发布时间:2023-09-21 09:57:21
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇航空航天的发展前景,期待它们能激发您的灵感。
关键词:计算力学;多物理场耦合;先进复合材料;有限元技术(FEM)
中图分类号:V211 文献标识码:A 文章编号:1671-2064(2017)12-0252-02
1 力学在航空航天领域的支柱地位
作为与材料科学、能源科学并肩的航空航天领域三大基础学科之一,力学在航空航天领域拥有无可辩驳的支柱地位。航空航天技术的发展与力学学科的发展有着举足轻重的关系。同样,力学学科的发展也推动了航空航天技术的发展。从航空航天的历史开端,力学便扮演着开天辟地的角色:莱特兄弟发明飞机前的时代,人类的航空器长期停留在热气球与飞艇的水平,人们普遍认为任何总密度比空气重的航空器是无法上天的;而随着流体力学的发展,越来越多总密度大于空气的航空器被发明出来进行试验,而莱特兄弟的飞机即为第一个成功的尝试,莱特兄弟的L洞也成为一个经典(图1)。从此,航空器的发展步入了快车道,各种结构的飞机翱翔于蓝天,从不到一吨的轻型飞机到上百吨的运输机,直至今天我们对机已经习以为常。
时至今日,航空航天的总体设计已由庞大的力学各分支支撑起来,从最基本的方面分类,可包括:飞行器整体气动外形归属于空气动力学;整体支承结构归属于结构力学以及材料力学;复合材料归属于复合材料力学;材料疲劳性能归属于疲劳分析;结构动力特性归属于振动力学;缺陷结构分析归属于损伤力学以及断裂力学。而对于具体的问题细分,则还有如:针对超高速飞行器的高超空气动力学;针对紊流等大气不稳定情况的非定常空气动力学;针对流固耦合问题的气动弹性力学;以及针对非金属材料的粘弹性力学等。此外,还有众多与力学相关的技术被发展起来,如有限元技术(FEM)等。
展望未来,力学发展的源动力在于航空航天综合多学科的交叉与技术。被誉为“工业之花”的航空航天工业,其研发生产涵盖了目前已知的所有工科门类,如此多的学科交叉下,力学的发展势必会与其他学科进行技术交流,这会带来问题的进一步复杂化,同时也丰富了力学的研究内容。
2 航空航天领域力学发展新挑战
航空航天的发展,给力学带来了新的挑战。结构的日趋复杂,给力学计算带来困难;繁琐的理论公式,需根据工程需要进行必须的简化;新材料的应用在航空航天领域最为敏感,在为飞行器降低结构重量的同时,也带来诸多的不利因素如耐热性能差、环境敏感度高等;而在某些关键部件的多物理场耦合问题也将成为重要的研究方向。
2.1 程序化
航空航天器和大型空间柔性结构的分析规模往往高达数万个结点、近十万个自由度的计算量级,这些问题包括但不限于:飞行器的高速碰撞间题,如飞机的鸟撞, 坠撞,包容发动机的叶片与机匣设计,装甲的设计与分析,载人飞船在着陆或溅落时的撞击等。为了解决这种计算量庞大的问题,上世纪50年代初,力学便发展出一门崭新的分支学科――计算力学。伴随着电子计算机以及有限元技术的发展,计算力学取得辉煌的成绩,这也说明了其本身发展潜力巨大。
力学分析技术的发展,特别是对于各种非线性问题(几何非线性、材料非线性、接触问题等)分析能力,是长期存在的。然而在很长一段时间内,受到计算机能力的制约,以及模型建立本身的局限性,力学分析求解停留在解析方法和小规模数值算法中。这对于工程人员的设计工作是一个极大的限制,对于航空航天领域而言则尤甚如此。计算力学的发展,带来的效益是巨大的。首先其可以用计算机数值模拟一些常规的验证性试验和小部分研究型试验,这可以节省很大一笔试验费用。其次,其可以求解某些逆问题,逆问题的理论解往往无法通过非数值的手段得到。最后,从工程管理角度考虑,数值模拟方法大大节省了产品研发的周期,由此单位时间内产生了更多的经济收益。有限无技术分析机翼见图2。
