当前位置: 首页 精选范文 新能源与科学工程范文

新能源与科学工程精选(五篇)

发布时间:2023-09-20 17:51:45

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇新能源与科学工程,期待它们能激发您的灵感。

新能源与科学工程

篇1

关键词:新能源;新能源科学工程;培养方案;课程体系

作者简介:韩新月(1982-),女,河南商丘人,江苏大学能源与动力工程学院,讲师;何志霞(1976-),女,甘肃泾川人,江苏大学能源与动力工程学院,副教授。(江苏 镇江 212013)

基金项目:本文系江苏大学教学改革项目(项目编号:JGZD2009025)、江苏省高等教育教学改革研究重中之重课题(课题编号:2011JSJG006)的研究成果。

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)05-0009-03

一、我国高校设立新能源专业的必要性

能源问题与环境问题是21世纪人类面临的两大基本问题,发展新能源是解决这两大问题的必由之路。新能源是相对于常规能源而言,以采用新技术和新材料而获得,在新技术基础上系统地开发利用的能源,如太阳能、风能、地热能、海洋能等。由于新能源具有再生、清洁、低碳、可持续利用等优势,所以越来越多的国家开始重视它。而且新能源可以作为促进人类发展和保护环境的重要途径,所以这些国家在相关政策中都增加了新能源的元素。新能源产业的发展也是未来中国可持续发展的关键。但是,和发达国家相比,我国新能源产业化发展起步较晚,技术相对落后,总体产业化程度不高。不过,我国天然资源非常丰富,市场需求空间很大,在政府大力发展新能源及可再生能源政策的带动下,新能源领域成为大型能源集团、民营企业、国际资本、风险投资等诸多投资者的投资热点,技术利用水平正逐步提高,具有较大的发展空间。“十二五”期间将是我国新能源产业从起步阶段进入大规模发展的关键转折时期。我国新能源在这一时期的发展总目标是:建立初步适应大规模新能源发展的电网等重大基础设施体系,推动新能源装备制造业的壮大和升级,促进新能源市场的不断扩大,争取在2015年将非化石能源在能源消费中的比重提高到12%左右。[1]

尽管国家已经把发展新能源放在一个重要的战略位置上,一场新的能源革命已在悄然进行,它必将带来新的经济繁荣、新的社会理念和新的生活方式。但是,我国新能源产业发展过程中的一大难题是缺少成熟先进的新能源技术。我国主要的新能源设备和技术完全依赖进口,新能源领域的科技创新能力明显不足。而新能源产业化进程中的这些难题有待专业人士去破解。所以,培养新能源方面的专业和复合型人才是重中之重。[2]但是,新能源产业作为一个错综复杂的资源环境复合体,涉及物理学、化学、流体力学、传热学、电子电工学、材料科学、生物学、管理学、工业经济学等学科内容,是一个典型的多学科交叉的新兴产业。[3]因此,需要设立专门的新能源专业来满足,新能源产业对新能源人才要有宽的知识面、自主的学习能力、丰富的想象力、敏锐的洞察力以及较强的沟通协调能力等要求,进而要求高校做好优化人才培养层次、改进人才培养方案等工作。

国外已有一些著名大学建立了新能源的本科专业,用于培养太阳能、风能、生物质能等方面的科技人才,如澳大利亚的新南威尔士大学设立了专门的光伏与可再生能源工程学院,并于2000年开设了光伏与太阳能本科专业,2003年又开设了可再生能源工程本科专业;澳大利亚国立大学依托其可持续能源系统中心也建立了四年制的可再生能源系统专业。此外,意大利的都灵理工大学和米兰理工大学都开办了四年制的可再生能源专业。美国的俄勒冈州科技学院于2005年也建立了可再生能源四年大学本科学位课程。随着全球能源结构的变化,对于新能源方面的人才需求不断增加,世界上将会有更多的高校开办有关新能源的专业。

我国高校在新能源专业设置和新能源产业专业人才培养方面还落后于发达国家。为顺应时代的发展,为国家培养新能源这一新兴产业的专业人才,2010年7月经教育部审批,浙江大学、中南大学、江苏大学等11所高校首次设立新能源科学与工程专业。其中江苏大学的新能源科学与工程本科专业由能源与动力工程学院承担开设任务,已分别于2011年9月和2012年9月招收第一批和第二批本科生。关于新能源科学与工程专业本科生的培养方案、培养模式和培养体系则处于不断探索和完善中。

