发布时间:2023-09-20 17:50:04
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇新能源科学工程,期待它们能激发您的灵感。
作者简介:韩新月(1982-),女,河南商丘人,江苏大学能源与动力工程学院,讲师;何志霞(1976-),女,甘肃泾川人,江苏大学能源与动力工程学院,副教授。(江苏 镇江 212013)
基金项目:本文系江苏大学教学改革项目(项目编号:JGZD2009025)、江苏省高等教育教学改革研究重中之重课题(课题编号:2011JSJG006)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)05-0009-03
一、我国高校设立新能源专业的必要性
能源问题与环境问题是21世纪人类面临的两大基本问题,发展新能源是解决这两大问题的必由之路。新能源是相对于常规能源而言,以采用新技术和新材料而获得,在新技术基础上系统地开发利用的能源,如太阳能、风能、地热能、海洋能等。由于新能源具有再生、清洁、低碳、可持续利用等优势,所以越来越多的国家开始重视它。而且新能源可以作为促进人类发展和保护环境的重要途径,所以这些国家在相关政策中都增加了新能源的元素。新能源产业的发展也是未来中国可持续发展的关键。但是,和发达国家相比,我国新能源产业化发展起步较晚,技术相对落后,总体产业化程度不高。不过,我国天然资源非常丰富,市场需求空间很大,在政府大力发展新能源及可再生能源政策的带动下,新能源领域成为大型能源集团、民营企业、国际资本、风险投资等诸多投资者的投资热点,技术利用水平正逐步提高,具有较大的发展空间。“十二五”期间将是我国新能源产业从起步阶段进入大规模发展的关键转折时期。我国新能源在这一时期的发展总目标是:建立初步适应大规模新能源发展的电网等重大基础设施体系,推动新能源装备制造业的壮大和升级,促进新能源市场的不断扩大,争取在2015年将非化石能源在能源消费中的比重提高到12%左右。[1]
尽管国家已经把发展新能源放在一个重要的战略位置上,一场新的能源革命已在悄然进行,它必将带来新的经济繁荣、新的社会理念和新的生活方式。但是,我国新能源产业发展过程中的一大难题是缺少成熟先进的新能源技术。我国主要的新能源设备和技术完全依赖进口,新能源领域的科技创新能力明显不足。而新能源产业化进程中的这些难题有待专业人士去破解。所以,培养新能源方面的专业和复合型人才是重中之重。[2]但是,新能源产业作为一个错综复杂的资源环境复合体,涉及物理学、化学、流体力学、传热学、电子电工学、材料科学、生物学、管理学、工业经济学等学科内容,是一个典型的多学科交叉的新兴产业。[3]因此,需要设立专门的新能源专业来满足,新能源产业对新能源人才要有宽的知识面、自主的学习能力、丰富的想象力、敏锐的洞察力以及较强的沟通协调能力等要求,进而要求高校做好优化人才培养层次、改进人才培养方案等工作。
国外已有一些著名大学建立了新能源的本科专业,用于培养太阳能、风能、生物质能等方面的科技人才,如澳大利亚的新南威尔士大学设立了专门的光伏与可再生能源工程学院,并于2000年开设了光伏与太阳能本科专业,2003年又开设了可再生能源工程本科专业;澳大利亚国立大学依托其可持续能源系统中心也建立了四年制的可再生能源系统专业。此外,意大利的都灵理工大学和米兰理工大学都开办了四年制的可再生能源专业。美国的俄勒冈州科技学院于2005年也建立了可再生能源四年大学本科学位课程。随着全球能源结构的变化,对于新能源方面的人才需求不断增加,世界上将会有更多的高校开办有关新能源的专业。
我国高校在新能源专业设置和新能源产业专业人才培养方面还落后于发达国家。为顺应时代的发展,为国家培养新能源这一新兴产业的专业人才,2010年7月经教育部审批,浙江大学、中南大学、江苏大学等11所高校首次设立新能源科学与工程专业。其中江苏大学的新能源科学与工程本科专业由能源与动力工程学院承担开设任务,已分别于2011年9月和2012年9月招收第一批和第二批本科生。关于新能源科学与工程专业本科生的培养方案、培养模式和培养体系则处于不断探索和完善中。
二、 新能源科学与工程专业的培养方案
在对国内外新能源相关专业人才培养充分调研的基础上,分析国家社会和经济发展要求,基于新能源产业特点及企业和社会对新能源专业人才知识结构和能力结构的要求,同时结合本校自身的学科特色和优势,确定了新能源专业人才培养方案,主要包括专业培养目标的确立及科学、合理的课程体系的设置、可行的教学计划的制订等。
1.培养目标
专业的培养目标是专业建设和一切教学活动的基础、依据,也是人才培养的最终目的。新能源科学与工程专业在国内甚至在世界上都是非常新的专业,目前处于初步形成和探索阶段,因此,找准本校专业人才培养定位和确立该专业人才培养的长远目标尤为重要。江苏大学能源与动力工程学院结合自身实际情况,依托机械工程、电气信息工程、材料科学与工程、化学化工、土木工程等学科专业的支持,并结合新能源产业的特点设立了新能源科学与工程专业,使培养出来的学生具有良好的综合素质和创新意识,富有社会责任感,具有国际一流的视野,具备新能源科学与工程这一强交叉学科宽厚扎实的物理、化学及热流体科学基础理论,系统掌握新能源科学与工程应用专业知识及技能、新能源转换与利用原理、新能源装置及系统运行技术,能胜任新能源技术相关的科学研究、工程设计、技术开发及技术经济管理等工作的高级专门人才。