上述计算力学给工程设计方面带来的种种好处,都基于一个很重要的前提。那就是力学问题程序化。如何将力学问题转化为一个计算机可以求解的程序,一直是计算力学研究的重点,比如有限元技术就是其中一个典型代表。目前,有限元技术已经涵盖了大部分力学问题,包括:静力学求解,动力学求解,各种非线性问题,以及多物理场耦合等。但值得注意的是,除了静力学以及相对简单的问题外,其余问题所用的算法目前精度仍然有限,相较于工程运用而言仍存在诸多壁垒。对于这些问题算法的更新,是力学问题程序化必须面对的挑战,仍需研究人员不断探索。
2.2 工程化
力学工程化依然是基于计算力学而讨论的。所不同的是,程序化是针对一项力学问题能不能解决,工程化关注的问题是如何使得力学问题的解决过程更符合工程需求。
21世纪的航空航天,已经越来越趋向于商业化,美国已有数家私有航天企业成立,我国的航天科技集团也在进行着一些商业卫星发射。而商业化的工程问题,所追求的目标永远是效益。因此,力学工程化发展也应基于这一要求。航空航天工程的研发工作,一直给人周期长的印象,动辄10年以上的研究周期,对于目前商业化的运营是不适用的。如何快速的给出解决方案,是今后力学工程化的重要考量。随着软件技术的发展,越来越多的数值计算可以通过可视化、图表化等快捷的交互式设计方法呈现出结果,这可以直观地给予工程师设计反馈,从而达到加快设计进程的目的。同时,直观的结果反馈,也能避免数据分析过程出现人为失误,起到规避风险的作用。
2.3 非均质化
新材料往往首先出现在航空航天领域,其中典型代表便是先进复合材料。先进复合材料具有高比强度、高比模量、耐腐蚀、耐疲劳、阻尼减震性好、破损安全性好以及性能可设计等优点。由于上述优点,先进复合材料继铝、钢、钛之后,迅速发展成四大结构材料之一,其用量成为航空航天结构的先进性标志之一。
复合材料的运用给力学提出了新要求,相比于传统各向同性的金属材料,其各向异性的力学特性使得非均质力学应运而生,代表便是复合材料力学的诞生。非均质化力学需要将材料的承力主方向设计为结构中的主承力方向,而非主承力方向则需要保证一定强度,不至于破坏,这是其主要的设计特点。相比各向同性材料,其理论模型更为复杂,相应的数值求解方法也没有那么完善。同时,实际中复合材料的性能分散性和环境依赖性相当复杂, 设计准则和结构设计值的确定还很保守,导致最终设计结果并没有理论中那么完美,很大程度上制约了工程领域大规模使用复合材料。对于国内而言,复合材料研究工作相比国外则更为落后,无论是设计经验还是试验数据积累都有不小差距。
建立完备的非均质化力学模型,积累足够的原始参数,大胆尝试提高复合材料的设计水平以及用量是今后力学非均质化的主要任务,需要研究人员付出更多的努力。
2.4 多物理场耦合
2.4.1 电磁与力学耦合
新时代下的航空航天材料,已不仅仅局限于提供简单的支承作用,功能化是航空航天器新材料发展的重点和热点,其最终目的是为了未来航空航天器发展智能化目标。
目前,越来越多的具有电-力耦合功能的新型材料正成为航空航天器结构材料的选择。因为在对飞行器的自我检测技术方面,具有电-力耦合功能的材料的受力状态与电磁性能存在特定的函数关系,由此系统能通过检测电磁性能达到检测受力状态的效果,这大大方便了对飞行器的健康监测,也有效保证了飞行器的安全。这其中耦合函数的准确性便成为关键,电-力耦合的发展能促进这些技术的健全,具有十分积极意义。
2.4.2 温度与力学耦合
