广泛的用在客机和航空飞行器,80年代中期,欧洲空客公司开始将碳纤维增强塑料(CFRP)作为首要的结构材料应用在它们的飞机上。2005年随着新型空中客机A350和波音787科技Dreamliner(也被称之为7E7)的投产,给碳纤维工业产生显著的推进作用。空中客机A350中复合材料用量已接近总质量40%,波音787的机翼和机身上使用的复合材料超过了50%。

碳纤维也大量用于航天器的制造材料,如在人造卫星中它们被用作构建、太阳能板、天线和其他部件等。

3.2 土木建筑领域

20世纪80年代末90年代初在发达国家兴起了一种以碳纤维布加固修复钢筋混凝土的结构补强加固技术。我国从20世纪90年代也开始研究和应用,现在已经取得一定的研究成果。例如,位于深圳市建设路的博悦大厦,主体由ABC三栋建筑物构成。AB两栋为写字楼,C栋为酒店式公寓,由于深圳地区抗震设防烈度由原来的6度提高到了7度,造成原设计的主楼框支梁上部分楼层剪力墙水平钢筋配比率低于现行抗震规范要求,因此,决定采用剪力墙表面粘贴碳纤维进行加固处理。施工流程与现场施工方法为:混凝土基底修补、打磨处理涂底层HCJ碳纤维胶粘结剂用HCJ碳纤维进行残缺修补粘贴第一层碳纤维片粘贴地二层碳纤维片表面涂装养护完工验收,整个工期仅用了2周的时间。

碳纤维补强建筑的研究已经较为成熟,主要研究领域包括四方面的内容:抗弯加固、抗剪加固、碳纤维与混凝土界面粘结性能和抗震性能研究等。目前,我国建国初期的一些大型建筑已经进入一个需要大力修缮和补强的时期。此外,我国拥有众多的名胜古迹,对于它们的保护、修缮也需要性能优异的碳纤维材料来实现。阻碍碳纤维在建筑物补强中应用的主要因素是成本问题。随着碳纤维产能的不断扩大,成本逐渐降低,加之碳纤维施工技术的不断完善,相信建筑补强用碳纤维材料将出现快速增长。

碳纤维补强混凝土结构时,不需要增加螺栓和铆钉固定,对原混凝土结构扰动小,施工工艺简便。作为材料,它们正在替代金属和混凝土来满足环境、安全和能源要求,在土木工程和建筑领域的需求正在呈现上升的趋势。

在铁路建筑中,大型的顶部系统和隔音墙在未来会有很好的应用,这些,也见识很有前景的应用。

3.3体育运动领域

碳纤维在运动领域的三个主要用途是用于高尔夫球棒、钓鱼竿和网球拍框架材料。

目前,据估计每年的高尔夫棒球的产量为3400万副,按照国家和地区分类,美国和日本高尔夫球棒的主要消费地,占80%以上。全世界碳纤维钓鱼竿的产量约为每年2000万副,网球拍框架的市场容量约为每年600万副。其他的体育项目应用还包括冰球棍、滑雪杖、射箭和自行车,同时碳纤维还应用在划船、赛艇、冲浪和其他海洋运动项目中。

体育休闲用品是应用碳纤维复合材料的一个极重要领域,2003年和2004年世界碳纤维总消耗量分别为19210吨和20680吨,而用于体育休闲用品的碳纤维都超过5000吨,占世界碳纤维总消耗量的25%左右。而碳纤维复合材料高尔夫球杆(简称碳纤维高尔夫球杆)又是体育休闲用品中应用碳纤维复合材料最主要的产品,占应用于体育休闲用品碳纤维总量的50%左右,世界碳纤维总消耗量中月有12.5%左右用于生产制造高尔夫球杆。

3.4能源开发领域

随着人类环保意识的提高,大型风力发电产业正在迅速兴起。叶片式风力发电机组有效不活风能的关键部件。在发电机功率确定的条件下,叶片的材料越轻、刚度和强度越高,叶片抵御荷载的能力就越强,叶片就可以做的越大,它的捕风能力也就越强。因此,轻质高强、耐久性好的玻璃纤维和碳纤维混杂复合材料结构成为目前大型风力发电叶片的首选。尤其是在翼缘等对材料强度和刚度要求的部位应使用碳纤维作为增强材料,不仅可提高叶片的承载能力,也可因碳纤维具有导电性而有效避免雷击对叶片造成的损伤。

