当前位置: 首页 精选范文 计算机科学与生物学范文

计算机科学与生物学精选(十四篇)

发布时间:2023-09-20 09:46:48

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇计算机科学与生物学,期待它们能激发您的灵感。

计算机科学与生物学

篇1

关键词:生物信息学;计算机科学;教学模式

生物信息学是生物学、数学和计算机科学交叉所形成的一门新兴学科,它主要运用信息科学和计算机手段,通过数据分析和处理,揭示海量数据间的内在联系和生物学含义,进而提炼有用的生物学知识。当前,生物信息学教学还没有完善的教学模式,如何在高校进行生物信息学教学亟需探索。

进入21世纪,生物学的重点和潜在的突破点已经由20世纪的试验分析和数据积累,转移到数据分析及其指导下的试验验证上来。生物信息学作为一门学科被广泛研究的根本原因,在于它所提供的研究工具对生物学发展至关重要,因此成为生命科学研究型人才必须掌握的现代知识。今天的实验生物学家,只有利用计算生物学的成果,才能跳出实验技师的框架,做出真正创新的研究。现在基因组信息学和后基因组信息学资源已经成了地球上全人类的共同财富。如何获取和利用基因组和后基因组学提供的大量信息,如何具备享用全人类共有资源的能力,成了当今世纪生命科学学生必须掌握的基本技术和知识以及必须具有的初步能力。在信息学院中开设生物信息学应该有别于生物专业和物理、化学专业的学生,侧重于与计算机科学关系紧密的内容进行讲解。本文主要讨论在信息学专业中开设生物信息学的内容、教学方法[1]。

1国内生物信息学研究与教学现状

作为计算机科学和数学应用于分子生物学而形成的交叉学科,生物信息学已经成为基因组研究中强有力的必不可少的研究手段。在我国,生物信息学随着人类基因组研究的展开才刚刚起步,但已显露出蓬勃发展的势头。许多科研单位已经开始或准备开始从事这方面的研究工作。北京大学研究建立起一个EMBL的镜像数据库,并提供数据检索服务[2-3]。

在复旦大学遗传学研究所,为克隆新基因而建立的一整套生物信息系统也已初具规模。中科院上海生化所、生物物理等在结构生物学和基因预测研究方面也有相当的基础,中科院计算所作为我国计算机科学的顶尖机构,利用自身优势,也开始在生物信息方面投入大量的人力物力,从事相关的研究。另外清华大学生物学院与信息学院、中国科技大学生物学院、浙江大学也有相应的研究小组。有许多学校还增设了生物信息学的本科专业与二级学科的硕士、博士点。

在当前生物学信息呈爆炸性增长的背景下,急需要对这些数据进行分析、归类与重组,发现新线索、新现象和新规律,用以指导实验工作的设计。生物信息学的建设显得尤为紧迫,关键在于:1)加强相关学科之间的协作;2)加速培养一批在数学、物理、信息科学、计算机科学以及分子生物学方面均有造诣的跨学科青年人才。这样的人才在当前全世界都十分缺乏。我们如能充分发挥现有人才和单位的潜力,优势互补,相互协作,边做课题边培养研究生,进而在某些有条件的大学里设置生物信息学专业,就能迎接21世纪的挑战。

2生物信息学教学模式初探

2.1在计算机专业中开设生物信息学课程的几个问题

缺乏合格的生物信息学师资,教师队伍的整体数量和质量与我国生物信息学教育快速发展的规模极不相称。

对生物信息学专业人才培养的认识各异,造成课程设置不合理。事实上,国外在生物信息学专业的课程设置方面也缺乏成功的经验,围绕“哪些是生物信息学专业的必修课程”和“生物信息学专业的研究生需要哪些背景”之类的问题争议颇多。

生物信息学教育与其他专业的合作还有待加强。尽管生物信息学是一门新兴学科,但与其他专业之间存在许多联系。如生物信息学与统计学的关系极为密切,如能整合统计学教学资源,势必提升生物信息学教育水平。

在教学方法上,生物信息学仍沿用“以教师为中心,以课堂为中心,以教材为中心”的传统教学模式。重视系统知识的传授和授课计划的完成,忽视学生能力和素质的培养。理论教学与实验教学缺乏有机整合,实验教学只是以验证理论为目的,内容单一,无创新点,忽视了学生实际操作能力和创新能力的培养。

教学中还缺乏适合的理论和实验教材。近来,尽管生物信息学书籍呈快速增长的趋势,已不下百种,其中授权影印国外原版教科书和翻译书籍仍占主导地位。

2.2生物信息学教学模式的改进方法

借鉴其他学科成功的教学模式,结合生物信息学课程特点,采用新的教学模式势在必行。

2.2.1知识定位为中心,引入探究式教学方法

生物信息学既有较深的理论性知识,又有较强的实验技能,它涉及生物学、计算机技术、数学等方面的知识。因此,学校需针对培养目标与要求,制订具有专业特色的教学大纲,在教学内容上作合理的调整与优化。其教学过程大致分为三个步骤:(1)确立教学目标。目标可以由教师设定,可以是学生感兴趣的内容。(2)进行分组。对一个崭新事物的认识单靠个人的力量往往难以全面兼顾,需要集体的智慧,由小组成员围绕指定的问题进行讨论,最后由指导教师进行总结,对同学的讨论情况做出点评,并提出改进意见。

2.2.2整合理论教学与实验教学,提高学生综合素质

通过生物数据库的使用,提高学生处理生物信息的能力。由于大型服务器和计算机的参与,分子生物学对生物分子(主要是核酸和蛋白质)研究工作的效率大大提高。到目前为止,生物学数据库总数已达500个以上,在DNA序列方面有GenBank、EMBL和DDBJ等;在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等;在蛋白质和其他生物大分子的结构方面有PDB等;在蛋白质结构分类方面有SCOP和CATH等,各数据库均通过Internet提供多种形式的数据检索服务。

2.2.3充分利用现代化教育技术,采用启发式教学

目前,高等院校在教室内配备的多媒体投影播放系统促进了多媒体教学的广泛应用。生物信息学采用多媒体教学是与学科特点相适应,有利于提高教学效果。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等内容涉及的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和掌握,提高学生实践能力。同时,由于生物信息学依赖于网络资源和互联网上的分析工具和软件,教室内的多媒体计算机连接到互联网,可以极大地提高教学效果。但在实际教学中发现,多媒体教室也有局限性,学生主要以听为主,不能及时实践,教师讲解与学生实践相脱节,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式,就可以解决上述问题。在教学中采用启发式教学,可为学生建立教学情景,学生通过与教师、同学的协商讨论、参与操作,能够发现知识、理解知识并掌握知识[4-5]。

3结语

现代生物技术将在21世纪迅速发展,为了跟上科学技术发展的步伐,在计算机专业中开设生物信息学课程是非常有必要的,也是有远见的。

随着生物信息学的快速发展,各种生物学数据信息,呈爆炸性增长,而计算机是有史以来最好的数据处理平台。因此,在计算机专业中开设生物信息学课程是非常迫切的。通过生物信息学课程的学习,使学生提高了生物信息处理的基本能力,对培养复合型、交叉型人才,提高毕业生综合素质进而提高就业竞争力具有积极意义。

参考文献:

[1] 萧浪涛. 现代生物信息学及其主要研究领域[J]. 湖南农业大学学报,2000(6):409.