温度场与力场的耦合主要体现在发动机上,对于发动机内部涵道的设计最优化一直是热力学着力解决的问题。
目前大部分飞机均采用喷气式发动机,包括:涡喷发动机、涡扇发动机以及涡桨发动机。上世纪40年代末,涡喷发动机出现,飞机飞行速度第一次能超过音速,带来了一场飞机发动机的技术革命。由此,包括进气道以及发动机涵道的设计成为发动机研发的一个关键点,早期的涡喷发动机,由于涵道上的设计缺陷,导致燃料燃烧产生热能转化为推进力的转化比很低,同时伴随着燃烧不充分,因此发动机耗油量很高且推力较小。经过几十年的发展,目前无论军用还是民用飞机发动机,大部分均采用涡扇发动机,通过优化得到的涵道形状最大化了单位燃油所提供的推力。图3为民用客机发动机涵道。
我国的飞机发动机工业水平距离世界领先水平仍有较大距离,特别是在大涵道比的商用发动机研发上。发展热力学,对热-力耦合问题进行更深入的研究,是发展我国飞机发动机事业的奠基石。
2.4.3 流固耦合
流固耦合是飞行器研制最基本的问题之一。几十年的发展历程中,基于流固耦合研究的飞机外形设计取得了诸多进展,包括整体机身外形的优化,翼梢小翼的出现等。随着飞机飞行速度的不断提高,特别是军用飞机机动性的要求,出现了许许多多新的流固耦合问题。比如针对飞机在大攻角飞行时(一般出现在军机上),传统小攻角气动表示法、稳定理论等均不再适用。因此,解决大攻角非定常问题,需要从飞行器运动以及流动方程同时出发,建立多自由度分析和数值模拟模型。这是典型的流固耦合问题。
同时,以往旧的流固耦合理论,在先进复合材料大量运用的今天,显然已经不再使用。对旧有理论进行必要的修正,也将成为流固耦合问题亟需完成的工作。
3 结语
当前,国家大力发展航空航天事业,作为高精尖产业,其所运用的理论与技术绝不能落后。力学作为一门古老而又应用广泛的学科,其对航空航天事业的发展起着举足轻重的作用。为符合未来航空航天领域发展,航空航天领域的力学应着力向着程序化、工程化、非均质化、以及多物理场耦合化综合发展。
参考文献
[1]杜善义.先进复合材料与航空航天[J].复合材料学报,2007(2):1-11.
[2]尧南.计算固体力学的发展及其在航空航天工程中的应用[J].计算结构力学及其应用,1993(3):199-209.
航空航天技术是信息、能源、制造等综合性尖端技术的集合,是一个国家综合科技实力的象征和衡量标志,在国家的军事国防中起着中流砥柱的作用。近几年“神舟”系列载人飞船的成功飞行,以及我国首架具有自主知识产权的喷气式支线飞机ARJ21总装下线等,引发了人们对航空航天技术领域的极大关注,而航空航天类专业更是吸引了不少同学和家长的眼球,被同样怀揣飞天梦想的考生所追捧。
学科优势助推人才起飞
航空航天类专业主要研究飞行器的结构、性能和运动规律,培养如何把飞行器设计制造出来并送上太空的工程技术专业人才。从狭义上讲,航空航天类专业包括飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程、探测制导与控制技术等主体学科专业。然而,无论是飞机还是航天飞行器,都是综合科学技术的结晶,涉及材料、电子通讯设备、仪器仪表、遥控遥测、导航、遥感等诸方面。因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机、交通运输、质量与可靠性工程等都是航空航天技术不可或缺的学科专业。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。
航空航天类专业对同学们的要求是“厚基础、强能力,高素质、重创新”。同学们要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力,以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。