2.课程体系的构建
尽管自2010年以来国内陆续已有许多高校正式获批新能源科学与工程专业在本科阶段的招生资格。但总体来看,我国系统培养新能源科学与工程本科生、研究生的工作才刚刚起步,对于相应课程体系的构建也处于探索阶段。一个专业所设置的课程相互间的分工与配合构成课程体系。课程体系是否合理、课程内容是否先进直接关系到培养人才的质量。而且,一个专业要具有区别于其他专业的培养方向和业务范围,就应有自己独立的课程体系。[4]新能源科学与工程专业是一门内容丰富而又广泛的科学与工程,属交叉学科。它与数学、物理、化学、生物学等紧密相关,又强烈地依托于能源与动力工程、材料、机械、电气、化工、自控和生物工程技术的发展。由于国内在这方面的研究几乎为空白,因此,如何以这些学科为依托,形成内容先进、结构合理的课程体系是急需解决的一项重大课题。笔者根据孙根年有关课程体系优化的思路给出了系统思考下新能源科学与工程专业课程体系的总体结构,如图1所示。[5]
由图1可以看出,在层次上将新能源科学与工程课程划分为通识教育平台课程、学科专业基础课程、专业(方向)课程、集中实践环节和课外实践环节五个方面。新能源科学与工程课程体系作为一个系统,不同的课程类别在培养目标和培养规格的指导下相互作用、相互影响,共同服务于新能源科学与工程专门人才培养这一特定的功能。
3.教学组织与实施
基于新能源科学与工程专业的培养目标及课程体系结构,考虑到本地区、本学校的实际情况,笔者制定的新能源科学与工程专业的指导性教学计划如图2所示。
由图2可以看出,在教学组织上前五学期主要进行普通文化课和专业技术基础课的教学,为后续专业课程的学习打下良好基础。同时,在第二、三、四、五学期还安排了金工实习、专业认知实习、电工电子实习和机械设计课程设计,目的是增加学生在校期间的动手操作机会。第六、七学期组织专业(方向)课程的教学和实习实训,核心课程均采用一体化教学方式。第八学期开展毕业设计环节,从而培养学生综合运用所学知识、结合实际独立完成课题的工作能力。
三、 新能源科学与工程专业培养计划的特色
1.以厚基础、宽平台、交叉学科为理念,强调扎实的物理、化学和热流体科学基础理论
课程建设时,首先在物理、化学基础理论方面增加了“大学化学”、“物理化学”、“能源与环境化学”和“半导体物理”课程。其次,根据新能源专业的特点,强调物理、化学基础的同时,通过减少“工程图学”、“工程力学”和“机械原理与设计”课程的学时数来弱化机械类课程。再次,为了充分发挥本校本学院学科优势和特点,在热流体理论方面除了开设“流体力学”、“工程热力学”和“传热学”课程外,还开设了“热流体数值计算基础”和“新能源利用中的热流体理论与技术”两门专业特色课程。目的是提升专业内涵,强化特色,确保学生具备新能源领域相关的扎实的基础理论,是学生今后在本专业及相关领域是否具备发展潜力的关键所在。
2.强调实践教学及新能源工程训练
首先,增加了“现代分析测试技术”课程。其次,增加了实习环节的学时数,把一般安排在第六学期的三周生产实习变为第四学期末的一周认知实习和第六学期的三周生产实习。目的是增加实践教学,先认知实习,后生产实习,使实习环节更为科学和合理。再次,还增加了项目设计,把一般安排在第七学期的两周课程设计修订为第六学期末的两周课程设计和第七学期末的两周项目设计。目的是先开展某门课程的课程设计,后进行具体的项目设计,设置更为科学和合理。通过指导学生开展设计性、综合性项目设计,培养学生发现问题、解决问题的创新能力。此外,还增加了新能源工程训练环节,在此环节中学生和指导老师双向选择后,学生参与到老师的科研项目中。指导老师在与国内外新能源企业合作中,向学生提供不同类型的专业实践机会。这个环节是在第七学期前完成,设置此环节的目的是培养学生实践创新和工程应用能力。通过明确的学分要求保证学业导师制的落实。指导老师通过这样一个环节对于特别优秀的学生可向学院推荐其保研,实现本研贯通培养,前后的培养具备一定的连续性。最后,为了充分利用学科资源及已有的实验条件,培养学生实践创新能力,更好地满足新能源专业对学生实践能力和新能源技术工程应用能力的高要求,在课内及集中实践环节总学分要求基础上还增加大于等于六个学分的课外实践要求(社会实践、竞技活动)。
3.体现多学科交叉特点
在课程设置时,除开设“工程图学”、“工程力学”、“电工电子学”、“机械原理”、“工程材料”等课程外,还增开了物理、化学方面的课以及“新能源材料”、“现代生物学导论”、“能源与环境”、“新能源系统自动控制原理”课程,这样充分体现了新能源科学与工程专业和动力工程及工程热物理、应用化学、材料物理、机械工程、化学工程与技术、环境科学与工程各学科的交叉。
4.重视形成宽阔的国际视野