[2] 王哲. 生物信息学概论[M]. 西安:西安第四军医大学出版社,2002:1-30.

[3] 郝柏林,张淑誉. 生物信息学手册[M]. 上海:上海科学技术出版社,2000:12-22.

[4] 赵国屏. 生物信息学[M]. 北京:北京科学出版社,2002:21-55.

[5] 何红波,姜鹏. 在计算机专业中开设生物信息学课程的几个问题[J]. 长沙铁道学院报:社会科学版,2003(3):114-116.

Establishment and Practice of Setting up Bioinformatics Curriculum in Computer Specialty

YU Xiao, SUN Hong-min

(Northeast Agricultural University, Harbin 150030, China)

篇2

【摘要】 【目的】 原核克隆及表达华支睾吸虫乳酸脱氢酶(CsLDH)两个表位aa10-20(E10-20)及aa94-102(E94-102),初步研究两表位与CsLDH免疫学及酶学相互关系。【方法】 将E10-20及E94-102克隆至pGEX-4T-1载体,表达纯化重组蛋白,用Western Blotting和间接ELISA法检测CsLDH免疫血清对表位重组蛋白的识别,同时检测两表位重组蛋白的免疫血清对CsLDH蛋白的识别;利用CsLDH标准酶活性反应体系,比较两表位免疫血清与CsLDH免疫血清对CsLDH催化丙酮酸还原成乳酸反应的影响。【结果】 成功构建pGEX-4T-1-E10?鄄20及pGEX-4T-1-E94-102重组质粒,SDS-PAGE鉴定表达的重组蛋白,菌体裂解液经亲和层析纯化,获得与GST融合表达的蛋白E10-20及E94-102。两表位重组蛋白均可被CsLDH免疫血清识别,而对E94-102更易于识别;重组CsLDH也能被E10-20及E94-102免疫血清识别,而不能被对照血清识别。E94-102免疫血清能抑制CsLDH催化丙酮酸还原成乳酸的反应。【结论】 表位结构和功能研究深化了对CsLDH结构的理解,并为开辟CsLDH疫苗研究新路径奠定基础。

【关键词】 华支睾吸虫; 乳酸脱氢酶; 表位

Abastract: 【Objective】 To clone and prokaryotically express the two epitopes aa10-20(E10-20) and aa94-102(E94-102) of CsLDH from Clonorchis sinensis, then to study the relationship between the two epitopes and CsLDH basically. 【Methods】 E10-20 and E94-102 were cloned to pGEX-4T-1 vector, then the recombinant protein were expressed and purified. CsLDH immunized sera was used as the first antibody, two epitopes were identified by Western blotting and IgG-ELISA analysis. E10-20 and E94-102 immunized sera was used as the first antibody, CsLDH was identified by the same methods above. Enzyme activity of recombinant CsLDH was assayed in the standard reaction system by adding different dilution sera. 【Results】 The recombinant plasmids pGEX-4T-1-E10-20 and pGEX-4T-1-E94-102 were constructed successfully. The expression products and purified ones were identified by SDS-PAGE. Western blotting and ELISA both showed that the CsLDH immunized sera could identify the two epitopes and E94-102 more easily. Epitopes immunized sera both could identify CsLDH by Western blotting and ELISA analysis. E94-102 immunized sera could inhibit the CsLDH enzyme activity as the CsLDH immunized sera could do. 【Conclusion】 Construction and function of the two epitopes helps to understand the construction of CsLDH and supply new methods to the vaccine study of the CsLDH.

华支睾吸虫病是由华支睾吸虫囊蚴感染宿主所引起的一种人兽共患寄生虫病。本实验室近年来开展对于华支睾吸虫功能基因组研究,表膜蛋白在疫苗研究中的价值初显[1-3]。我们对华支睾乳酸脱氢酶(lactate dehydrogenase from Clonorchis sinensis,CsLDH)的研究中,发现此酶能表达在华支睾吸虫表膜上,且该酶分子为厌氧代谢的关键酶分子,因而其结构与功能特点使其很有可能成为一个有价值的疫苗候选分子[4-5]。表位是蛋白质抗原性的基础,深入研究蛋白质的表位对蛋白质的结构和新型疫苗分子的设计具有重要价值[6-8]。我们运用Pcgene软件分析获得CsLDH的3个重要的表位:aa10-18,aa12-20和aa94-102。aa10-18和aa12-20为连续的亲水线性表位,遂命名为E10-20;aa94-102则命名为E94-102;理论预测E94-102位于膜外区,三维空间上构成一个抗原结合环,Arg102为CsLDH催化中心中3个必须氨基酸之一。我们推测针对该表位的抗体可能对CsLDH的结构与功能产生影响[4]。作者经人工合成E10-20及E94-102基因序列,将其克隆至pGEX-4T-1载体,使短肽表达在GST蛋白末端,与原核表达的CsLDH进行对比研究,探讨CsLDH结构特征及线性表位对于CsLDH功能的影响。

1 材料和方法

1.1 材 料

大肠杆菌DH5α/DE3、BL21/DE3由本室保存;原核表达载体pGEX-4T-1购自Pharmasis公司,由本实验室常规保存。清洁级雄性SD大鼠由中山大学实验动物中心提供。

1.2 试 剂

BamHⅠ、XhoⅠ和T4DNA连接酶购自Promega公司;质粒提取和凝胶回收试剂盒为北京赛百盛公司产品;弗氏完全佐剂、弗氏不完全佐剂、丙酮酸(pyruvate)、和还原型尼克酰胺腺嘌呤二核苷酸(NADH)均为Sigma公司产品;PVDF膜为Millipore公司产品;HRP标记的山羊抗大鼠IgG(H + L)、DAB显色试剂盒为武汉博士德生物工程有限公司产品。

1.3 方 法

1.3.1 目的基因获取

根据表位DNA序列及克隆载体pGEX-4T-1多克隆酶切位点设计目的基因。E10-20,P:5′-gatccCCAGCTGATGCTAGATCTCGC CCGAGGACGAAGTAAc-3′;N:5′-tcgagTTACTTCG TCCTCGGGCGAGATCTAGCATCAGCTGGg-3′;E94-102,P: 5′-gatccGCTCGTCAGAATGAAGGAGAATCCAG GTAAc-3′;N:5′-tcgagTTACCTGGATTCTCCTTCAT TCTGACGAGCg-3′;其中,P:5′端下划线所示序列为BamHⅠ限制性核酸内切酶所识别序列(gatccg)经该酶酶切后序列,P:3′端下划线所示序列为XhoⅠ限制性核酸内切酶所识别序列(gtcgag)经该酶酶切后序列;N:5′及N:3′为P:3′及P:5′序列的互补序列。以上基因序列均由上海英骏生物技术有限公司合成。将合成的各单链稀释成1 nmol/mL,相应的正反两链等体积混合,室温放置2 h后,4 ℃放置30 min,自然退火。