有同学认为航空航天类专业就业覆盖面窄,如果毕业后不能进入航空航天类企业,就很难找到专业对口的工作。其实不然,航空航天高科技辐射国民经济各个部门,航空航天类专业扎实的工程技术理论与实践基础平台,促成了其拓展性宽、应用性强、适用面广的专业特点。可供毕业生选择的对口职业有很多,如飞行器设计、制造人员,科研机构研究人员,国防部门研究管理人员,各级政府部门负责航空航天相关工作的研究管理人员,民航企事业单位的技术管理人员等。毕业生不仅可从事航空航天等领域的设计、制造、研发、管理等工作,还可在民航、船舶、能源、交通、信息、轻工等其他国民经济领域施展才华,像微软、IBM、贝尔、方正、海尔等知名企业都曾纷纷到航空航天院校招贤纳才。很多民用部门也都点名要航空航天类专业的毕业生,认为他们基础扎实、学以致用。
行业繁荣点燃人才需求
航空航天科技工业是知识密集和技术密集的高技术领域,航空航天技术的广泛应用影响到政治、经济、军事、科技、文化及通信、气象、能源、探测等领域,成为社会进步的强大动力。从世界范围来看,航空航天科技工业是朝阳产业,在提升国家整体科技水平和综合国力方面起着龙头的作用。
我国经济的快速发展为航空航天工业提供了广阔的发展空间。国务院公布的《国家中长期科学和技术发展规划纲要》中,关于大型飞机、高分辨率对地观测系统、载人航天工程与探月工程等航空航天领域范畴的工程便占到16个重大专项中的4项。未来我国航空航天发展将重点开发大型飞机设计与制造成套技术,载人航天实现航天员出舱进行航天器交会对接试验活动,直至实现登月计划等。2007年大飞机项目正式上马,给我国的航空业带来了空前繁荣,带活了一批航空类企业,也为航空航天类专业毕业生带来了良好的机遇。
航空航天科技工业极具发展前景,对人才的需求会持续旺盛。据统计,2011年最被看好的12类专业之航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理,航空航天飞机总体设计与研发、发动机研发与制造,零部件研发与设计,航空航天新材料研发、制造及总装技术、计量检测技术、航空航天电子电器设备设计开发、信息及测控技术,航空航天生物技术、航空适航管理、航空维修改装,以及航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。有关人士根据教育部公布的相关信息归纳出的“最出人意料的十个高就业专业”,便将航空航天类专业列入其中。
上海作为我国新支线飞机和未来大型民用飞机设计总装基地和重要的航天基地,举办了“上海航展”,展会上举行了航空航天人才大型招聘会。据航展招聘组负责人介绍,目前航空航天项目需要大量人才,仅空客A380一个项目组的技术人员需求数量就超过六千人,而我国这方面人才缺口非常大。
近年来,以航天科技,科工集团,航空一、二集团等为代表的航空航天类企事业单位生产和科研任务饱满,条件大为改善,待遇提高很快,一些单位的员工年薪可达十几万,稍差一些的单位其员工薪资待遇也可达到当地中上水平。航空航天事业的迅猛发展,无异于为年轻学子的成长搭建了理想的平台。像航天空间设计研究院、航空材料研究院等单位都炙手可热,受到重点院校毕业生的青睐。毕业生就业地域以北京、上海、西安、成都、沈阳、哈尔滨、深圳等省会及核心城市为主。
从个人长远发展来看,在航空航天类企事业单位工作,发展前景好,待遇高,成长快。随着载人飞船、探月工程、大飞机等重大项目的深入实施,必将有越来越多的青年才俊在锻炼中脱颖而出。