首先,学校开设了全英文及双语课程,比如全英文的“太阳能光伏技术”以及双语的“热流体数值计算基础”、“热泵原理与应用”、“生物质燃烧及混燃技术”课程。其次,借鉴国外新能源专业的课程设置增设了反映新能源领域前沿的“生命周期评价”课程。此外,还增设“新能源前沿及工程应用专题”必修课。这门课要求学生在第七学期结束前听取学院安排的新能源前沿及工程应用专题讲座7次以上。专题可以是合作企业、国内外知名专家的讲座,也可以是本专业教师科研最新进展的讲座,目的是让学生了解本专业领域的最新研究进展及发展趋势,拓宽视野,尽快适应社会发展要求,同时提高学生的专业兴趣。
5.以太阳能为主,兼顾生物质能和风能,提供其他种类新能源的广泛选择的专业定位
首先,在太阳能方面,学校设置有“太阳能热利用”和“太阳能光伏技术”专业课;在生物质能方面,开设有“现代生物学导论”和“生物质能转化原理与技术”;而在风能方面,设置有“风力机空气动力学”和“风力发电与控制技术”专业课。其次,还提供了广泛的新能源相关选修课程来满足学生对不同专业的需求,比如“氢能与新型能源动力系统”、“新能源发电并网技术”、“水力发电与水电站”、“燃料电池原理与技术”、“热泵原理与应用”、“生物柴油制备及应用”、“生物质燃烧与混燃技术”、“能源工程管理”、和“能源经济学概论”等课程。
四、结束语
新能源科学与工程专业的设置顺应时代的发展,是我国可持续发展的需要。但是,由于新能源科学与工程专业是非常新的专业,与之配套的培养方案、课程安排等还处于起步探索阶段。笔者考虑到本地区、本学校的实际情况,同时结合新能源产业对人才的要求提出了具有鲜明特色的新能源科学与工程专业的培养方案,以供参考。笔者相信江苏大学有能力、有信心建设好该专业,为国家经济的可持续健康发展输送合格的人才。
参考文献:
[1]任东明.中国新能源产业的发展和制度创新[J].中外能源,2011,
(1).
[2]王伟东,艾建军,杨坤.新能源产业人才培养问题与对策[J].中国电力教育,2011,(12).
[3]张珏.新能源产业发展所需专业人才培养探讨[J].中国人才,
2010,(8).
【关键词】课程体系 新能源科学与工程 专业建设 光伏技术
【基金项目】常州工学院教学改革研究课题(项目编号:J120324;J120305)。
【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2013)10-0247-02
引言
新能源产业人才培养落后于产业发展,培养新能源方面专业技术人才已经成为当务之急[1-4]。新能源科学与工程专业是教育部2011批准的第一批战略性新兴产业专业,涉及的学科领域广泛,属于交叉学科,涉及物理、能源与动力工程等多个学科。目前国内对该专业的专业课程体系设置存在专业定位、培养方向模糊;专业基础课程与专业课程的知识结构不成体系;缺乏合理的实践、实训体系等诸多问题。如何依托众多的所属学科,明确准确的培养人才定位,构建可操作性强、结构合理的课程体系是新能源科学与工程专业建设迫切需要解决的问题。
1.以地方产业背景为引导,明确培养方向定位
围绕长三角地区光伏产业背景,依据学校创新型应用人才培养目标,创新教学理念,提炼新能源科学与工程专业的培养方向与专业特色。
为适应创新型应用人才培养目标,围绕学校“让每一个学生都获得成功”的办学理念,创建“以人为本,因材施教,学、做、创并举”的教学理念,为教学改革和创新型人才培养引领方向。围绕长三角地区的新能源产业背景,尤其是光伏产业,确定常州工学院新能源科学与工程专业以光伏技术为培养方向,培养从事可再生能源,尤其是光伏技术开发与应用系统的设计、开发、测试、运行、管理等方面的具有创新精神的应用型高级工程技术人才。
2.以“新能源产业链”为主线,构建纵横协同的专业课程体系
根据学生的认知规律,依据“以人为本,因材施教,学、做、创并举”的教学理念,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系,课程体系如图1所示。实现专业知识覆盖到“新能源材料开发”、“新能源器件制备”、“新能源应用系统设计”等整个完整的新能源产业链。
纵向以“新能源产业链中的各种技术能力培养”为主线,建立适应新能源技术学科特点,涵盖新能源材料开发技术、新能源器件制备技术、新能源系统设计与应用等三大系列的“模块化、系列化”完整的课程体系。横向按知识体系与认知能力模块化专业课程,以“机电基础”与“理化基础”为两个专业基础模块、以“光伏技术”为专业主导线、“测试技术”为专业副主线、“各种新能源技术”为专业支撑线,“能源管理”为专业特色线四个专业模块,共六个课程模块。在课程体系范围内,根据培养目标的要求,完善教学大纲,科学合理的设置各个系列各门课程的“多样化”内容。
3.以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系
以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系,如图2所示。纵横之间通过综合实训、课程实验、生产实习、课程设计、毕业设计等环节有机联系,协调运作,有效解决传统实践教学内容依附于理论课程进行划分,模块之间关联度小,知识体系缺乏连续性、系统性的问题,更好地适应信息时代的需求。