1.3.2 pGEX-4T-1-E10-20及pGEX-4T-1-E94-102重组的构建及鉴定

将pGEX-4T-1质粒用BamHⅠ和XhoⅠ限制性核酸内切酶酶切回收,经T4DNA连接酶与目的基因连接,转化DH5α/DE3感受态细胞,氨苄青霉素初筛克隆,挑克隆提取质粒DNA,送上海英骏生物技术有限公司测序。

1.3.3 E10-20及E94-102 原核小量表达

将测序阳性质粒转化BL21/DE3感受态细胞,氨苄青霉素筛选克隆,挑取单菌LB培养基中增菌,37 ℃,250 r/min(r = 12 cm),培养18 h。取50 ?滋L增菌液接种至5 mL LB培养基中,当吸光度在0.5时,加入IPTG至终浓度为1 mmol/mL,37 ℃,250 r/min,诱导表达5 h,15% SDS-PAGE分析表达蛋白。

1.3.4 E10-20及E94-102 原核大量表达与纯化

依小量表达条件进行大量表达,离心收集菌液,加入裂解缓冲液适量,超声破菌,离心取上清液,0.45 μL滤膜过滤,将样品加入平衡好的GST结合树脂中,亲和层析法纯化蛋白,收集洗脱液,用4 × SDS-PAGE上样缓冲液处理样品,行15%SDS-PAGE分析纯化蛋白。

1.3.5 免疫血清的获取

依文献所述方法[9]纯化CsLDH蛋白,用Bradford[10]测定E10-20、E94-102和CsLDH蛋白浓度,免疫SD大鼠,皮下注射,0.2 mg 第1周,初次免疫;0.1 mg 第2周和第3周,加强免疫,制备抗血清,对各抗体进行初步纯化,间接ELISA法测定各自抗体滴度。

1.3.6 CsLDH抗血清对E10-20及E94-102的识别;E10-20及E94-102抗血清对CsLDH的识别

均采用Western blotting法和间接ELISA测定,一抗为各抗血清(Western blotting和间接ELISA浓度为别为:1:100和1:50),二抗为HRP标记的抗大鼠抗体(两方法所用浓度分别为:1:2 000和1:20 000)。

1.3.7 CsLDH、E10-20及E94-102免疫血清对重组CsLDH催化丙酮酸还原成乳酸酶活性的影响

重组蛋白酶活性测定参照文献方法[11]。CsLDH催化丙酮酸还原为乳酸的标准反应体系为:10 mmol/L丙酮酸、0.5 mmol/L NADH和100 mmol/L Tris-HCl缓冲液(pH 7.0)。将免疫血清CsLDH、E10-20、E94-102、GST免疫鼠血清以及阴性大鼠血清与CsLDH分别以4:1、2:1、1:1、1:2、1:4、1:8、1:16比例混合,37 ℃水浴中孵育1 h,冰浴终止反应。分光光度法测定340 nm处吸光度的变化,实验至少重复3次,统计学软件分析试验结果。

2 结 果

2.1 重组质粒的鉴定和纯化

挑取阳性菌,提取质粒,送测序,证实重组质粒克隆成功。将重组质粒转染BL21/DE3感受态细胞,诱导表达SDS-PAGE分析显示在分子质量25.0 ~ 35.0 ku处均出现一条明显条带。pGEX-4T-1本身表达GST为26.0 ku,BamHⅠ与XhoⅠ之间的氨基酸的大小与接入的E10-20和E94-102的分子质量大小均约为2.0 ku,而GST末端被E10-20和E94-102片段所替代,而替代的片段分子质量预测为3.24 ku,所以融合后表达的蛋白比GST本身的分子质量略小,纯化蛋白如第6、10泳道所示(图1)。

2.2 Western blotting反应性鉴定

Western blotting鉴定结果显示,CsLDH抗血清既能识别E10-20蛋白,也能识别E94-102蛋白,而GST蛋白不能被识别。第5泳道和第6泳道显示CsLDH免疫血清与E94-102蛋白反应更为明显(图2)。表位抗血清对CsLDH蛋白的识别结果显示,E10-20及E94-102抗血清均能识别CsLDH蛋白,而E10-20抗血清更易识别该蛋白(图3)。

2.3 ELISA免疫反应性鉴定

ELISA结果显示,CsLDH免疫血清能特异性识别E10-20和E94-102中的表位序列,且CsLDH免疫血清对E94-102中表位的识别能力要强于对E10-20中表位的识别。同样,E10-20与E94-102血清中的表位抗体能识别CsLDH蛋白(图4、5)。

2.4 CsLDH、E10-20和E94-102免疫血清对重组CsLDH催化丙酮酸还原成乳酸的作用

经初步纯化的CsLDH大鼠免疫血清以PBS倍比稀释,在稀释度为1:2 560~1:2时对CsLDH催化的丙酮酸还原成乳酸酶活性的抑制率保持在80% ~ 60%范围当内;在增加血清的体积时,其酶的活性直线下降,至2倍体积时,酶活性抑制基本达100%;阴性对照组,对酶活性基本无明显抑制作用(图6)。

经初步纯化的E10-20、E94-102免疫鼠血清,与CsLDH大鼠免疫血清作相同比例稀释,结果显示E94-102免疫鼠血清在1:16 ~ 4:1之间酶活性成梯度下降,在4倍体积于CsLDH时,酶活性抑制达到80%,再增加血清量,抑制率不再增加,E10-20免疫鼠血清则对CsLDH酶活性没有明显的抑制作用(图7)。

3 讨 论

E10-20和E94-102两个表位氨基酸序列长分别为11 aa和9 aa,在三维空间中均表现为CsLDH分子表面的线性结构[4]。pGEX-4T-1载体表达的GST其末端为游离线性末端。本实验研究将E10-20和E94-102克隆入pGEX-4T-1载体,在目的基因序列后加入TAA终止密码子,连接在GST下游末端,实现各表位与GST的融合表达。

CsLDH抗血清对E10-20及E94-102的识别,E10-20及E94-102抗血清对CsLDH的识别,Western blotting和ELISA实验结果的一致性表明此两种表位均为CsLDH线性结构。纯化的CsLDH抗血清当中存在针对这两个表位的特异性抗体成分,而针对E10-20表位所产生的特异性抗体对CsLDH有更强识别能力。E10-20及E94-102免疫大鼠血清中所产生的针对E10-20的特异性抗体和E94-102特异性抗体均能识别CsLDH,且E10-20的特异性抗体更易于识别CsLDH。分析其原因主要是E10-20中实际是含有两个强亲水性表位,两个线性表位与CsLDH本体反应比单一线性表位与本体反应要强。CsLDH的免疫血清中的特异性抗体通过与CsLDH表面的线性表位结合,影响CsLDH的催化功能。以来自于CsLDH的特异性表位E94-102的免疫血清进一步证实了上述结果的推测。Arg102 是酶活性中心的关键氨基酸,特异性抗体与酶活性中心的位点结合,Arg102不能正常行使在酶促反应中的功能,从而影响了整个酶的活性,在宏观上表现为酶促反应受到明显的抑制作用。CsLDH的表位抗体能识别天然的CsLDH,血清活性抑制实验结果均提示我们对于94 ~ 102 aa序列的研究有利于疫苗和新药的设计和研究。

参考文献

Zhou Z, Huang Y, Hu H, et al. Molecular cloning and identification of a novel Clonorchis sinensis gene encoding a tegumental protein [J]. Parasitol Res, 2007, 101(3): 737-742.