报考提示
我国目前开设航空航天类专业的重点院校有北京航空航天大学、南京航空航天大学、哈尔滨工业大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工程大学等。近年来,清华大学、复旦大学、上海交通大学、厦门大学等也相继设置了此类专业。开设航空航天类专业的普通院校有南昌航空工业学院、沈阳航空工业学院、郑州航空工业管理学院、中北大学、中国民航大学等。由于各个院校的发展历史、层次、实力不同,学科专业水平差异也较大,同学们应注意了解自己感兴趣的院校,根据自身实力,准确定位,合理选择。
学习航空航天类专业以及将来从事航空航天技术工作,需要具备较强的学习钻研及动手能力,要求同学们的数理化基础扎实,逻辑思维能力较强,严谨求实,乐于钻研。同学们应从实际出发,量体裁衣。
一些考生和家长误以为报考航空航天类专业,体检的标准要按照军检的标准来进行,其实不然。航空航天类专业主要是培养航空航天领域的专业技术人才,对考生的身体状况没有特殊要求,同学们只要符合《普通高等学校招生体检指导意见》,就可放心报考。
这一成功令一直紧张注视“好奇”号的美国国家航空航天局火星项目团队异常兴奋。在得知“好奇”号成功登陆火星后,美国总统奥巴马表示,“好奇”号是迄今登陆其他星球最为复杂、精密的移动实验室,标志着科技空前进步,表明即便是最艰难的挑战也无法抵挡创新和决心的脚步。奥巴马的科学顾问霍德伦认为,这是人类在太空探索上迈出的巨大一步,是一项无与伦比的成就。
这是美国国家航空航天局所发射的探测器第七次在火星着陆。“好奇”号着陆在火星盖尔陨坑内一块平坦地面,所载的一台照相机捕捉了着陆瞬间情景。对此连称“漂亮”的美国国家航空航天局局长博尔登说,“好奇”号的轮子已经开始为人类踏足火星开辟道路。
在“好奇”号登陆火星的过程中,最令人揪心的惊险过程当属进入火星大气层后的下降和着陆。在短短7分钟内,“好奇”号的时速由约2万公里下降至零,且无法人为控制,完全由一项最新着陆技术自行完成,其间充满不确定性,任何一个微小失误便将导致全盘皆输,因此美国国家航空航天局称之为“恐怖7分钟”。
此外,由于“好奇”号所发出的信号需要围绕火星运行的另外3颗探测器中转,“好奇”号着陆的信号最快也要在14分钟后才能传递到美国国家航空航天局地面控制中心。这一“度秒如年”的等待更使这一着陆的成功令人欣喜异常。
在火星表面着陆约两小时后,“好奇”号探测器发回了一张有关其“新家”盖尔陨坑的高分辨率黑白图片。“好奇”号还将发回更多图片,并将传回彩色图片。人类也因此能够更为真切地了解火星景象。
据了解,此次“好奇”号的任务目标是搜寻碳、氮、磷、硫和氧等基本生命元素,但没有计划搜寻生物或化石微生物。未来将岩石和土壤样本带回地球后,人们才能最终确认火星是否确有生命存在。
此次“好奇”号之所以选定在盖尔陨坑着陆,是因为有迹象表明,那里曾经有水存在,盖尔陨坑旁的高山富含矿物质。在经过几周“身体检查”后,“好奇”号将开始行走并登山,使用机械臂等钻探岩石、采集土壤,开展查看是否有微生物生长环境等科研工作。
火星一直被称为宇宙飞船的墓地。自上世纪60年代以来,美国、苏联及欧洲等一直进行火星探索活动,但多数失败。耗资25亿美元的“好奇”号是美国国家航空航天局一次代价最为高昂的“豪赌”,其成功与否事关美国国家航空航天局今后发展前景。由于经费紧张,美国国家航空航天局已经停止与欧洲航天局原定于2018年联合登陆火星计划。欧洲航天局因此决定与俄罗斯联手进行相关领域合作。
美国国家航空航天局希望“好奇”号此次登陆火星后能有重大发现,为今后宇航员登陆火星打好前站。
(综合8月7日《人民日报》和《北京日报》)