将学生实践能力的培养贯穿于实验、课程设计、毕业设计、技能培训、参加科研项目、创新训练项目、各种学科竞赛等实践教学活动的全过程,体现“全程化”。注重工程实际应用能力的培养,大部分课程设计、毕业设计的选题来自于各类科研项目,科研反哺教学,使学生受到更为系统的工程训练,体现“工程化”。针对基础、能力不同的学生,在实践能力培养上提出不同层次的要求,不搞“一刀切”体现 “多元化”。
4.结语
紧密围绕长江三角洲地方光伏产业背景,确定常州工学院新能源科学与工程专业以光伏技术为培养方向;根据学生的认知规律,结合新能源技术的理论与实践特点,以“新能源产业链为主线”构建纵横协同的专业课程体系;以“实践创新能力培养”为实践主线,构建“分层次、递进式”实践训练体系;探索出与产业背景紧密结合、具有明显特色的专业课程设置,带动人才培养体系创新,实现教育教学质量提高。培养多层次的光伏方向的专业人才,服务于地方经济的发展。
参考文献:
[1]王伟东、艾建军、杨坤,新能源产业人才培养问题与对策[J].中国电力教育,2011.(12).5-6
[2]王彦辉、齐威娜,新能源产业人才培养存在的问题及对策[J].中国成人教育,2010.(2).54
[3]王永、张渊、刘浩、程超,长三角地区高职光伏专业建设研究[J].职业教育研究,2012.(2).31-32
[4]刘学东、邵理堂、孟春站、宋祥磊,新能源科学与工程(太阳能利用方向)人才培养探讨[J].淮海工学院学报(社会科学版 教育论坛),2010.(8).46-47
作者简介:
关键词:风力发电;太阳能发电;人才需求;风能与动力工程;新能源科学与工程
作者简介:陈建林(1975-),男,湖南浏阳人,长沙理工大学能源与动力工程学院,副教授;陈荐(1967-),男,湖南衡阳人,长沙理工大学能源与动力工程学院,教授。(湖南 长沙 410114)
基金项目:本文系长沙理工大学教研教改项目(项目编号:JG1236)的研究成果。
中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)22-0020-03
风电和太阳能发电是我国战略性新兴产业之一,发展风能与太阳能也是我国实现传统化石能源为主过渡为可再生能源和清洁能源为主的必然之举。近年来,我国风电与太阳能发电迅猛发展,对新能源产业人才提出迫切需求。自2006年以来,我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办“风能与动力工程”本科专业;按照2010年《教育部办公厅关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校又设置“新能源科学与工程”、“新能源材料与器件”等新能源产业相关的本科专业;2013年,根据教育部要求,“风能与动力工程”专业将统一更名为“新能源科学与工程”专业。面对新能源产业发展需求和我国新能源产业人才培养现状,本文对“风能与动力工程”专业过渡为“新能源科学与工程”专业的人才培养模式进行探索与实践。
一、我国风电产业发展现状
1.总体装机情况
自2007年,我国风电装机容量呈高速增长趋势。如表1所示为2001~2012年我国新增及累计风电装机容量(数据来源:CWEA)。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万千瓦,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万千瓦;累计安装风电机组53764台,装机容量达到7532万千瓦;风电并网总量达到6083万千瓦,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。
图1 2001~2012年中国新增及累计风电装机容量
至2012年上半年,我国规划建设的百万千瓦级、千万千瓦级风电基地包括甘肃酒泉基地(首期380万千瓦)、蒙东基地通辽开鲁基地(150万千瓦)、蒙西达茂巴音基地(160万千瓦)、河北承德基地(100万千瓦)、新疆哈密基地(1080万千瓦)的建设项目已部分或全部完成。此外,全国还有6个百万千瓦级风电基地正在组织开展建设前期工作,分别为宁夏贺兰山基地(450万k千瓦)、甘肃武威民勤红沙岗基地(100万千瓦)、吉林四平大黑山基地(170万千瓦)、锡林郭勒基地(300万千瓦)、兴安盟桃合木基地(200万千瓦)、呼伦贝尔基地(250万千瓦)等。
至2012年底,全国累计核准风电项目1651个,累计核准容量9040万千瓦(含国家核准计划外项目517万千瓦),其中累计核准容量2084万千瓦,居全国之首。2012年上半年全国风电累计吊装容量6190万千瓦,累计并网容量5572千瓦,在建容量3468万千瓦,并网容量占核准容量的62%。其中内蒙古风电并网容量突破1500千瓦,领跑全国,河北、甘肃、山东、黑龙江、江苏、新疆、山西、广东、福建等省区并网容量也均超过100万千瓦。
2.风力发电投资企业情况