Zhou Z, Xia H, Hu X, et al. Immunogenicity of recombinant Bacillus subtilis spores expressing Clonorchis sinensis tegumental protein[J]. Parasitol Res, 2008, 102(2): 293-297.

Zhou Z, Xia H, Huang Y, et al. Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis[J]. Vaccine, 2008, 26(15):1817-1825.

胡旭初,徐 劲,吕 刚,等. 华支睾吸虫乳酸脱氢酶(CsLDH)基因的识别及其结构与功能分析 [J]. 热带医学杂志,2007,7(12):1145-1148.

黄 灿,胡旭初,余新炳,等. 华支睾吸虫乳酸脱氢酶(CsLDH)亚细胞及虫体组织定位 [J]. 中国人兽共患病杂志,2008,24(10):941-944.

杨 凡,刘朝奇,柳发勇,等. HIV-1 gp160多表位嵌-基因的构建及表达蛋白的免疫原性分析 [J]. 实用医学进修杂志,2008,36(1):98-102.

An LL, Sette A. The multivalent minigene approach to vaccine development[J]. Expert Opin Investig Drugs, 1999, 8(9): 1351-1357.

王艳华,张德林,殷 宏,等. 抗原表位预测方法的研究进展 [J]. 中国兽医科学,2009,39(10):938-940.

Yang G, Jing CX, Zhu PX, et al. Molecular cloning and characterization of a novel lactate dehydrogenase gene from Clonorchis sinensis [J]. Parasitol Res, 2006, 99(1): 55-64.

篇3

关键词: 离散数学 计算机科学 数据结构

离散数学是计算机应用必不可少的工具,例如数理逻辑在数据模型、计算机语义、人工智能等方面的应用,集合论在数据库技术中的应用,代数系统在信息安全中的密码学方面的应用,图论在信息检索、网络布线、指令系统优化等方面的应用。

1.离散数学与其他课程的关系

1.1离散数学与数据结构的关系

离散数学与数据结构的关系非常紧密,数据结构课程描述的对象有四种,分别是线形结构、集合、树形结构和图结构,这些对象都是离散数学研究的内容。线形结构中的线形表、栈、队列等都是根据数据元素之间关系的不同而建立的对象,离散数学中的关系这一章就是研究有关元素之间的不同关系的内容;数据结构中的集合对象及集合的各种运算都是离散数学中集合论研究的内容;离散数学中的树和图论的内容为数据结构中的树形结构对象和图结构对象的研究提供很好的知识基础。

1.2离散数学与数据库原理的关系

目前数据库原理主要研究的数据库类型是关系数据库。关系数据库中的关系演算和关系模型需要用到离散数学中的谓词逻辑的知识;关系数据库的逻辑结构是由行和列构成的二维表,表之间的连接操作需要用到离散数学中的笛卡儿积的知识,表数据的查询、插入、删除和修改等操作都需要用到离散数学中的关系代数理论和数理逻辑中的知识。

1.3离散数学与数字逻辑的关系

数字逻辑为计算机硬件中的电路设计提供了重要理论,而离散数学中的数理逻辑部分为数字逻辑提供了重要的数学基础。在离散数学中命题逻辑中的连结词运算可以解决电路设计中的由高低电平表示的各信号之间的运算以及二进制数的位运算等问题。

1.4离散数学与编译原理的关系

编译原理和技术是软件工程技术人员很重要的基础知识,编译程序是非常复杂的系统程序,包括词法分析、语法分析、语义分析、中间代码生成、代码优化、目标代码生成、依赖机器的代码优化7个阶段。离散数学中的计算模型[2]这一章的语言和文法、有限状态机、语言的识别和图灵机等知识点为编译程序中的词法分析和语法分析提供了基础。

2.离散数学在计算机学科中的应用

2.1数理逻辑在人工智能中的应用

人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。人类的自然语言可以用符号进行表示。语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识别的符号,这样计算机才能进行推理,才能具有智能。由此可见数理逻辑中重要的思想、方法及内容已贯穿人工智能的整个学科。

2.2图论在数据结构中的应用

离散数学在数据结构中的应用主要是图论部分在数据结构中的应用,树在图论中具有重要的地位。树是一种非线性数据结构,在现实生活中可以用树表示某一家族的家谱或某公司的组织结构,也可以用它来表示计算机中文件的组织结构,树中二叉树在计算机科学中有着重要的应用。二叉树共有三种遍历方法:前序遍历法、中序遍历法和后序遍历法。

通过访问不同的遍历序列,可以得到不同的节点序列,通常在计算机中利用不同的遍历方法读出代数表达式,以便在计算机中对代数表达式进行操作。

2.3集合论在数据库系统理论中的应用

集合论是离散数学中极其重要的一部分,它在数据库中有广泛的应用。我们可以利用关系理论使数据库从网络型、层次型转变成关系型,这样使数据库中的数据容易表示,并且易于存储和处理,使逻辑结构简单、数据独立性强、数据共享、数据冗余可控和操作简单。当数据库中记录较多时,集合中的笛卡儿积方便了记录的查询、插入、删除和修改。

2.4代数系统在通信方面的应用

代数系统在计算机中的应用广泛,例如有限机,开关线路的计数等方面。但最常用的是在纠错码方面的应用。在计算机和数据通信中,经常需要将二进制数字信号进行传递,这种传递常常距离很远,所以难免出现错误。通常采用纠错码避免这种错误的发生,而设计的这种纠错码的数学基础就是代数系统。

2.5离散数学在生物信息学中的应用

生物信息学是现代计算机科学中一个崭新的分支,它是计算机科学与生物学相结合的产物。由于DNA是离散数学中的序列结构,美国科学院院士,近代离散数学的奠基人Rota教授预言,生物学中的组合问题将成为离散数学的一个前沿领域。DNA计算机的基本思想是:以DNA碱基序列作为信息编码的载体,利用现代分子生物学技术,在试管内控制酶作用下的DNA序列反应,作为实现运算的过程;这样,以反应前DNA序列作为输入的数据,反应后的DNA序列作为运算的结果,DNA计算机几乎能够解决所有的NP完全问题。

3.结语

现在我国每一所大学的计算机专业都开设离散数学课程,正因为离散数学在计算机科学中的重要性,可以说没有离散数学就没有计算机理论,也就没有计算机科学。所以,应努力学习离散数学,推动离散数学的研究,使它在计算机中有更广泛的应用。

参考文献:

[1]朱家义,苗国义等.基于知识关系的离散数学教学内容设计[J].计算机教育,2010(18):98-100.

[2]方世昌.离散数学.西安电子科技大学出版社,1985.

[3]陈敏,李泽军.离散数学在计算机学科中的应用[J].电脑知识与技术,2009,5(1):251-252.

[4]B.Kolman,R.Busby&S.Ross.Discrete Mathematical Structure.