4 碳纤维的应用前景展望

碳纤维属于高新技术、高附加值产品,具有其他材料部可比拟的优异性能,自商品化以来,应用范围已从最初的航空航天、军事部门逐渐向民用领域渗透,目前已扩展到整个工业与民用的多种领域,随着应用研究的不断深入,特别是在民用方面仍将继续拓宽应用领域。据国外预测碳纤维除了在航空航天以及体育用品进一步应用外,近年内包括土木建筑、交通运输、汽车能源等领域将会大规模采用工业级碳纤维,具有广泛的用途和良好的发展前景。预计2010年需求量将达到3.2万t/a,全球碳纤维的供给与需求将出现紧张局面。

我国PAN基碳纤维材料加工业已初具规模,有一定的技术基础和市场开发能力,市场需求比较旺盛,但碳纤维的生产远远不能满足市场需求。此外,考虑到我国碳纤维的应用还在不断发展,许多用途还有待于开发,如电子设备套壳、集装箱、医疗器械、深海勘探和新能源的开发等方面都件事我国碳纤维未来的潜在消费市场,对碳纤维的需求量将更大,因此,未来我国碳纤维的市场需求前景广阔,潜力较大。

参 考 文 献

篇11

1 南京航空航天大学电气工程专业产学研结合现状

南京航空航天大学电气工程专业为国家级特色本科专业、国防特色重点专业、江苏省品牌特色专业、江苏省“十二五”重点专业以电气工程领域为对象,注重计算机科学、控制理论和信息科学在电气工程各领域中的应用,具有广阔的发展前景,相关研究领域在国内具有重要影响力。该专业设有电力电子与电力传动、电机与电器、电力系统及其自动化三个方向。培养具有电气工程领域较宽广的专业基础知识和工程技术基础,具有较好的电气分析、电气设计、电气系统设计、电气系统运行、科学研究、技术开发和管理工作能力的适应国民经济建设特别是航空航天、国防工业和新能源产业发展的高素质的电气领域的高级工程技术人才。

作为南京航空航天大学这样一所重点大学,重点是培养研究型人才,进行知识创新活动,最终目标是为社会服务,高校通过产学研合作,不仅能够解决学校教育与社会脱节问题,缩小学校和社会对人才培养与需求之间的差距,增强学生在社会的竞争力,而且也能够促进科技发展。近年来,南京航空航天大学开展了较多广泛且有效的产学研合作与实践,尤其在电类领域的合作,效果较为显著。通过合作,实现了将技术攻关、成果转化、平台共建、人才培养、干部交流等全方位的合作,实现了互利共赢,助推了经济发展。以南京航空航天大学与无锡市开展风电领域政产学研合作为例,自合作以来,无锡市委书记杨卫泽率领无锡市党政代表团先后两次访问学校,并就政产学研合作事宜与学校的领导深入交流。而且,学校党委书记崔锐捷、校长朱荻等校领导也多次带领学校相关部门负责同志及部分专家走访无锡市惠山区,实地考察区域经济发展,探索合作模式,推动政产学研合作。②

2 电气专业产学研结合的思考及具体做法

电气专业是电气信息领域的一门学科,由于和人们的日常生活以及工业生产密切相关,成为高新技术产业的重要组成部分,触角伸向各行各业,小到一个开关的设计,大到宇航飞机的研究,都有它的身影。这个专业的学生能够从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验技术、研制开发、经济管理以及电子与计算机技术应用等领域的工作,是“宽口径”、“复合型”高级工程技术人才。该领域对高水平人才的需求很大,正是由于社会大量的需求,不言而喻,电气专业培养学生的素质与质量,对该个专业领域,乃至我国国民经济领域的发展影响也是极其重要的。那么,培养出来的学生是否被社会所接纳,被企事业单位所需求,需要我们高校在培养学生时要制定合理的培养目标、培养模式,因此,产学研的结合,为高校的学生培养、学科发展提供了良好的契机。

2.1 产和研的结合

企业有较好的生产能力,但科技含量低,科学研究创新不够,如果要想在激烈的市场竞争中脱颖而出,甚至立于不败之地,需要把高校的知识资源和科技研究成果可以很好地转化,技术上进行创新。而作为高校,是服务发展的主体,是科学知识的生产者和提供者,对科学知识的传播、整合和流通起着重要的推动作用。高校在搞科研的目的也是为生产服务、为社会服务。产学研结合就是充分利用学校与企业、科研单位等多种不同教学环境和教学资源以及在人才培养方面的各自优势,建立良好的互动,把以课堂传授知识为主的学校教育模式与直接获取工程经验、实践能力为主的生产、科研实践有机结合,才能适时调整学生的培养模式,使学生获得良好的实习机会和实习场所,让高校培养出来的学生更容易走上社会,被企业所需求。电气工程专业就是一个实践性很强的专业,能够解决电气工程技术分析与控制等实际生产问题。