2012年上半年,国电集团新增并网容量190万千瓦,累计并网容量1172万千瓦,继续保持全国风电并网容量首位;华能集团新增并网容量100万千瓦,累计并网容量759万千瓦,居第二;大唐集团新增并网容量101万千瓦,累计并网容量675万千瓦,居第三。五大发电集团累计并网容量3170万千瓦,约占全国并网容量的57%。2012年上半年全国投资企业基本保持稳定发展状态,同比2011年上半年并网容量降低了约16%。表1所示为2012年上半年主要投资企业并网容量统计情况。
3.风电机组制造商情况
大规模风电基地建设,为我国风电机组制造商开拓了广阔的市场。2012 年中国风电新增装机容量排名前二十的企业几乎占据了国内98%的市场份额,其中金风新增风电装机容量最多,达到2521.5兆瓦,占据19.5%的市场份额。2012 年,我国风电新增装机容量排名前三的企业分别为金风、联合动力和华锐。2012年中国风电新增与累计装机排名前二十的机组制造商分别如表2与表3所示。
另外,我国海上风电也取得较大进展。截至2012年底,中国已建成的海上风电项目共计389.6兆瓦,是除英国、丹麦以外海上风电装机最多的国家。我国海上风电开发提供风电机组的制造商中,华锐、金风、Siemens 所占份额较大,机型主要以2MW以上的风电机组为主。
二、我国风电人才需求及培养现状
风电产业的高速增长也带来了风电人才的短缺。我国的风电人才需求主要为三个方向:一是风电开发企业,如国电、华能、大唐、国华、华电、中电投、中广核、华润等下属的风电场,主要从事风电场运行与维护方面的工作;二是风电机组制造商,如华锐风电、金风、广东明阳、国电联合动力、湘电风能、Vestas、上海电气、东汽、Gamesa、GE等,这类企业一般需要高端的风电研发人才;三是风电规划设计或建设单位,主要从事风电场的规划、设计和施工等方面的工作。
目前,我国风电人才培养大体上形成了三个层次的格局:第一梯队是博士、硕士研究生培养,主要由国内各高校及研究机构借助风电领域的课题研究培养和造就一批具有较高学术水平、创新能力的风电领域高层次人才。第二梯队是本科生培养。据统计,自华北电力大学2006年创办我国第一个风能与动力工程本专业以来,包括长沙理工大学、河北工业大学、内蒙古工业大学等,全国已开设风能与动力工程本科专业学校有16所(2013年起,“风能与动力工程”专业更名为“新能源科学与工程”专业)。第三梯队是高职生。高职院校主要培养从事风电机组制造、风电场运行与维护的一线技能型人才。
从长沙理工大学(以下简称“我校”)首届风能与动力工程专业毕业生就业考研与出国情况来看,毕业生出现不同层次的走向。截至2013年3月20日,风能与动力工程专业2009级毕业生63人,已签约49人,就业走向主要为中国大唐集团、国电集团、华能集团、电力投资集团、华润集团等发电企业的下属新能源公司,少部分为风电机组制造商和电力建设单位;读研7人,分别被华北电力大学、中南大学、湖南大学等大学预录取;出国深造2人,分别为丹麦科技大学和德国汉诺威大学预录取。从目前人才需求角度来看,由于近几年风电项目的迅速扩张,风电行业对风电场运行与维护的技能型人才有较旺盛的需求。
在风电大规模发展的同时,近几年我国太阳能发电也迅速扩张。截至2012年底我国累计光伏装机容量达到7.5GWp,预计2013年将新增光伏装机容量为10GWp,计划2015年新增光伏装机容量为40~50GWp,2020年新增80~100GWp。风电和太阳能发电作为新能源中两支主力军,出现并驾齐驱的局面,产业发展必然对专业人才提出迫切需求。2013年,教育部统一将“风能与动力工程”专业更名为“新能源科学与工程”专业。本专业也将面向更宽广意义的新能源产业需求,对专业培养方案进行调整。
三、新能源科学与工程专业人才培养模式的探索与实践
本科教育既是培养工程技术人才的中坚力量,又承担着为行业高端人才培养打基础的重要任务。本科生的优势在于理论基础、思维方法和发展潜力,但缺乏的是技术细节方面的训练。因此应始终以培养学生“基础理论扎实、工程实践能力与创新能力强为目标。从新能源产业自身发展角度来说,需要一批具有宽广知识体系、能够引领新能源技术发展的高水平创新型复合人才出现。新能源科学与工程本科教育应该既注重专业的基础性,又要注重工程实践性。为此,我校能源科学与工程专业人才培养模式在以下几方面进行了探索与实践。
1.以“厚基础、宽口径、强能力、高素质”为原则确立人才培养目标
2009年首届招生以来,本专业依托本校能源电力优势学科,立足新能源国家战略性新兴产业,面向风电产业人才需求,确定了“培养德、智、体、美等全面发展,基础扎实,知识面宽,有较高的综合素质、工程实践能力和创新能力强,具备较强的计算机应用能力和较高外语水平,系统掌握风能与动力工程专业基础理论和基本知识,能胜任风电场的规划、设计、施工、运行与维护,风力发电机组设计与制造,风能资源测量与评估,风力发电项目开发等风能与动力工程专业的技术与管理工作,并能从事其他相关领域的专门技术工作应用型高级工程技术人才”的人才培养目标。2011年,本专业被确定为湖南省省级特色专业。2013年,根据教育部对本科专业整理工作的统一部署,将“风能与动力工程”专业将更名为“新能源科学与工程”专业。本着“厚基础、宽口径、强能力、高素质”的原则,对专业培养方案做了相应的调整,但仍然保留“风能与动力工程”专业的特色,以风力发电为重点,涵盖太阳能光伏/光热发电等新能源知识体系,培养具有宽厚理论基础和创新精神、实践能力强的应用型高级工程技术人才。