二、 新能源科学与工程专业的培养方案

在对国内外新能源相关专业人才培养充分调研的基础上,分析国家社会和经济发展要求,基于新能源产业特点及企业和社会对新能源专业人才知识结构和能力结构的要求,同时结合本校自身的学科特色和优势,确定了新能源专业人才培养方案,主要包括专业培养目标的确立及科学、合理的课程体系的设置、可行的教学计划的制订等。

1.培养目标

专业的培养目标是专业建设和一切教学活动的基础、依据,也是人才培养的最终目的。新能源科学与工程专业在国内甚至在世界上都是非常新的专业,目前处于初步形成和探索阶段,因此,找准本校专业人才培养定位和确立该专业人才培养的长远目标尤为重要。江苏大学能源与动力工程学院结合自身实际情况,依托机械工程、电气信息工程、材料科学与工程、化学化工、土木工程等学科专业的支持,并结合新能源产业的特点设立了新能源科学与工程专业,使培养出来的学生具有良好的综合素质和创新意识,富有社会责任感,具有国际一流的视野,具备新能源科学与工程这一强交叉学科宽厚扎实的物理、化学及热流体科学基础理论,系统掌握新能源科学与工程应用专业知识及技能、新能源转换与利用原理、新能源装置及系统运行技术,能胜任新能源技术相关的科学研究、工程设计、技术开发及技术经济管理等工作的高级专门人才。

2.课程体系的构建

尽管自2010年以来国内陆续已有许多高校正式获批新能源科学与工程专业在本科阶段的招生资格。但总体来看,我国系统培养新能源科学与工程本科生、研究生的工作才刚刚起步,对于相应课程体系的构建也处于探索阶段。一个专业所设置的课程相互间的分工与配合构成课程体系。课程体系是否合理、课程内容是否先进直接关系到培养人才的质量。而且,一个专业要具有区别于其他专业的培养方向和业务范围,就应有自己独立的课程体系。[4]新能源科学与工程专业是一门内容丰富而又广泛的科学与工程,属交叉学科。它与数学、物理、化学、生物学等紧密相关,又强烈地依托于能源与动力工程、材料、机械、电气、化工、自控和生物工程技术的发展。由于国内在这方面的研究几乎为空白,因此,如何以这些学科为依托,形成内容先进、结构合理的课程体系是急需解决的一项重大课题。笔者根据孙根年有关课程体系优化的思路给出了系统思考下新能源科学与工程专业课程体系的总体结构,如图1所示。[5]

由图1可以看出,在层次上将新能源科学与工程课程划分为通识教育平台课程、学科专业基础课程、专业(方向)课程、集中实践环节和课外实践环节五个方面。新能源科学与工程课程体系作为一个系统,不同的课程类别在培养目标和培养规格的指导下相互作用、相互影响,共同服务于新能源科学与工程专门人才培养这一特定的功能。

3.教学组织与实施

基于新能源科学与工程专业的培养目标及课程体系结构,考虑到本地区、本学校的实际情况,笔者制定的新能源科学与工程专业的指导性教学计划如图2所示。

由图2可以看出,在教学组织上前五学期主要进行普通文化课和专业技术基础课的教学,为后续专业课程的学习打下良好基础。同时,在第二、三、四、五学期还安排了金工实习、专业认知实习、电工电子实习和机械设计课程设计,目的是增加学生在校期间的动手操作机会。第六、七学期组织专业(方向)课程的教学和实习实训,核心课程均采用一体化教学方式。第八学期开展毕业设计环节,从而培养学生综合运用所学知识、结合实际独立完成课题的工作能力。

三、 新能源科学与工程专业培养计划的特色

1.以厚基础、宽平台、交叉学科为理念,强调扎实的物理、化学和热流体科学基础理论

课程建设时,首先在物理、化学基础理论方面增加了“大学化学”、“物理化学”、“能源与环境化学”和“半导体物理”课程。其次,根据新能源专业的特点,强调物理、化学基础的同时,通过减少“工程图学”、“工程力学”和“机械原理与设计”课程的学时数来弱化机械类课程。再次,为了充分发挥本校本学院学科优势和特点,在热流体理论方面除了开设“流体力学”、“工程热力学”和“传热学”课程外,还开设了“热流体数值计算基础”和“新能源利用中的热流体理论与技术”两门专业特色课程。目的是提升专业内涵,强化特色,确保学生具备新能源领域相关的扎实的基础理论,是学生今后在本专业及相关领域是否具备发展潜力的关键所在。