篇4

一、基本数据

本研究的数据来源于2010年6月至12月间“教育部学位与研究生教育评估工作平台”②所公示的申报计算机科学与技术硕士学位授权一级学科的农林高校申报书中的信息。申报书有严格的格式要求,本文以第一部分中的基本情况、第二部分中的学术队伍和第三部分中申报单位一级学科点的学科方向为研究样本数据。需要说明,2011年4月国务院学位委员会和教育部批准印发的学位办[2011]25号文中,根据《学位授予和人才培养学科目录(2011年)》,已将原计算机科学与技术学科目录中的“软件工程”新增为一级学科,在本文的分析中未考虑此变化。

二、学位点科研基地分析

在申报书的第一部分基本情况中,要求各申报高校列出学位授权点对应的国家(部、省)重点实验室(专业实验室、工程技术研究中心、工程研究中心、人文社会科学重点研究基地)。表1为参与申报的部分农林高校计算机科学与技术学科研究基地汇总,各农林高校所依托的实验室集中在农业信息学、农业信息化工程、数字农业工程领域,反映出了农林高校计算机科学与技术学位点资源设置的农林行业特色明显。

三、学术队伍设置分析

根据各高校申报书中现有在编人员信息,从年龄结构看,36岁~45岁占到63.5%,46岁~55岁占到23.5%,55岁以上所占比例比较小,这表明,中、青年科技人员是农林高校计算机科学与技术学科的主力军。从队伍建设的梯队上看,“老”、“中”“、青”结合的梯队合理。从学历结构看,农林高校“计算机科学与技术”学科学术队伍中具有博士学位的人员比例仍然偏小(图1),迫切需要年轻同志继续攻读博士学位。

四、学科研究方向设置分析

根据申报要求,各申报高校一级学科点的学科方向填写不少于4个,不超过6个。14所农林高校所设置的一级学科点的学科方向主要集中如下9个方向(图2)。

(一)计算机软件与理论主要致力于农业领域的软件理论和软件开发技术研究,着重面向农业领域计算机软件的设计、开发、维护,运用构件化的软件技术和智能决策技术,研究农业信息的智能化处理、分析、传输、管理和利用,以及智能决策软件的构造技术。

(二)计算机控制技术及应用以计算机检测与控制技术研究为核心,以农业应用为特点,致力于农业装备的检测控制、田间信息采集传输的研究。在面向现代农业信息监控方向,围绕传感网络的体系结构,信息采集,监控信息分析与处理,展开相应的理论与应用研究。

(三)计算机网络主要针对计算机网络应用于农业的特点,开展计算机网络相关支撑技术、计算机网络体系结构、网络协议实现、分布式计算的应用研究。主要包括:网络化的嵌入式系统,网络性能评估与优化计算,传感器网络,下一代网络中的分布对象计算模型,网络安全,网络建模与模拟,普适环境中的Web服务和上下文感知服务等有关理论和方法的研究。

(四)信息安全研究信息安全的基础理论方法和技术体系,主要包括:数字签名与身份认证,密钥管理,生物数据安全,安全协议与多方计算等。(五)智能信息处理着重于智能算法的理论、算法模型及其应用,在Web信息处理、模式识别、数据挖掘等方面结合农业与生命科学等学科的优势,开展智能技术在农林业上的应用研究。

(六)图形图像处理研究图形图像处理,信息可视化和人机交互技术,计算机视觉以及相关技术在农业信息化和自动化中的应用。主要包括:农作物与植物分类,农作物生长仿真,农产品的检测与分级,新型农业机械作业仿真等相关需求。

(七)农业信息化农业信息化研究方向是在农业科学研究信息化和辅助决策智能化过程中,为解决农业规划、决策、评价等研究工作对计算机软件提出的需求所形成的研究方向。

(八)数据库与数据挖掘结合农业生产、农村信息化等事业发展的需要,重点研究数据库实现新技术,嵌入式数据库与移动数据库,数据仓库与数据挖掘,信息检索与数据库等。数据挖掘研究方向主要研究数据挖掘的相关理论与技术,以及集成信息检索、模式识别、图形图像分析、空间数据分析、生物信息等方面的技术。

(九)嵌入式软件与系统结合农业院校的特点,培养以计算机技术为核心的嵌入式技术与应用人才,主要针对嵌入式技术在农业领域的应用展开研究,为区域经济和农业信息化服务。研究嵌入式系统软件开发平台,实现嵌入式系统的应用开发,利用嵌入式技术实现工业过程的控制以及基于嵌入式技术开发相关的产品。其他研究方向有:高性能计算与系统结构、光电信息与机器视觉、精准农业、多Agent系统、计算机算法研究、软件测试与智能系统、科学计算及算法设计、分布式系统理论,物联网技术及应用等。

五、学位点科研项目资助情况分析

科研项目数量和质量对于学位点科研水平意义重大。表2给出了农林高校计算机科学与技术学位点项目资助情况,分为5个标准:国家863/948计划项目,国家科技支撑计划项目,农业部星火计划/教育部项目,国家自然科学基金,省级自然科学基金/省教育厅项目。由表2可见,国家863/948计划项目有33项,占总资助项目的8.4%;国家科技支撑计划项目有26项,占总资助项目的6.6%;农业部星火计划/教育部项目有27项,占总资助项目的6.9%;国家自然科学基金有53项,占总资助项目的13.5%;省自然科学基金/省教育厅项目有252项,占总资助项目的64.5%。从立项项目主持单位来看,分布不均衡,14所农林高校存在一定的差别。从立项项目类型来看,国家级的重大项目、重点项目(国家863/948计划项目、国家科技支撑计划项目、农业部星火计划因其要求高、标准严,立项数量较低,省级自然科学基金/省教育厅项目数量较多。14所农林高校共承担了国家自然科学基金53项,通过科学基金网络信息系统ISIS③查询,14所农林高校所承担的国家自然科学基金资助项目的学科分布主要集中在计算机系统设计理论与技术(F020301)、计算机系统模拟与建模(F020102)和计算机软件(F0202)三个领域。从立项项目年度统计分析看,2004年承担8项,2005年承担6项,2006年承担7项,2007年承担7项,2008年承担5项,2009年承担15项;从立项项目总数来看,2009年后总体呈增长趋势,这与国家高度重视科技投入有关。

六、学科交叉融合情况分析

作为农林高校计算机科学与技术学科,在研究方向设置上,除了注重计算机科学与技术学科主体地位外,也力求体现与农业技术和生物技术高度融合的学科特色。福建农林大学2007年在生物学一级博士点下设立了生物信息科学与技术博士点和硕士点。应用计算智能理论,处理有关序列分析,蛋白质结构分析和预测,蛋白质功能预测,蛋白质相互作用和进化模型等问题,并构建相关软件分析平台。南京林业大学的林木生物信息学,依托林木遗传与生物技术省部共建重点实验室,完成了针对重要木本植物杨树的全基因组测定工作,其先进的海量数据处理设备为生物信息学研究提供了基础保障。湖南农业大学设置了生物信息处理研究方向,依托“湖南省植物激素与生长发育重点实验室”,重点研究生物计算科学及生物信息的获取、加工与分析。利用计算机、数学模型等方法分析和处理生物学数据,开发数据处理的算法和工具,对于理解复杂生命现象、新物种分类、药物靶点设计等领域具有重要的理论和实践意义。南京农业大学利用计算机科学与技术学科的数据库、数据挖掘、知识发现等的算法与技术,解决生物数据处理中产生的各种问题。华南农业大学开展了生物信息和生物计算研究,包括蛋白质分子对接,动物疫苗与兽药的计算机辅助设计等。山东农业大学的生物信息智能处理研究,重点在于DNA序列分析及其基因表达信号处理。其他农林高校在许多研究方向上也都涉及生物信息技术。