花 絮
美华裔少女为“好奇”命名
2009年5月27日,美国宇航局宣布,堪萨斯州小学6年级12岁的华裔学生马天琪在美国太空总署举办的为火星探测器命名的作文比赛中获得冠军,得以用“好奇”命名美国下一代火星探测器。
这项收购的对象,是一家鲜为人知的美国无人机制造商——泰坦航空航天公司,最终的成交价格可能只有6000万美元左右,不及Whatsapp收购价的零头。
但如果考虑到它未来可能带来的价值,这起收购的意义,并不会比收购Whatsapp逊色太多。
能飞5年的无人机
泰坦航空航天是一家非常年轻的公司,成立于2012年,总部位于美国新墨西哥州,专注于研发太阳能无人机。
在2013年的国际无人操控载具展览(AUVSI)上,泰坦航空航天展示了正在研发的两款太阳能无人机Solara 50和Solara 60。
这是两架硕大无比的长航概念无人机,其中的Solara50是轻型版本,有着50米的超长翼展,升级版Solara 60则有60米的翼展和更大的骨架,它们由飞机弹射器发射升空并可以通过飞机底部的滑轮着陆。
泰坦航空航天更倾向于把他们的产品称为“大气卫星”,而不是行业内习惯的称呼“遥控无人机”或“无人机系统”。因为它们和轨道卫星一样,能够在空中长时间巡航停留。
以Solara 50为例:升空之后,它可以在20千米的高空携带一个32千克重的有效载荷,以每小时96公里的速度巡航飞行长达5年。
之所以可以不受天气和夜晚的影响不间断地工作如此长时间,是因为Solara无人机的机翼表面、升降机组和水平尾翼上,布满了总共约3000个高效率太阳能电池板。
白天飞行时,由太阳能电池板所产生的多余能量会自动存储在位于两侧机翼内的锂离子电池中,这样就可以保证为无人机夜间的续航飞行提供足够的动力。
这种超强的续航工作能力,正是泰坦航空航天认为无人机几乎可以替代大气卫星等设备,实现低成本气象监测的主要原因。
低成本多用途
目前,气象监测只有两种解决方案:发射卫星和地面监测,如果要完成大气观测和天气监测,通讯转播,海洋研究和地球成像等一些更高级的任务,发射气象卫星就成了唯一选择。
不过发射气象卫星通常要耗资数亿美元,而且无法回收利用,一旦卫星搭载的大气传感器或者仪表损坏,要么付出高昂维修成本去维修,要么只能选择遗弃它。
相比而言,无人机的成本就低得多,一套无人机系统的总成本不到200万美元,而且和卫星不同,即使是仪器设备损坏,还能让它降落,维修或更换设备后重新发射升空。
事实上,Solara无人机成本构成中最主要的部分,并不在于制造无人机,而是电池。理论上只要有足够的太阳能驱动,泰坦无人机就能够长时间地工作下去,但太阳能电池会随着时间推移逐渐老化,因此每隔5年左右就必须更换。
为了论证这个数据,在新墨西哥州,泰坦航空航天公司正用两架1/5原机大小的试验机进行试飞,今年夏季,全尺寸的机型将有可能正式上天,执行气象监测任务。
除了气象监测,泰坦航空航天公司给这两架无人机的使用定位非常广泛,Solara无人机还可以执行宇宙辐射监测、垃圾带跟踪、作物监测、海洋与大气温度监控、陨石跟踪和浮油映射等任务,另外在针对森林火灾和海上搜救等救灾方面,无人机也可以提供辅助。
比如监测森林火情,Solara无人机可以应用于森林火灾预警、火灾地点确定以及火情观测等,并且解决了传统无人机监测系统中无人机续航时间短的问题。
“太空无线路由器”梦想
如此广阔的应用前景让泰坦航空航天获得了不少战略投资者的关注,即使两年来Solara 50和Solara 60一直处在原型设计阶段,连正式的试飞和信号覆盖测试都没有进行过,泰坦航空航天还是获得了三笔融资。