2.注重基础性和实践性相结合设置课程模块与培养环节
根据学校的特色和优势,编制风能与动力工程人才培养计划,共开设必修课35门,开设选修课23门,现已开出课程门数为58门,学生需选修33学分选修课程,选修课在总学分中的占比为19.6%。设置了理论力学、材料力学、风力机空气动力学、机械设计基础、电机学、电路理论、自动控制原理、风力发电原理、光伏发电原理与应用、太阳能热利用原理与应用等主要理论课程和计算机辅助设计、电工电子技术、微机原理与接口技术、风资源测量与评估、风电机组设计与制造、风电机组控制与优化运行、风电场电气工程、海上风力发电等技术类课程;以金工实习、电子工艺实习、机械设计课程设计、风电场电气工程课程设计、风电机组设计与制造课程设计、风电场认识实习、检修拆装实习、仿真实习、运行(毕业)实习、毕业设计(论文)等作为主要实践教学环节。风能与动力工程专业在教学环节的设置上实践教学贯穿全程。共4次集中实习,课程模块与培养环节关系如图2所示。
图2 风能与动力工程专业课程模块与培养环节关系
3.在工程实践中培养创新意识和创新能力
创新型人才是支撑和推动新能源产业发展的主要动力。创新源于实践,在工程实践中培养创新意识和创新能力。长沙理工大学经过多年的探索与实践,构建了培养“具有创新精神的应用型人才”的学生能力结构体系、能力培养的实施方案、实践教学体系以及管理模式,提出了“工程基础训练+工程创新训练+大工程意识训练”的工程教育模式。基于工程教育理念,形成了“三层次、四模块、三结合”的实践教学体系,即实验、实习、设计等主要实践教学环节按基础训练、提高训练、综合训练三个层次进行系统设计;将实践教学内容分为实验、实习、设计、课外实践四个模块;采用课内外、校内外、第一课堂与第二课堂三结合的方式组织实践教学。
新能源科学与工程专业是一个实践性很强的专业,在办学过程中十分重视实践教学,并建立了稳定的校内校外实习实训基地,通过加强实践教学培养学生的创新意识和动手能力。
(1)校内实习基地。建立校内“风电机组运行特性分析实验室”、“风力机变桨控制实验室”、“风力机偏航控制实验室”、“风力机组检修拆装实验室”、“大型风电场运行仿真实验室”、“风力机叶片振动特性实验室”、“风力机设备腐蚀与磨损实验室”、“光伏发电实验室”等专业教学实验室,为专业实验课、认识实习、拆装实习、仿真实习提供良好的条件。
(2)校外实习基地。根据本专业人才培养目标和要求,制定与社会发展需要相适应的人才培养方案,与大唐华银城步南山风电场、华电郴州仰天湖风电场、中电投九江长岭风电场、大唐漳浦六鳌近海风电场、湘电集团有限公司、湖南兴业太阳能有限公司、北京木联能软件技术有限公司等省内外相关企业共建“风能与动力工程”专业,形成学校与企业产、学、研全面合作的长效机制。风电专业骨干教师共18人次先后到内蒙古华电新能源辉腾锡勒风电场、福建大唐漳浦六鳌近海风力发电场、河南南阳方城风电场、新疆电力设计院、大唐甘肃酒泉风电场等风力发电企业进行技术交流和科技服务。风电专业学生在华电郴州仰天湖风电场、宁夏贺兰山风电场与太阳山光伏电站等基地开展了丰富的暑期实践活动。依托专业实验室,学生开展了大量科技创新实践活动,专业教师指导学生开展了国家级(共4项)、校级(4项)“大学生研究性学习与创新性实验项目”的研究工作;参加全国大学生节能减排社会实践与科技竞赛、“挑战杯”湖南省大学生课外学术科技作品竞赛等各类科技性竞赛活动,获得较佳的成绩。
4.转变技术类或实践类课程的学习过程
本科教育的缺失是职业技能或技术细节方面的训练。理论知识宽广但实践动手能力差是目前本科教育存在的较普遍现象。本科毕业生感觉学了很多东西,又感觉什么也没有学到,学到的都是一些理论或概论性的东西。相反,高职院校的职业技能针对性很强,注重实际动手操作能力的培养,而弱化理论知识体系的教育,相比于本科生,高职生在职业技术方面更容易上手。但如果本科生像高职生那样培养,势必过于狭隘,也违背了大学本科教育的初衷。本科生的优势就在于理论基础、思维方法和发展潜力。因此,本科生的理论基础课程的学习可以沿用传统的书本教学为主,培养思维方法;技术类或实践类课程学习则应放弃那种“先书本,再实践”或“只有书本,没有实践”的教学方式,而应遵循“在实践中学习”的原则。针对不同的专业特点有选择性地开设或加强职业技能型的课程。对于本专业来说,则应加强计算机绘图、电气与控制、模拟仿真、机械设计与制造等模块的技能培养。如此,本科生则不但具有宽广的理论基础,而且具有较强的职业适应能力。
四、结论
风电与太阳能发电作为我国战略性新兴产业,呈现蓬勃生机的发展局面。新能源产业发展为新能源科学与工程专业毕业生提供了广阔的就业空间,同时本专业人才也必将成为推动新能源产业发展的动力。本专业应以“工程实践能力”为核心,夯实理论基础,强化实践能力和创新意识的培养,支撑新能源产业的发展。
参考文献:
[1]中国可再生能源学会风能专业委员会.2012年中国风电装机容量统计[J].风能,2013,(3).
[2]李俊峰,蔡丰波,唐文倩,等.中国风电发展报告2011[M].北京:中国环境科学出版社,2011.