2.强调实践教学及新能源工程训练

首先,增加了“现代分析测试技术”课程。其次,增加了实习环节的学时数,把一般安排在第六学期的三周生产实习变为第四学期末的一周认知实习和第六学期的三周生产实习。目的是增加实践教学,先认知实习,后生产实习,使实习环节更为科学和合理。再次,还增加了项目设计,把一般安排在第七学期的两周课程设计修订为第六学期末的两周课程设计和第七学期末的两周项目设计。目的是先开展某门课程的课程设计,后进行具体的项目设计,设置更为科学和合理。通过指导学生开展设计性、综合性项目设计,培养学生发现问题、解决问题的创新能力。此外,还增加了新能源工程训练环节,在此环节中学生和指导老师双向选择后,学生参与到老师的科研项目中。指导老师在与国内外新能源企业合作中,向学生提供不同类型的专业实践机会。这个环节是在第七学期前完成,设置此环节的目的是培养学生实践创新和工程应用能力。通过明确的学分要求保证学业导师制的落实。指导老师通过这样一个环节对于特别优秀的学生可向学院推荐其保研,实现本研贯通培养,前后的培养具备一定的连续性。最后,为了充分利用学科资源及已有的实验条件,培养学生实践创新能力,更好地满足新能源专业对学生实践能力和新能源技术工程应用能力的高要求,在课内及集中实践环节总学分要求基础上还增加大于等于六个学分的课外实践要求(社会实践、竞技活动)。

3.体现多学科交叉特点

在课程设置时,除开设“工程图学”、“工程力学”、“电工电子学”、“机械原理”、“工程材料”等课程外,还增开了物理、化学方面的课以及“新能源材料”、“现代生物学导论”、“能源与环境”、“新能源系统自动控制原理”课程,这样充分体现了新能源科学与工程专业和动力工程及工程热物理、应用化学、材料物理、机械工程、化学工程与技术、环境科学与工程各学科的交叉。

4.重视形成宽阔的国际视野

首先,学校开设了全英文及双语课程,比如全英文的“太阳能光伏技术”以及双语的“热流体数值计算基础”、“热泵原理与应用”、“生物质燃烧及混燃技术”课程。其次,借鉴国外新能源专业的课程设置增设了反映新能源领域前沿的“生命周期评价”课程。此外,还增设“新能源前沿及工程应用专题”必修课。这门课要求学生在第七学期结束前听取学院安排的新能源前沿及工程应用专题讲座7次以上。专题可以是合作企业、国内外知名专家的讲座,也可以是本专业教师科研最新进展的讲座,目的是让学生了解本专业领域的最新研究进展及发展趋势,拓宽视野,尽快适应社会发展要求,同时提高学生的专业兴趣。

5.以太阳能为主,兼顾生物质能和风能,提供其他种类新能源的广泛选择的专业定位

首先,在太阳能方面,学校设置有“太阳能热利用”和“太阳能光伏技术”专业课;在生物质能方面,开设有“现代生物学导论”和“生物质能转化原理与技术”;而在风能方面,设置有“风力机空气动力学”和“风力发电与控制技术”专业课。其次,还提供了广泛的新能源相关选修课程来满足学生对不同专业的需求,比如“氢能与新型能源动力系统”、“新能源发电并网技术”、“水力发电与水电站”、“燃料电池原理与技术”、“热泵原理与应用”、“生物柴油制备及应用”、“生物质燃烧与混燃技术”、“能源工程管理”、和“能源经济学概论”等课程。

四、结束语

新能源科学与工程专业的设置顺应时代的发展,是我国可持续发展的需要。但是,由于新能源科学与工程专业是非常新的专业,与之配套的培养方案、课程安排等还处于起步探索阶段。笔者考虑到本地区、本学校的实际情况,同时结合新能源产业对人才的要求提出了具有鲜明特色的新能源科学与工程专业的培养方案,以供参考。笔者相信江苏大学有能力、有信心建设好该专业,为国家经济的可持续健康发展输送合格的人才。

参考文献:

[1]任东明.中国新能源产业的发展和制度创新[J].中外能源,2011,

(1).

[2]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12).

[3]张珏.新能源产业发展所需专业人才培养探讨[J].中国人才,

2010,(8).