不过,也正是因为无人机科研成本太高、硬件研发周期太长,一些早期投资者开始质疑这个项目的发展前景。资金紧缺之下,泰坦航空航天萌生出售想法。2014年初,Solara50完成了原型机测试,硬件设计工作结束并开始正式建造后,Facebook抛来了橄榄枝。
在外界看来,Facebook有意收购泰坦航空航天,除了Solara无人机未来的诸多应用前景之外,还有一个更迫切的想法,就是为了推进其2014年年初发起的全球互联计划,希望为全球无网络连接地区建立网络热点,提供免费上网服务。
泰坦航空航天的Solara无人机正好可以满足这个计划的硬件需求,在无人机上搭载超视距通讯系统所需的无线电中继器后,无人机就变成了一个置于空中的、信号覆盖范围极广的“无线路由器”。
因为Solara无人机的航空高度足够高,它的信号传播范围最大可达 100 海里(约 185千米),所以利用无人机在全球无网络连接地区实现组网后,它将会成为Facebook获取数十亿潜在用户的重要网络硬件接口。
如此看来,这台“太空无线路由器”的价值远远超过6000万美元。
一、瞄准地方资源发展前景,选择航空作为科技教育特色项目
根据《国家中长期教育改革和发展规划纲要(2010-2020年)》的要求,普通高中除了主要通过国家课程的教学外,还须开设一些内容丰富、形式多样的校本课程来实现育人目标。从培养一流高端科技后备人才的战略目标出发,根据学校情况和依托地方资源优势,选择突出某项特色,不但能使特色项目教育活动开展得更有深度,更具活力,而且可更好地实现我们的育人目标和促进学校的特色发展。
始于1998年的两年一届的珠海国际航空航天博览会,已经成为代表当今世界航空航天先进科技的主流和展示世界一流航空航天产业发展的盛会。每届航展的举办,不仅在珠海特别是在我校,都会掀起一股航空航天热。这使许多学生对航空航天产生了极大兴趣,甚至就此产生立志未来成为航空航天人才的热切愿望。在航展的带动下,许多新兴航空产业,如亚洲最大的珠海摩天宇飞机发动机维修企业、中航工业通用飞机产业和珠海雁洲轻型飞机制造有限公司等都陆续在珠海安家落户。特别值得一提的是珠海航空产业园于2008年破土动工。其将以“五基地一新城”作为骨架,将建中国最具综合竞争力的民用航空产业基地、世界著名的航空展览基地、国际一流的通用航空(公务机)制造基地、亚太地区综合性的航空维修基地和国内重要的民用航空数控加工基地。如今,珠海不仅具有以航空为特征的经济功能,而且具有以航空为特征的社会功能和城区形态,成为拥有相当一部分从事航空产业人口的、现代化的、宜居的珠海航空新城区,这就标示着珠海未来的航空产业有着巨大发展前景。珠海如此得天独厚的航空教育资源,使我们意识到选择航空科普作为我校科技教育中的特色项目是可行的。
二、依托地方资源优势,构建航空校本新课程
为满足学生对高新科技产业之现代航空业的喜爱,在构建航空校本新课程前,我们先对这些资源进行了一个选择、引入和转化的开创过程。在此过程中,我校根据教育目标采取寻找机会、及时跟进等办法,把一些优势资源逐步转化为航空科普教育校本新课程。
在我校开创的航空科技教育新项目里,航空爱好者们组织的航空航天俱乐部,是学生喜爱的一种活动组织形式。学生航空航天俱乐部实行“三自”管理模式,即由学生“自主管理、自我教育、自主发展”,自己选举产生俱乐部管理人员,自主策划一些活动。航空航天俱乐部名为“志翔”,是由学生自己命名的,意喻志在飞翔。我们在学校科技楼上配备了用于展示航空科普知识、组织学生动手制作、陈列学生活动成果的2间专用工作室,其中一间为探究室,安装了一架AU-1轻型飞机和一架直升飞机模拟器。高仿真度的操控、电子装置和前方投影显示屏,使“飞行员”登上驾驶室,就能身临其境地驾驶“飞机”从世界上任何一个著名机场起飞、降落。