[3]袁剑波,郑健龙.工程实践能力:培养应用型人才的关键[J].高等工程教育研究,2002,(3).
[4]李录平,张拥华.基于工程意识和能力培养的理工院校实践教学改革与探索[J].黑龙江教育,2010,(4).
[5]李录平,张拥华,周键,等.高等学校实践教育多维度理念探析[J].中国大学教育,2011,(11).
[6]何建军,陈荐.风电人才需求与人才培养模式的研究[J].中国电力教育,2010,(31).
[7]姜玉立,何伟军.我国风电人才培养现状、问题及对策[J].中国电力教育,2012,(24).
【关键词】化学名词 词源 教学功能 新课程理念
【中图分类号】G658.3 【文献标识码】A 【文章编号】2095-3089(2015)08-0137-02
1.元素用字
元素是化学学习的基础,而正确书写元素名称是准确命名化学物质的前提。然而在实际教学中往往有一些同学无法正确书写元素名称,甚至随意造字。其实,教师只要从中文词源略加分析,学生就会很容易掌握元素名称,甚至可以从中学到更多化学相关知识。
1.1元素名称的中文词源
中文元素名称用一个字表示,在取字时与国际通用名称相应,以谐声为主,会意次之。
1.1.1谐声字
元素单质在普通情况下为气态者,偏旁从“气”;液态者从“水”;固态的金属元素从“金”;固态的非金属元素从“石”。因此,我们可以从元素偏旁获知其单质在普通情况下的状态。如:氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)、氡(Rn)……为气态均从“气”;锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr)……为金属元素均从“金”;砷(As)、硒(Se)、碲(Te)……为非金属元素均从“石”。
1.1.2会意字
会意字就是取意造字,氢、氯、氧、氮等就属于此类。
“氢”曾名为“轻气”,因为它是最轻的气体,改为单个字时,将轻字的偏旁去掉加气字头;我国曾将“氧”译作“养气”,意谓可以养人;“氯”曾名为“绿气”,因其单质状态是绿色的气体,故把绿字的偏旁去掉加气字头;“氮”源出自“淡”,表示把空气中氧冲淡了,故把淡字去偏旁加气字头;“溴”带水旁表示其单质为液态,溴单质是有恶臭味的液体,故将“臭”加水旁而会意[1];“钾”是我国在当时已经发现的金属性质最为活泼,故以“甲”旁“金”而成“钾”;“钨”矿石呈黑色,遂以“乌”合“金”而成“钨”;我国古时称煤为“炭”,遂造为“碳”;古时圭指玉石,即是“硅”的化合物。因此,我们可以从这些元素名称中获知他们单质的特殊物理性质。
2.物质俗称
在学习中学化学的过程中,我们会发现有有些物质除了按照传统命名法命名外,还有很多俗称。所谓“俗称”即通俗的称呼,是人们在劳动生活生产过程中约定俗成的非正式名称。学生在学习的过程中常常记不住或者记混这些俗称,其实这些俗称并非信手拈来,而是与物质本身有着千丝万缕的联系。
2.1按物质的发现或制取
碳酸钙俗称大理石,因产于云南大理而得名;波尔多液为由硫酸铜溶液和石灰乳配制而成的一种蓝色、黏稠的悬浊液,因1882年首先用于法国波尔多城而得名;碳化钙俗称电石,因它是生石灰与碳在电炉加热的高温下(3000℃)反应而得到的固体;乙醇俗称酒精,在古代,酒是常见饮品之一,酒蒸馏可得纯度较高的乙醇;丁二酸俗称琥珀酸,因蒸馏琥珀可以得到丁二酸;甲醇俗称木精、木醇,最早是从木材干馏所得的木醋液(含有醋酸、甲醇、丙酮等)中分离而得[2];普鲁士蓝即亚铁氰化铁,1704年由普鲁士公司的狄斯巴赫和第佩尔所发明的一种蓝色染料[2];镀锡铁俗称马口铁,由于最初它从阿里部马口地方输入而得名;甲酸俗称蚁酸,因存在于蜂类、某些蚁类和毛虫的分泌物中。
2.2按物质的用途
氯化钠俗称食盐,是供人们食用的盐类;碳酸钙俗称石灰石,因其可用来烧制生石灰而得名;酚醛树脂俗称电木,因其是电力工业上常用的绝缘材料而得名。
2.3按外文音译
硫代硫酸钠俗称海波,是hypo的音译;甲醛的水溶液俗称福尔马林,是formalin的音译。
2.4按物质的性质
2.4.1物理性质
碳的同素异形体之一金刚石,因其硬度大而得名;碳的同素异形体活性炭,它较活泼,具有吸附某些物质的特性;三硝基苯酚俗称苦味酸,因其有苦味而得名;氧化铁俗称铁红,呈红棕色;五水硫酸铜的俗称胆矾(或蓝矾),呈蓝色且颜色似猪胆;七水硫酸亚铁俗称绿矾,呈绿色;十二水硫酸铝钾俗称明矾,七水硫酸锌俗称皓矾,均呈无色;碱式碳酸铜俗称铜绿,呈绿色。
2.4.2化学性质
浓硝酸与浓盐酸按体积比1:3得到的混合液俗称王水,因其能溶解某些不与硝酸作用的金属,其中包括“金属之王”――金而得名;次氯酸钙和氯化钙的混合物俗称漂白粉,它的有效成分为次氯酸钙,具有漂白作用;氢氧化钠俗称火碱、烧碱,因其具有强烈腐蚀性。
2.5 同一物质多俗称来源不同
【关键词】新能源科学与工程;多学科;培养方案
【Abstract】New energy science and engineering is a typical multi subject cross specialty and has already become an emerging industries which our nation prefers to develop. Based on the analysis of the current situation of the new energy profession, this paper proposes a distinctive training program for new energy science and engineering, combing with our own advantages.