篇2

【关键词】课程体系 新能源科学与工程 专业建设 光伏技术

【基金项目】常州工学院教学改革研究课题(项目编号:J120324;J120305)。

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2013)10-0247-02

引言

新能源产业人才培养落后于产业发展,培养新能源方面专业技术人才已经成为当务之急[1-4]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,涉及的学科领域广泛,属于交叉学科,涉及物理、能源与动力工程等多个学科。目前国内对该专业的专业课程体系设置存在专业定位、培养方向模糊;专业基础课程与专业课程的知识结构不成体系;缺乏合理的实践、实训体系等诸多问题。如何依托众多的所属学科,明确准确的培养人才定位,构建可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的问题。

1.以地方产业背景为引导,明确培养方向定位

围绕长三角地区光伏产业背景,依据学校创新型应用人才培养目标,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色。

为适应创新型应用人才培养目标,围绕学校“让每一个学生都获得成功”的办学理念,创建“以人为本,因材施教,学、做、创并举”的教学理念,为教学改革和创新型人才培养引领方向。围绕长三角地区的新能源产业背景,尤其是光伏产业,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。

2.以“新能源产业链”为主线,构建纵横协同的专业课程体系

根据学生的认知规律,依据“以人为本,因材施教,学、做、创并举”的教学理念,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系,课程体系如图1所示。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。

纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。

3.以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系

以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系,如图2所示。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。

将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。

4.结语

紧密围绕长江三角洲地方光伏产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。

参考文献:

[1]王伟东、艾建军、杨坤,新能源产业人才培养问题与对策[J].中国电力教育,2011.(12).5-6

[2]王彦辉、齐威娜,新能源产业人才培养存在的问题及对策[J].中国成人教育,2010.(2).54

[3]王永、张渊、刘浩、程超,长三角地区高职光伏专业建设研究[J].职业教育研究,2012.(2).31-32

[4]刘学东、邵理堂、孟春站、宋祥磊,新能源科学与工程(太阳能利用方向)人才培养探讨[J].淮海工学院学报(社会科学版 教育论坛),2010.(8).46-47

作者简介:

篇3

新能源科学与工程专业简介

新能源科学与工程是中国普通高等学校本科专业。

该专业培养具备能源工程、传热学、流体力学、动力机械、动力工程等基础知识,掌握新能源转换与利用原理、新能源装置及系统运行技术、风能、太阳能、生物质能等方面的新能源科学领域专业知识,能在国家风能、太阳能、地热、生物质能等新能源领域开展教学、科研、技术开发、工程应用、经营管理等方面的高级应用型人才,跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才。

新能源科学与工程专业课程

工程力学,空气动力学,电路,电机学,电子技术基础,自动控制理论,电力电子技术,机械设计基础,风能资源测量与评估,风力机理论与设计,风力发电机组原理,风电机组调节与控制,风电场电气部分,风电场规划与设计等。

新能源科学与工程专业就业前景

新能源基本用来发电。分别有风能,太阳能,生物能,潮汐能,地热等。但现在技术上比较成熟的还是前两者。不过其中风能的缺点就是在国内并网比较困难,风能应用最好的是欧盟。太阳能的话,其制造过程污染很大。总的来说新能源前景绝对光明,只是道路可能有些曲折,还要看国家政策的侧倾力度。

本专业毕业生就业前景广阔,可在风能、太阳能、生物质能等新能源和节能减排领域的企事业单位、高等院校和政府部门从事技术研发、工程设计、新能源科学教育与研究、新能源管理等相关工作。

专业培养在风能、太阳能、地热、生物质能等新能源领域从事相关工程技术领域的开发研究、工程设计、优化运行及生产管理工作的跨学科复合型高级工程技术人才,和具有较强工程实践和创新能力的专门人才。专业学生主要学习新能源科学与工程的基础理论和基技能,受到新能源科学与工程方面的基训练,具有独立思考能力、动手能力和工程实践能力。

新能源科学与工程科必备能力

1.具有较扎实的数学、物理、化学、机械、电子等学科基础知识;

2.较好的人文社会科学基础和管理科学基础知识;

3.掌握新能源科学与工程的基知识和基理论;

4.具有综合分析和解决实际问题的基能力;

5.能比较熟练地阅读专业的外文资料;

篇4

关键词 大学生 创新能力 新能源 培养方案

中图分类号:G642 文献标识码:A DOI:10.16400/ki.kjdkz.2016.07.019

创新有三层含义,第一是更新,第二是创造新的东西,第三是改变。提高创新能力是促进社会发展的原动力。一个国家只有拥有了一批拥有创新能力的青年,才能不断地提高综合国力。一个民族想要在21世纪取得更大的发展,必须依靠一群有创新能力和创新精神的青年。正是由于不断的创新,人类社会才能持续向前发展。目前我国面临着环境污染、能源危机、资源短缺等诸多问题,而解决这些日益严峻的问题的关键就是走改革创新的道路。对于我国这样一个发展中国家,要把握住21世纪科学技术迅猛发展和经济全球化带来的机会和挑战,要在未来世界经济全球化进程中立于不败之地,需要对当前的科技、教育等诸多方面进行有效的创新。