为开展好俱乐部活动,我校积极寻找校外航空课程资源,分别与珠海雁洲公司、北京理工珠海航空学院等企业和院校签订航空科技教育基地的协议。根据协议。专业人员定期来校给俱乐部授课与讲座;指导我校教师编写航空科普校本课程;帮助学校进行航空科普设备的安装、调试和操作培训,举办航空科普夏令营等活动。在校友和社会各界人士的支持下,我校还设立了珠海一中航空俱乐部活动基金。
我校开设的航空校本课程还有航模制作,在现有本校科技教育专职教师基础上,我们专门聘请珠海市著名航模教练来给学生授课与指导。直接利用航展举办活动也是航空校本课程的--+突出亮点。航展期间学校除鼓励学生们利用假日前往观展外,还在校园内举办以航空科普为主题的科技节活动。如邀请航空专家来我校进行科普讲座和指导、举行航空知识航展摄影作品竞赛及有关航展主题征文活动等。
2008年珠海第七届航展期间,我们结识了中航集团领导和第一飞机设计研究院总设计师唐长红。在他们的帮助下,我校在2009年7月成功举办了西安航空夏令营。学生在中航集团第一飞机设计研究院、飞机试飞院和西安飞机设计研究院等三地,进行实地参观、学习和体验。活动中,我校航模队又跟他们的业余航模协会建立长期联系。我们邀请“小鹰500”民用飞机总设计师龚国政来校讲座,同时聘请他为“志翔”航空航天俱乐部专家顾问。就这样,我校航空科技课程资源链在这种机遇和跟进的开创过程中不断延伸发展。在学校航空科技教育校本课程实施中,最突出的是航展期间举办的大型主题活动。2008年11月第七届航展期间,我校在校体育馆与中航集团、中央人民广播电台中国广播网联合举办了“振翅长空、梦翔蓝天”航空知识擂台赛。
在科技创新活动中,我校航空爱好者用遥控航模创新研制的“智能警用直升机”获第21届广东省青少年科技创新大赛一等奖。使用遥控直升机模型为装载工具研制的“森林火情遥控探测装备”获得第25届珠海市青少年科技创新大赛一等奖,得到珠海市森林防火指挥部的赞扬和支持,并由市防火指挥部邀请当地航模厂家与学校合作共同参与继续研制,装备研制成功后将在本市乡、镇森林防火部门试用。
我校每年暑假期间举办的航空夏令营,是航空爱好者期盼的科普实践活动,继西安航空夏令营之后,我校在珠海雁洲轻型飞机制造公司内举办的“放飞梦想”航空科普夏令营,也是一次内容极其丰富的航空科普实践活动。活动中,学生们结合实物倾听了轻型飞机的构造、发动机工作原理和飞行原理的介绍,观看了发动机拆、装演示;在专家的指导下,观看了该公司生产轻型飞机的全过程;听专家讲座、观看内部录像资料;学习操纵APOLLOSM飞机模拟器飞行,并分组进行操纵比赛;进行航模制作及放飞比赛。整个活动过程中,学生亲身体验和操作实践的机会特别多,内容紧紧围绕航空,活动形式新颖、生动、直观。活动过后,学生都很有感触,并表示要立志航空事业的发展。
三、着眼经济社会长远发展,为国家培养后备人才
近年来,我国航空产业发展很快,但要从一个航空大国提升为航空强国,还需作出很大努力。如作为航空产业基础的我国通用航空还相当薄弱,据了解,到目前止,美国每百万人拥有通用飞机743架,巴西是56架,而我国只有0.5架,为此,我国通用航空产业应以更快的速度发展。珠海的国际航展、航空产业园、十字门商务区等国际产业的发展,吸引了海内外大批大型航空产业在珠落户。中航集团通用航空公司总部和中国通用航空研究院也都迁居珠海。珠海市立足当前着眼未来,在抓紧落实《广东省航空产业发展规划(2010-2025)》和《珠海航空产业园发展规划》时提出:要以航空业抢占新兴产业制高点。这预示着珠海航空产业将会以更快的速度发展,同时也急需更多的航空人才,特别是高端航空人才。