但是,在产学研合作中,高校在科研管理机制上存在一些问题,主要表现在:(1)科技成果转移渠道不畅。很多企业拿着大量资金寻找科技创新成果,而高校的科研成果又转移不出去,导致了高校、企业、科研院所等各方科技资源分散,浪费精力、物力和人力。(2)科研人员考核制度不利于成果转化。当前,高校普遍采用职称和职务等级发放科研津贴的,而职称职务的获得,主要是看权威性期刊的数量、申请的项目获得的奖励,专利情况等,对于科技成果能否实现产业化问题很少重视,致使高校老师很多科技项目申请后,过多地偏重于技术与理论,与社会需求脱节,大部分科研成果很多是只申请了专利,或者发表了论文的水平上,实际应用产出的效果不高。另一方面,当前部分教授评职称前,发论文,申报项目,有较多的研究成果,但职称评定后,科研动力不足,研究成果停滞不前,更多的是享受这个教授待遇,从而导致研究资源流失。(3)科技成果推广机制不完善,重视不够。高校由于学科建设发展需求、整体实力提升等众多因素影响,学校科技部和老师的关注点在于国家或省部级重大项目的申报上面,比如国家自然科学基金、国家级973、863等重大项目课题、各项科研成果奖励申报,而对真正获得的科技成果,如何将其转化投入不够,重视不足。

因此,在高度重视产学研合作的同时,更应该要结合学科、科研特色和优势,充分发挥科研管理制度对科技创新的激励、支持和引导作用,要进一步搭建平台,发 挥政府的作用,与政府、企业、科研院所及高校,产业四力强强联合,不断推动产学研协同创新的形成和发展,为科学技术的研究和创新做出贡献。

2.2 学和研的结合

随着电子、计算机、通信和信息等技术在电力行业的广泛应用和发展,给电气专业的学生带来了很好的发展机遇,这就需要高校培养出的电气专业学生,需要具备一定的科研能力,能够独立承担相应研究方向的科研课题。首先,让学生参与到老师的科研当中。从我校电气专业学生培养来看,学生实行“导师制”,对于优秀的学生,从大学开始就跟随导师做相应的课程设计,等到了研究生阶段,不仅能够很早,而且将课题研究有延续性,能更好地做出科研成果,培养科研能力。第二,让学生参与到各种科技创新比赛,老师进行指导,培养了学生的独立科研能力和科技创新能力。

产学研合作教育是培养具有创新精神和实践能力的高素质学生的重要途径。近年来,我校电气工程专业毕业设计课题,以及研究生课题,有80%的题目与产学研基地的实际和教师科研课题紧密结合,有部分学生直接参加教师承担的课题。通过多种渠道,不仅可以使学生更深入接触工程实际,增强实际工程意识,提高综合实践能力,在完成自己学业任务的同时,培养了科研创新能力和实践能力,

2.3 产和学的结合

人才培养是高校教育的发展之路。经济社会的发展对人才的需求是多种多样的,精英教育、大众化教育是高等教育的两个方向。精英教育培养拔尖人才,大众化高等教育培养各级各类专门人才,各具功能,不可替代。学校应根据不同的社会需求进行科学、准确的定位,确立自己的发展方向,形成有特色的人才培养模式、培养目标、培养方法和质量标准。③

电气专业的学生培养,需要保持和加强原有专业特色和优势,培养学生较强的工程实践能力,提高学生的就业竞争力。在实际操作中,学校应因材施教,引入各类培养机制,如结合产学研的合作平台,一是和企业联系,为学生提供相应的实习基地;另一种则是根据企业的需求,企业的科研方向,制定我们培养学生的目标、模式及课程体系。如开设专门的“卓越工程师”班,单独组织学生完成一门企业课程授课,一次企业参观实习,一次“工程技术讲座”。除此之外,每年暑假,我校的电气专业与陕西航空电气有限公司、陕西西航动力股份有限公司、河南许继集团、南京机电液压工程研究中心等多个校外产学研合作教育基地开展合作,这些企业每年为电气专业学生提供实习条件,提供合作科研项目。