大学生是促进社会发展的重要群体,大学生的创新能力在很大程度上决定着社会未来的综合竞争力。国际经济竞争的严峻形势要求中国的当代大学生必须具备勇于创新、善于创新。在培养大学生创新能力的过程中,由于诸多因素的限制,使得较多大学生的创新能力仍不高,因此研究大学生创新能力的培养具有重要意义。

1培养新能源创新人才的必要性

科学文化是一个国家赖以生存和发展的基础,是评价一个国家综合国力的标准之一。当今世界国家间的竞争已上升到以知识和信息为基础的综合国力的较量。对于我国这样的发展中国家,为提高综合国力,必须提高其人力资源的开发程度。科技文化水平的提高需要提高国民的创新能力,需要高校培养更多的创新型人才。当今世界知识经济更新速度不断加快,必须通过提高创新能力来增强国家综合竞争力。大学生群体中蕴含着巨大的创新潜能,如何将大学生身上的创新潜能挖掘出来是目前大学校园乃至整个社会必须认真思索的问题。

培养大学生创新能力是高校自身发展的内在要求。如今,我国高等教育已进入大众化阶段。创新实践能力已经成为高质量人才的标准,创新型人才的培养数量和质量也成为了衡量高校水平的重要标准。因此,想要打造高校品牌,使高校的教学质量和整体水平得到提升,高校必须加快创新发展,加强学生的创新实践能力,高质量地培养创新人才。

2010年,国务院下发《关于加快培育和发展战略性新兴产业的决定》(国发(2010)32号),将新能源作为优先发展的七大战略性新兴产业之一。同年,教育部《教育部办公厅关于战略性新兴产业相关专业申报和审批的通知》。作为与战略性新兴产业发展相关的新专业,新能源科学与工程专业受到我国高校的高度重视。2014年,南京林业大学在广泛调研其他高校新能源专业的基础上,结合自身教学和科研优势,开设了以生物质能源利用为优势和特色的新能源科学与工程专业。近年来,新能源引起了社会各方的极大关注,太阳能、风能、沼气能、生物质能得到了较快发展。然而,我国在新能源领域的科技创新能力与发达国家还有较大差距,关键技术和设备依赖进口的局面还没有得到根本改变。发展新能源,关键在人才。培养新能源领域创新人才已刻不容缓。

2大学生创新能力培养现状

2.1创新意识不高

在一般教育模式中,知识传承得到重视,而知识创造可能被忽略。在这种教育模式束缚了我国大学生创新能力的培养。学生们进入大学以后沿袭了以前的学习模式,重视对课本知识的吸收,不能很好地进行知识和技能的积累,缺乏创新的意识和能力。很多学生将主要精力投入到获得更高的文凭和相关的证书上,在校时间里忙于记住课本的内容,应付各种常规化考试。忽视创新意识和创新能力培养模式是造成大学生创新意识不强的重要原因。许多大学生的创新性思维受到了压抑,导致他们在科技创新活动中缺乏主动创新的意识,创新活动也缺少深度和广度。

2.2创新文化氛围不强

目前大部分高校的创新氛围不浓,课堂教学内容多以课本为主,知识更新较慢,与国际前沿的结合和边缘学科的交叉都很少,这使大学生的创新教育得不到很大重视。要提高大学生的创新能力和创新意识,需要将大学生科技创新课程作为必修课纳入正常的课程设置中。同时,高校对大学生的评价考核缺乏对创新能力的重视。以书面考试分数的高低来评价学生学业水平高低的传统评价机制,忽视了发展和挖掘学生的潜能,忽视了考察学生创新和实践的能力。因此,大学生主动参加科研创新的热情不是很高。