七、学科发展方向的建议

通过分析14所农林高校计算机科学与技术学位点的资源配置,从中可以看出,经过十余年的发展,我国农林高校计算机科学与技术学科有了长足的发展,新的学科增长点建议考虑如下方面:

篇5

生物信息学;网络资源;计算机教学;改革;自主学习

【基金项目】国家自然科学基金资助项目(30860278,81160025);

云南省中青年学术技术带头人后备人才资助项目(2011CI057);

云南省教育厅重大专项(ZD2010007);

昆明医学院教研教改项目(2011JY38)。

【作者简介】谢月辉,女,汉族,昆明医学院基础医学院计算机教研室讲师。

【通讯作者】孟照辉,教授,昆明医学院第一附属医院分子心血管研究室主任。

1.生物信息学及教学现状

生物信息学(Bioinformatics)是生命科学中一门新兴的前沿学科,是生物学、数学和计算机科学等学科交叉所形成的一门新兴学科。生物信息学综合利用计算机科学和信息技术,通过对海量生物学数据的处理和分析,揭示其中蕴藏的内在联系和生物学含义,进而提炼有用的生物学知识。生物信息学的一个重要内容是收集和整理生物学数据,开发生物学数据库,并提供相应的数据查询、处理和分析等服务。随着互联网的普及,这些数据库大多可以通过网络访问并下载。

伴随着上世纪九十年代计算机技术的迅猛发展,生物信息学已渗透到生物科学的每一个角落,成为生命科学和医学研究中的必然选择;因此,生物信息学的教学也日益重要。生物信息学实验教学以互联网为媒介,以计算机为工具,全部在计算机网络机房内完成。由于现阶段不同专业学科的教师之间缺乏交流与合作,很难满足生物信息学教学的需求,特别是在医学院校,生物信息学教学仍处于欠缺状态。

A.生物信息网络资源在计算机教学中应用的意义

是医学院校计算机教学进一步深化改革,适应新型医学人才培养的需要,在多年来医学院校计算机基础教育改革的探索与实践的基础上,我们对现今的医学院校计算机基础教育体系提出了新的想法和思路。随着计算机技术和互联网络应用的发展,能否培养出能够进行自我知识更新、具有强烈的现代信息意识并能够利用信息技术解决实际问题的新型医学人才,是摆在我们面前的一项重大研究课题。生物学数据量增长极为迅速,但生物数据资源的利用率却很不理想。在高校教学中,生物信息学尚未有完善的教学模式,在医学院校的教学中甚至处于欠缺的状态。将生物信息网络资源引入计算机教学当中,可充实计算机基础教育内容,培养学生自学和文献检索能力,提高学生的学习和研究兴趣及解决学习中碰到的实际问题,使学生在了解和掌握大学计算机基础的同时认识到计算机教学的目的性和实用性,以适应当前新型医学人才培养的需要。将生物信息网络资源的应用与计算机教学相结合是医学院校计算机教学中的重要课题,也是对计算机教学的一个挑战。

B.适应医学教育现代化的要求,推动医学教育的发展

近二十年来,生物学数据如潮水般涌现,并正以指数方式增长,但我们对相关数据的理解却十分有限。生物信息学是生物学和计算机科学交叉结合形成的新学科,它综合运用数学、计算机科学和信息技术等手段,通过生物信息的获取、处理、存储、分发、分析等来理解和阐明大量数据所包含的生物学意义。生物信息学的发展已经使生物学研究从传统的试验分析和数据积累转移到数据分析及其指导下的试验验证上来,因此,生物信息学将对医学教育、生命科学研究及医疗卫生事业的繁荣与发展产生重大影响。为赶上现代医学发展步伐,将计算机技术有效地应用到医学教育及科研领域中去已成为我国医学教育的一项战略任务。

目前,生物信息学教学条件尚不成熟,缺乏完善的教学模式;因此,如何在高校进行生物信息学教学亟需探索。在此,我们希望探讨在计算机教学中如何与生物信息学有机结合,更好地适应医学教育现代化的要求,推动医学教育的发展。

2.医学院校计算机教学中引入生物信息网络资源的具体实施方法

目前,医学院校计算机教学集中在大学一、二年级的一个学年,有些是在一个学期内完成,其教学内容主要由理论教学、实验教学和自主学习三部分组成,这三部分交替进行。值得注意的是,PBL(Problem-based Learming,也称作问题式学习)的教学方法在医学院校受到了推崇;它采用“以问题为导向的教学方法”和设计真实性任务相结合的教学模式,把学习设置于复杂的、有意义的现实问题中,通过学习者的自主探究和合作来解决问题,从而学习隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力,真正达到医学计算机教学的目的。生物信息网络资源的应用教学正是基于这种方法完成,主要分为三步进行:

A.在教学的初期,首先提出生物信息学的学习计划

教师在计算机理论教学时向学生简要说明进行生物信息网络资源应用的学习计划:通过网络,自主学习了解生物信息学(教学初期开始,中期前完成);由教师在机房讲解并做示范,然后由学生自行操作完成生物信息网络资源的应用(教学中期开始,可持续几周时间,在本科目考试前两周完成,提交报告);教师评价学生的报告并给出成绩,此成绩占计算机学科成绩的一定比例。

在教学初期,指导学生通过网络自主学习并初步了解生物信息学的概念、发展等基本知识。在此过程中,可让学生以小班为单位通过电子邮件的形式把学习的进展情况反馈给老师,以检查和督促学生的学习。

B.在教学中后期进行具体的指导学习

教学内容包括问题设置以及具体操作流程;教学模式将结合分子生物学和基因工程等相关学科,建立以教学内容为核心的科研实验和学生标准化实验。主要由以下步骤组成——设置主题:给出一个待查询基因或蛋白质的英文全名或者代码;给出常用网址:包括常用数据库、文献和应用软件等;查询结果:指导学生如何从中获取所需信息数据;提交报告:内容包括使用的网站名,数据库版本及所获得的基因序列、氨基酸序列及编码等;教师作出评价。

C.让学生熟悉相关数据库及能从中找到并分析特定的数据是生物信息学教学的核心内容

随着大量生物学实验的数据积累,目前已有数以百计的生物信息数据库,如日本的DDBJ、欧洲的EMBL、SWISS-PROT和美国的GenBank、PDB均是国际上著名的一级核酸或蛋白质数据库,如何让学生了解一级数据库、掌握常用的二级数据库使用方法,针对医学生的特点一般而言,采用问题设置以及操作演示的教学方法让学生在较短时间内掌握最常用数据库的使用方法。具体方法如下:

篇6

关键词:生物信息学;教材;师范院校

20世纪80年代末以来,生物信息学以惊人的发展速度,获得了很多突破性成就,正日益成为生命科学在21世纪发展的核心内容。对于未来生物科学中坚力量的现代生物科学工作者而言,掌握生物信息学的相关知识尤为重要。

作为一门新兴的课程,生物信息学课程在全国很多高等院校都已经开设,并进行了一些卓有成效的探索和改革。我们结合自身的教学实践和相关学校的教学现状,对师范院校生物信息学课程教学内容、师资力量、教学模式和方法、跨学科合作、教学实践实施情况等方面的现状进行了积极分析和思考。目前,师范院校生物信息学教学的现状如下。

一、教学内容陈旧、教学资源缺乏

生物信息学是一门新兴的学科,在高等院校开设时间较晚,我国对生物信息学专业精品课程的建设方面投入不够,成熟的生物信息学教学大纲、教案、多媒体课件、教学视频和习题等教学资源稀少。目前,市场上也缺乏相关的生物信息学教学多媒体课件和音像制品辅导材料等相关产品,造成生物信息学教学资源匮乏的现状。

目前师范院校所用教材大多数是徐程主编的《生物信息与数据处理》,蒋彦等编著的《基础生物信息学及应用》等几种不同版本的教材。这些教材在知识性、科学性和系统性方面还行,但是在教学内容的新颖性、时效性和实践性以及生物相关背景的介绍和对师范院校的适用性等方面有所欠缺。生物信息学的知识日新月异,新的数据库、新的软件、新的算法层出不穷,而生物信息学的课堂往往不能及时地将最新进展呈现给学生,导致课堂内容陈旧,不利于学生的发展和对生物信息知识的合理掌握,从而影响了生物信息学教学的质量。

二、师资力量缺乏

生物信息学是一门新兴的交叉学科,需要熟练掌握计算机与生物学知识的老师来授课。然而,实际上,由于缺少生物信息学的专业教师,教授该学科的教师多为生物学其他课程兼任,这些老师往往缺乏专门的生物信息学训练,在知识的传授和应用方面存在欠缺。与生物信息学教学要求存在着较大的差距,不能很好地满足教学大纲的要求。另外,师范院校通常将生物信息学作为选修课来开设,该课程在专业建设和人才培养方案中的地位偏低,造成相关部门对师资培养不够重视。

三、教学模式和方法落后

由于生物信息学课程涉及大量的数据库和软件知识,教师普遍采用多媒体教学。而多媒体课件的容量通常很大,学生忙于笔记,难以把握重难点。同时,幻灯片展示的知识点犹如放电影一般一闪而过,学生没有足够的时间思考和消化,跟不上教师的进度。教师进行多媒体教学时,往往是一堂课上从头讲到尾,语调缺乏抑扬顿挫,没有起伏,学生很容易昏昏欲睡。因此,教师虽然使用的是先进的教学工具,采用模式的却是传统的灌输式教学,只管埋头照本宣科,不管学生接收领悟多少。学生为了达到期末考试标准,只顾死记硬背,这样的教育让学生失去创新精神和主动思考的能力,失去对生物信息课程的兴趣。

四、缺乏与相关学科的合作交流

生物信息学实际上是生物学与计算机科学的交叉学科。然而一般高校往往只在生命科学学院开设生物信息学,由生物学老师来担任授课老师。由于对计算机科学知识的缺乏,导致生物专业教师对生物信息学课程很难深入开展;另一方面,计算机科学专业由于没有开设生物信息学课程,使学生不能了解到生物信息学的重要性,以及如何使计算机科学更快更好地发挥其在生物信息学中的作用。总的来说,生物信息学课程的建设欠缺相关学科的协作,不能有效地整合资源,不利于培养复合型人才。

五、缺乏实践教学内容

现有的生物信息学课程也有一些实践内容,但实践课时数少,内容相对简单,缺乏系统完善的实践过程。教师为学生讲授具体知识时,通常只通过多媒体课件演示操作,并没有为学生设置具体的动手操作步骤。使得学生对信息反馈迟钝,印象不深刻,不容易掌握方法。生物信息学实践教学并不需要价格昂贵的实验设备,只需要一网的电脑和一些相关的分析软件便可以进行实验。然而,目前的状况是,生物信息学课程中真正开展实践性教学的内容少之又少。

生物信息学的学习是一个长期积累的过程,教学水平的提高也需要在大量的教学实践中不断总结和完善。我们通过分析发现,在师范院校生物信息学教学中仍存在很多问题,其原因是多方面的,需要教学工作者进一步深入探讨并提出切实可行的策略。

参考文献:

[1]汤丽华.浅谈大学本科生物信息学课程建设与教学[J].科技

信息,2010(1).

[2]贾小平,孔祥生.生物信息学实践教学初探[J].陕西教育,

2010(3).

[3]军.农学专业生物信息学课程教学改革探析[J].现代农

业科技,2010(5).

[4]郝新保.充分利用网络资源开展生物信息学教育[J].中国医

篇7

关键词:计算思维;融合

doi:10.16083/ki.1671-1580.2017.04.030

中图分类号:G642

文献标识码:A

文章编号:1671-1580(2017)04-0104-03

一、介绍

计算思维是人类在思维过程中参与制订问题及其解决办法的一种思维模式,通过这种方式能快速、有效地进行信息处理,提出问题的解决方案。计算思维几十年来在学术界有着不同的名称和定义。1962年由Alan Perlis最早提出,同时阐述了卡内基理工学院(现在是卡内基・梅隆大学)的编程入门课程。基于他的研究Seymour Papert在1980年使用编程语言进行数学概念的教学,正如所望,程序性的思维(即“像计算机一样思考”)被认为是构成整体思维技能的一部分。直到2006年,JeanetteWing在ACM美国计算机学会通讯发表了“计算思维”这篇文章,从此,计算思维得到了新的定义。Wing提出计算思维不只对计算机这门学科的专家有用的一种技能,而是任何人在解决问题和发现计算解决方案时都能使用的心理过程。在这个更广泛的意义上,计算思维可视为一项与所有学科有关的技能,不仅仅是计算机科学。

Denning提出了计算思维本身是否是科学探究的一个方面、问题或延伸,事实上可能被纳入更广泛的科学原理的架构问题。计算科学出现在其他科学中,不是作为一个流动的概念,而是一个来自科学本身的概念。计算思维被看作是这种科学的一个特点。而不是计算机科学的一个显著特征。

二、计算思维与各学科的融合

计算思维与各学科专业有着千丝万缕的联系,要分析“计算”与各学科之间的融合关系,依据专业需求和学生特点来设置相应的课程内容和教学方法。在教学和学习方法的创新中,非计算机专业的计算思维的培养取决于跨学科的兴趣和延伸。Rob.errs等人设计了计算思维与自然和社会科学方面进行交叉的训练方法并进行了拓展。Curzon等人提出“最美的计算是工程、科学、艺术;它没有明确的边界,并涉及到每个学科。这种跨学科的方法给了我们机会来提高学生除计算机以外的兴趣”。通过计算机与非计算机学科之间的交叉培养来提高学生的计算思维,将计算这种思想与各专业相结合,以促进专业的学习。