3 总结

电气工程专业行业属于高精尖端行业领域,尖端人才的培养十分重要,它的社会需求较广,而培养这样的优秀人才,就需要高校制定适合社会需求的人才培养模式,通过产学研合作的模式,让学生、教师有良性发展,才能促进电气学科的发展,而外部则需要社会与企业的需求,产学研的结合便是达到这一目标的良好途径。

基金项目:南京航空航天大学基本科研业务费青年科技创新基金-高校科研管理中产学研协同创新机制研究(资助编号:NR2013029;项目负责人:李洁)成果之一

注释

篇12

继“神五”、“神六”、“嫦娥一号”等发射之后,“嫦娥二号”发射也迫在眉睫。据国空国防科技工业局透露,目前我国探月工程“嫦娥二号”任务进展顺利,包括“嫦娥二号”卫星、“三号”丙运载火箭等在内的五大系统准备工作基本就绪,目前已被送往西昌发射中心,如果一切顺利,“嫦娥二号”于10月1日下午,在西昌卫星发射中心开始奔月之旅。

“嫦娥二号”奔月点燃军工股激情

受到“嫦娥二号”即将发射消息的刺激,近期航天军工股表现抢眼,纷纷跑赢大盘。上周二,在大盘小挫的情况下,该板块涨幅达2.78%,位列概念板块涨幅前三。中国卫星和中航光电更是在当天创下上市以来的新高,分别报收于27.87和17.78元。最近5个交易日,该板块资金2天净流出,3天净流入,合计资金流入5.36亿元。

统计显示,7月以来航天军工板块加权平均股价已经上涨30%左右,而同期上证指数上涨不足10%。中原证券研究所机械、航天军工行业分析师路永光认为,“嫦娥二号”探月卫星将于近期发射在短期内对相关个股不过是一个催化剂,随之而来的神舟八号飞船正在进行总装,改进型“二号F”火箭产品已齐套,正在进行分系统综合试验等一系列后续内容才能真正让相关军工单位持续获益。

不过,“见光死”的特点在航天军工股上几乎是百发百中。这次会重演吗?齐鲁证券首席分析师李世彤看得比较乐观,他认为真正让航天军工股走强需要多种因素叠加而成,包括政策面、消息面、资产注入等。而几年之前“神五”、“神六”发射时期,市场基本处于炒作一个短期题材的阶段,所以容易遭遇见光死,而今非昔比,眼下伴随着资产注入等重组题材的推进,军工题材有可能被持续利用。

未来亮点仍在重组

航天军工行业具有独特的垄断地位,行业内竞争有限,产品销售依靠政府采购,毛利率维持较高水平,这些因素都保证了行业的良好前景。而国家对于国防军事的扶持也将长期促进行业发展,近年来国家明显加大了对航天、航空和国防事业等高技术领域的投入,行业将广泛受益。

五大产业投资主线需要关注:中国经济正面临许多困难,实施经济转型是唯一的出路,转型同时意味着实施结构调整和产业技术升级。国防工业历来是新技术和产业升级的先锋。我国政府已经通过实施国家重大专项和发展重点技术关键设备,在航空航天和国防领域率先开始了新技术突破和产业升级。我们根据未来10年国家’的产业发展政策和方向,为投资者梳理了北斗导航系统、大飞机项目、航空发动机、通用航空和低空空域放开、航空母舰五个产业投资主线。

国防工业资产证券化将持续深化:军工资产证券化是中国国防工业体制改革的有机组成部分。通过资产证券化,可以帮助军工企业具备自我造血功能,实现提高企业效率、技术水平、综合竞争力的最终目标。因此,军工资产证券化趋势不会改变,并且会越来越深化。航空工业资产证券化率在35%左右,兵器工业集团的比例约20%,航天科技和航天科工集团这个比例在10-13%左右。军工集团后续资产整合空间十分广阔。

投资策略

篇13

[关键词]碳纤维 现状 发展趋势

中图分类号:R220 文献标识码:A 文章编号:1009-914X(2016)10-0181-01

一、碳纤维简介和碳纤维的用途

碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维。特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质。是其他主要结构材料、金属及其合金所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高、非磁体但有电磁屏蔽性等。

作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用。从航天、航空、汽车、电子、 机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。

二、我国碳纤维发展历史

我国自20世纪60年代开始碳纤维研究开发至今已有近50年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。

三、碳纤维生产方法

目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大,设备复杂,成本较高,产品主要为

耐烧蚀材料及隔热材料所用。由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂,产品性能较低,亦未得到大规模发展。由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产的主流。

聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、 上油、烘干收丝等工序。碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。

根据产品规格的不同,碳纤维目前被划分为宇航级(aerospace-grade)和工业级(commercial-grade)两类,亦称为小丝束(small-strand tow或small tow )和大丝束(large-strand tow或 large tow) 通常把48K以上碳纤维称为大丝束碳纤维.包括48K、60K、120K、360K和480K等。宇航级碳纤维初期以1K、3K、6K为主。逐渐发展为14K和21K主要应用于国防军工和高技术,以及体育休闲用品,像飞机、导弹、火箭、卫星和钓鱼杆、高尔夫球杆、网球拍等。工业级碳纤维应用于不同民用工业,包括:纺织、医药卫生、机电、土木建筑、交通运输和能源等。

四、我国聚丙烯腈基碳纤维发展现况

我国从20世纪60年代后期开始研制碳纤维,历经近50年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。 20世纪70年代初突破连续化工艺。1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。面对国外在技术、设备、品种和性能等方面激烈竞争,迅速发展的局面。我国碳纤维生产处于起步阶段,与国外相比有很大差距。无论产量、质量均不能满足市场发展需求。目前制约我国碳纤维发展的首要原因是原丝质量不过关,其它原因还有生产技术及设备等。

五、我国碳纤维消费情况与需求

尽管我国碳纤维生产发展缓慢,但消费量却与日俱增,市场需求旺盛。主要集中在文体用品和航空航天方面,一般产业需求增长也比较迅速。国内碳纤维应用的主要领域有如下:

航空、航天及国防领域、飞机、卫星、火箭、导弹、雷达、体育休闲品、高尔夫

球、渔具、网球拍、羽毛球拍、箭杆、自行车、赛艇等新兴市场碳纤维基增强工程塑料、压力容器、建筑补强等。

国内PAN基碳纤维材料加工业已初具规模,有一定的技术基础和市场开发能力,市场需求比较旺盛,但碳纤维的生产远远不能满足市场需求,需大量进口。此外,考虑到我国碳纤维的应用还在不断发展,许多用途还有待开发我国碳纤维未来的潜在消费市场,对碳纤维的需求量将更大。因此,未来我国碳纤维的市场需求前景广阔,潜力极大。

六、发展趋势

碳纤维属高新技术,高附加值产品,具有其他材料不可比拟的优异性能,有广泛的用途和良好的发展前景,随着我国经济的持续快速发展碳纤维的市场需求与日俱增发展我国的碳纤维工业具有重大的现实意义和深远的历史意义。因此,针对当前现状,必须加快我国碳纤维发展进程。

篇14

关键词:3D打印耗材;质量;问题

DOI:10.16640/ki.37-1222/t.2016.22.249

0 引言

3D打印又称被称为增材制造,属于快速成型技术,选用可粘合材料,主要有粉末状金属、聚合物、陶瓷、塑料,以数字模型文件为基础,逐层堆叠累积来生产产品。当前条件下,制约3D打印技术发展的两个主要因素是打印耗材和打印设备,而相比于打印设备的研究和开发,打印耗材的研发更是难上加难,成为目前制约3D打印发展的至关因素。普通打印机的耗材主要是纸张和墨水,3D打印机使用的材料是胶水与粉末,且不能直接拿来采用,一定要先经过必要处理,同时对材料的固化反应速度等等也有较高要求。本文笔者介绍了用于3D打印的几类主要耗材,分析了当前3D打印耗材发展所面临的问题及研究进展,并提出了相关对策。

1 3D打印耗材

1.1 金属材料

金属材料力学强且导电性良好,目前利用其制造的3D打印产品已被广泛应用,在3D打印市场中占据很大一部分。所使用的金属材料必须符合粒径分布窄、含氧量低、纯净度高等特殊条件,通常是粉末状。钛合金、钴铬合金、不锈钢和铝合金等金属粉末材料是目前使用比较多的3D金属打印材料[1]。钛合金的优势在于低密度、高强度、耐高温且耐腐蚀,主要应用于汽车、火箭、导弹和航空航天等领域,且发展前景可观;钴和铬是钴铬合金的主要成分,优势在于抗腐蚀性能和机械性能良好,用其制作的零部件耐高温、强度高,一般用于制造一些精密的仪器;不锈钢材料耐腐蚀性强,且价格低廉,主要用于制作一些尺寸较大的3D打印产品;质轻、强度高是镁铝合金强于其他材料的优势,在一定程度上满足了制造业的强量化需求。