【Key words】New energy science and Engineering; Multi discipline; Training program
随着社会经济的发展,传统能源产业已经成为制约当今社会经济发展的关键因素,新能源产业的发展必然是未来中国可持续发展的趋势。然而与发达国家相比,我国的新能源产业化发展起步相对较晚,技术也较为落后,总体产业化程度不高,且新能源领域的科技创新能力明显不足。特别是我国高校新能源专业人才培养方案尚处于摸索阶段[1-3]。
目前,国内大部分高校的新能源科学与工程专业都是以能源与动力工程专业为基础,再开设几门与新能源领域相关的课程,并没有从根本上解决培养方案的问题,因此,在课程体系设置、专业素质培养、本科生就业等方面存在不少问题。例如:(1)专业特色不明确;(2)专业基础课程与专业课程脱节;(3)实践教学和创新教学的形式化[4-5]。因此,本文针对目前各高校在新能源科学与工程专业人才模式培养中存在的主要问题,提出了具有特色的新能源科学与工程专业培养方案。
1 一体化人才培养
本校新能源科学与工程专业的课程体系由四个主要模块组成:通识课程71学分(人文社科课程和公共基础课程)、学科课程58学分(学科基础课程、专业核心课程和专业选修课课程)、集中实践教学38学分(毕业设计、课程设计、项目设计、电工实习、金工实习、生产实习、课外实践教学等)和素质、创新、创业教育16学分。在本课程体系中,一方面开设了本专业的基础技术知识课程,让学生能够掌握与新能源体系设计、开发和测试相关的知识,另一方面开设了能源管理等方面的课程,最终培养的学生能够熟悉规划-设计-制造-运营-管理环节中关键的技术和方式,使得他们能更好的适应社会的需求。
2 供求关系引导特色学科
目前,各高校根据自身专业设置的特点和学科发展的优势,制定了稍有不同的新能源科学与工程专业人才的培养方案,如华北电力大学新能源科学与工程专业以生物质能、太阳能和风能三个专业为主;江苏大学的新能源科学与工程专业则围绕风能发展相关课程,实行单方向发展模式。本专业由于是新组建专业,暂时还未形成特色学科,因此,在专业核心课程设置时,以全面介绍新能源的动力系统、新能源的利用、新能源的储存和节能方式为目的,未涉及具体的特色方向,同时,河南省是以农业产品为主,结合目前太阳能热泵技术的大力推进,因此,在设置专业选修课程时,主要以热泵技术、太阳能制冷和冷热源工程为主导。在以后的实践过程中,发展出自身特色后,再利用选修课色学科对专业核心课程进行替换,从而形成“从发展中找特色”的人才培养方式。
3 “1+1”就业模式
新能源科学与工程专业属于新生学科,该方向毕业的学生较少,在能源行业中并未站稳脚步,在考虑学生就业问题时,一方面要以新能源学科为基础,开设新能源就业较好的课程,另一方面,也要重视我们现状,新能源比重小于20%,目前仍然以传统能源为主,因此,也开设了传统能源的节能技术课程,从而形成新能源利用和传统能源升级改造并行的“1+1”就业模式。
4 “分层次”创新教学
高校的教学模式必须具有连贯性,才能保证教学的质量。因此,本专业在设置相关软件学习课程时,尝试性地在大学一年级开设程序设计技术(C语言),大学二年级开设工程软件基础,让学生掌握工程软件基本知识,大学三年级时开设工程软件应用技术,让学生能熟练的利用三维软件进行实物绘制,在大学四年级的素质教育时,开设CAD-CFD综合应用创新教育课,更进一步让学生掌握模型的网格划分和传热与流动方面的简单编程计算。在上述的课程学习中,既保证的课程学习的连贯性,也形成了“分层次”创新教学的发展模式。
5 结语
新能源领域的发展,关键在于人才的培养。由于新能源科学与工程专业涉及物理学、化学、传热学、材料科学、管理学等学科,是一个典型的多学科交叉的新兴专业。因此,其培养方式和课程设置必须紧跟新能源科学技术的发展步伐,与时俱进。在贯彻厚基础、宽方向、重实践原则的基础上,积极培养具有扎实的自然科学基础、人文社会科学基础和专业知识,能够承担新能源工程的设计、运行管理、技术开发、科学技术教育与教学等工作,富有社会责任感,具有创新精神、实践能力和竞争力的高级专门人才。
【参考文献】
[1]冯大千,刘国良,范大和,等.浅谈《新能源概论》课程教学实践[J].科技视界, 2016(19):157-157.
[2]张宏丽,王存旭,郭瑞.美国俄勒冈州技术学院新能源专业人才培养的启示[J]. 当代教育理论与实践,2015(12):103-105.
[3]陈登宇.新能源科学与工程专业人才培养模式研究[J].科教文汇,2015(3):61-62.