3大学生创新能力培养的策略

3.1构建创新能力培养模式

创新是国家兴旺发达的不竭动力。国家非常重视对大学生创新能力的培养,已将它上升到关系国家综合竞争力的高度。政府不断制定了相应的指导政策,建立专项资金来扶持高校培养大学生的创新能力。社会各界也不断营造创新型的社会氛围,鼓励和支持高校培养创新型人才。在这种环境下,高校应构建更加科学合理的大学生创新能力培养模式,教师和学生都必须要提高思想认识和转变教育观念,树立以人为本的教育教学理念。在以人为本的理念下,高校应立足于社会、经济和科技发展的前列,既了解当前社会需要的人才,也能预测未来社会发展对大学生创新能力的要求;教师应遵守“因材施教”的教育方式,根据学生自身的特点来制定培养方案,提高学生的创新能力;学生也需认识到创新能力是自身综合能力的重要组成部分,学会了解国际前沿知识,灵活运用知识,整合知识,从而创造出新的知识。同时,也需要注意的是,对于大学生创新能力的培养应当以不求高精尖但求适应力强,不求面面俱强但求有特色为目标,培养出能够适应社会,能够在某些领域拥有突出的创新成果的新时代大学生。

3.2搭建新能源科技创新平台

针对学生自身的基础和意愿,高校应有计划性,有针对性的对学生进行创新能力培养,形成一套可行有效的大学生科技创新活动运行机制,构建新能源科学与工程专业开放性实践教学体系,创造本科创新人才培养的制度环境和文化环境,加强大学生创新能力培养中的创新实践教育平台建设。

参照创新能力培养计划,结合具体实际情况,组建学生科研团队。以教师领导创新项目、学生自主创新项目、校企合作、社会实践、毕业论文等为载体,搭建与新能源专业紧密结合、与新能源企业发展紧密关联的科技创新平台。例如,通过与新能源企业合作,建立校外学生社会实践基地和创业就业基地,为高校老师和学生培养创新实践能力创造平台,促进新能源学科科技创新成果转化,培养新能源学科创新人才。此外,鼓励大学生,申请专利,参加各级大学生竞赛活动,使大学生们更加投入科研创新活动中,形成乐于创新的校园氛围。

3_3加强创新能力评价

篇5

关键词:课程体系 新能源科学与工程 专业建设 光伏技术

中图分类号:G642.3 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.19.023

新能源产业人才培养落后于产业发展,已严重阻碍了我国当前新能源产业的健康发展,培养新能源方面专业技术人才已经成为当务之急[1-3]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,目前处于初步形成和探索阶段,没有现成的经验和模式可以借鉴。明确准确的培养人才定位,形成可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的一项重大课题。

1 新能源科学与工程专业存在的问题

新能源科学与工程专业是2011年开始招生的战略性新兴产业专业,大部分高校都是在原有能源与动力工程专业基础上开始几门新能源领域相关的课程,专业培养方向、课程体系设置等方面存在不少问题。

第一,专业定位、培养方向模糊。在原有能源与动力工程专业基础上开设几门新能源领域相关的课程,培养出来的学生无法满足企业对专业人才的需求。

第二,设置的专业基础课程与专业课程的知识结构不成体系、不能相互支撑。新能源本身涵盖学科知识领域广,学生学习困难,难以达到理想的学习效果。

第三,缺乏合理的实践、实训体系。新能源技术涉及到多个领域,多种技术,要想达到理想的教学效果,培养合格的具备实践应用能力和创新能力的复合型人才,必须开设多种实践、实训教学,但教学设备状况根本无法满足人才培养的需求。

2 新能源科学与工程专业人才培养方案的制定思路

江苏是光伏产业大省,立足地方,结合光伏产业背景,构建常州工学院新能源科学与工程专业的课程体系,探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。

第一,依据学校创新型应用人才培养目标,结合新能源技术的理论与实践特点,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色,为教学改革和创新型人才培养引领方向。

第二,根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。

第三,以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。

3 新能源科学与工程专业人才培养方案构建

3.1 结合江苏省的光伏产业背景,以及学校的实际情况明确培养方向

围绕常州的新能源产业背景,尤其是光伏产业,依托常州新能源学院,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。

3.2 以“新能源产业链”为主线,构建纵横协同的课程体系

依据“以人为本,因材施教,学、做、创并举”的教学理念,构建纵横协同教学课程体系。纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。

3.3 以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系

以“实践创新能力培养”为主线构建“分层次、递进式”实践能力训练体系。将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。

4 结语

紧密围绕长江三角洲地方产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。

参考文献:

[1]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12):5-6.

[2]王彦辉,齐威娜.新能源产业人才培养存在的问题及对策[J].中国成人教育,2010,(2):54.

[3]王永,张渊,刘浩,程超.长三角地区高职光伏专业建设研究[J].职业教育研究,2012,(2):31-32.

作者简介:熊超,常州工学院光电工程学院,江苏常州 213002

袁洪春,常州工学院光电工程学院,江苏常州 213002