1.2 复合材料

美国硅谷Arevo实验室于2014年推出一项全新的3D打印技术,通过该技术顺利打印出了碳纤维增强尼龙基体(比PEEK更低端的聚合物树脂)的复合材料。传统打印模式是通过注塑或挤出方法来定型,与之相比,3D打印更加灵活、精准,在精确控制碳纤维取向的同时,还能优化机械、电和热性能,生产的复合材料零件任何一层都可实现其所需的纤维取向。航空航天、国防和医疗所使用的零件产品大部分都是利用复合材料来生产的,未来通过不断的探索和研究,有望开发出更轻、更强、更持久的组件。

1.3 陶瓷材料

陶瓷材料的优势在于硬度高、密度低、耐腐蚀且耐高温,较多的应用于汽车、生物等行业领域。3D打印的陶瓷制品耐热性能极好,可高达600℃,且不透水、无毒,并能废物回收利用,可作为炊具、餐具、花瓶、瓷砖等家具装饰的首选材料。但陶瓷材料存在强度不高的不足,加工成形比较困难,尤其是构造相对比较复杂的陶瓷件必须利用磨具来成形,而模具加工费用较高且开发耗时较长,很难满足产品的需求。据有关报道,西英格兰大学研发人员成功开发了一种改进型的陶瓷3D打印技术,在CAD数据的基础上,可直接进行打印、烧制、上釉和装饰,在节省时间和成本的同时,解决了原陶瓷产品原型无法过火和测试釉质的困难[2]。

1.4 聚合物

ABS(丙烯腈-丁二烯-苯乙烯)和PLA(聚乳酸)是聚合物中应用较多的两类塑料。ABS是3D打印最常用的热塑性塑料,强度高、机械加工性和柔韧性较佳、抗高温。ABS材料颜色和种类比较多样,而PC材料单一,只有白色,但其强度又明显优于ABS材料。PC-ABS材料综合性就比较强,具备ABS韧性的同时,又有PC的高强度及耐热性,可首选为工程塑料 [3]。但是PLA耐温性差,温度不得高于50℃,一旦温度大于50℃,材料就会变形,这一不足导致其不能在3D打印领域大量应用。PSU类材料在所有的热塑性材料中强度最高,耐热性和抗腐蚀性最佳,主要用来制造最终零部件,广泛应用于交通运输工具、航空航天等领域。

2 我公司对打印耗材的改进处理

目前市场上的3D打印耗材种类较少且性能不是特别稳定,我们公司对3D打印耗材做必要的物理改性处理,开发一套性能稳定,种类齐全的3D打印耗材。

(1)通过改善材料的结晶速率,提高冷却速度来实现打印过程中的快速成型;通过对材料进行改性研究来改善打印制品的翘曲变形问题及打印流畅性问题。

(2)通过物理共混改性方法,添加某种功能性物质及其辅助材料,使产品达到上述所列的功能性要求。

(3)通过制定全球通用的打印材料的规格、功能、颜色及性能指标等来确定统一的标准。

(4)通过使用资源可再生材料或生物材料,环保无毒助剂等方式实现环保要求。

3 3D打印技术目前的缺陷

目前,塑料仍是桌面级3D打印的主要材料,3D打印导致的层间粘结会引发打印模型产生各向异性的力学缺陷。对于3D打印技术目前的缺陷,Z―Corporation等3D打印公司致力于研究优化现有打印耗材的属性,目的在于提高产品性能;在研究现有材料的同时,努力开发全新的、性能更高的打印材料。很多高校也陆续开展了相关课题,研究不同材料组合,致力于弥补缺陷,开发出高性能结构的新型材料。

4 多样式的材料打印技术

目前,有很多的桌面级3D打印机还只能应用于打印单一材料模型。现在很多的3D打印机都有双喷头或者三喷头,但是在实际应用中,多喷头的打印机还在不断的试验探索中,Bayless等人开发的线轴挤出机,可在塑料上打印金属丝,将来可实现打印电路板;Braanker等人设计的颗粒挤出机,可加工出多种材料的颗粒。未来,多喷头打印中途频繁转换3D打印喷头出现的线材挤出不流畅的问题会成为以后研究的重中之重。

参考文献:

[1]唐通鸣,陆燕,李志扬,倪,聂富强.新型3D打印材料ABS的制备及性能研究[J].现代化工,2015(07).