(一)计算思维与STEM领域的融合

在大学教育中,关于计算思维的实践教学研究主要在科学、技术、工程和数学(sTEM)领域中。目前,计算机科学与生物学之间已经出现了交叉重叠的概念。Navlakha和Bar-Joseph提出了如何在系统生物学和计算思维的各种概念交叉点上进行融合。值得注意的是,从计算思维的角度来看,这两个学科的交叉点出现在“传统”(基于图灵)的概念中,例如神经网络的概念。他们主张进一步融合两个学科,将提高对生物进化的理解,同时也能改善各种算法的设计。秦红设计的基于计算思维的生物信息学课程得到了学生积极的回应,但由于各种因素,比如学生在学习更多的计算机技术的不适应,如Linux,以及计算机实验室设计中所出现的各种问题表明需要进一步改革教学环境与方法。

在物理学方面,Caballero,Kohlmyer and Schatz使用VPython编程环境引入计算思维概念介绍力学课程教学。他们发现“解决一系列计算作业中的问题之后,大多数的学生都能够成功塑造出一个新的问题”。在这些情况下,学生未必能建立一个成功的模型,但通过对质量问题分析和调试技能的额外关注,性能将会得到提高。

Hambrusch等人研究并创建了儆诳蒲Ф非特定领域的计算思维主修课程。此课程能够满足一般的计算要求,大学中应用编程和计算思维概念处理物理学、生物学和统计学中的问题。从学生的进入和退出统计中分析,在计算机科学和计算机编程中学生的完成度有所增加。

计算思维在STEM领域中的交叉及应用使学生通过计算思维的训练,解决问题的能力有所提高。

(二)“计算”概念在非STEM领域中的不确定性

将计算思维方法纳入非计算机科学和数学领域之外的学科是很困难的。一是由于“计算”概念的不确定性,二是因为计算思维是仅限于使用一个封闭的、基于图灵模型的计算方法来解决问题的观念。

例如,通过计算机的数据采集和处理的应用使得考古领域取得重大进展。它现在能通过计算构造出详细的3D可视化考古遗址,包括人工分布以及放射性探测等资料。基于Agent的建模已被用于探索史前环境与人类互动的假设。但简单地将一个计算机科学家加入到考古发掘中(或甚至只是对人进行复杂的硬件或软件使用方面的培训),并不意味着“计算思维”已经成为整个领域的主要内容。

过于扩大“计算”作为形容词在各个领域中的应用,计算机作为工具和计算思维也有可能造成混淆。“计算考古学”在不同的上下文中可以有截然不同的意义。在考古界的学术领域,它描述了应用程序的计算机工具、网站分析和集合的工具。在基因学研究领域,它是一套分析物种之间的基因水平转移的方法。这种缺乏精度的术语使它更难确定计算思维在高等教育中的实际应用。

三、交叉学科的融合障碍

计算思维在人文学科中的应用并不广泛,虽然在个别机构对此做出了研究。例如,斯坦福大学文学实验室,将计算思维的各元素应用于文学作品中,从计算思维借鉴来的应用图理论对威廉・莎士比亚、红楼梦等作品中的人物关系和相互作用进行网络分析。然而,人文学科的构成问题使用“传统”算法(图灵型)可能会难以解决。计算思维在文学研究的应用,并非不重要那么简单,而是因为被分析的数据也是含糊不清,而且计算分析文本的困难将随着语义维度的增加而变得越来越难。

此外,在人文学科内还有在某些情况下很难使用分析技术,因为其含义有可能被简化。人文是致力于解释,作为知识的概念来理解现象、社会、文化的世界,是通过构想和制定的行为,没有机械或自然主义写实表示的预先存在的、明显的信息。Papert指出当考虑科学知识时,创建“命题性的知识”和“程序性知识”是存在二义性风险的。例如,自然语言理解一直是计算机专业领域所研究的重点课题,其中所涉及到的语义网络、本体映射等都是计算机科学的研究范畴。而研究的一些成果已经有大量的应用,若从此来看人文学科与计算机的交叉意义已非分析那么简单。

尽管如此,在一些人文和社会科学领域中依然有一些算法被提出。例如,在政治学领域,Frohock观察到算法思想的线性和基于规则的性质可能成为一个多元化的社会的必要条件。Turkle和Pap.ert指出纯粹的形式主义计算模型的影响,他们还进一步提出除了计算问题方法的不同之外,还可能通过关于学生性别和思维方式等社会假设进行强化。但是,许多反对在人文和艺术中应用计算思维的人假设计算思维是闭合的、有限的的理论和方法;重点是新兴的计算模型和计算机科学家跨学科培训可能鼓励计算思维方法的发展更适用于人文和美术的“开放――终结”问题方面的研究。

在音乐表演领域,Edwards提出音乐可以通过计算机进行合成。他将计算机应用到二十世纪中叶起源的音乐作品中,使用计算机程序塑造人声部分并与音乐进行合成,而这一应用印证了合成音乐的算法的有效性,是人机协作的完美体现。我们认为人类情感思维的不确定性和计算思维融合扩大了人们的创造力和扩展力,而计算思维则推动了交互计算的新模型的发展。

将计算思维加入到人文与艺术领域的主修课程中,需要适当的介绍计算思维的原理。Cortina指出“非技术性非专业的严谨和细节需要正确编写计算机程序是必不可少的”。对此他提出制定一个新的课程作为编程入门的替代课程。其重点是无需任何实际的编程算法和计算思维原理,而不是编写代码,学生用流程图模拟器创建简单的计算机游戏。soh等人提出更为详细的跨学科计算思维课程,这个是针对文艺复兴时期的艺术提出的计算项目,并在内布拉斯加大学进行通用。这一项目跨越了计算机、工程、人文和美术等多个学科。该项目提出了多种途径,通过一系列的专门根据工程、科学、艺术或人文为主要研究I域的学生设计计算机科学课程,学生还将参与协作学习活动,不同的学生群体将分配到跨学科项目中的不同工作中。

篇8

【关键词】 计算机 生物学研究 生物信息学 交叉学科

一 前言

什么是生物科学?在古时候,人们对生物学的认识是很有局限性的:对生物学的认识往往停留在观察上,到了19世纪,达尔文发表《物种起源》之后,生物学第一次总结出一个有重大哲学意义的普遍规律。此后,孟德尔发现了遗传学的规律,沃森和克里克发现的DNA双螺旋结构以及核酸是生命本质的一系列重大发现,为生物学发展奠定了坚实的基础,从而生物学正式摆脱了那种仅靠观察,比较的方法,发展成为一门实验科学。

传统的生物学是一门实验科学,生物学的研究主要依靠的是对实验所得的数据进行处理和分析。生物学还是一门发现科学,通过对在实验中发现的新现象,新的生物规律进行分析、归纳和总结,提炼出新的生物学知识。进入到20世纪以来,人类已经进入了信息化的社会。作为信息社会中最为重要的工具,计算机在人们生活中发挥着日益重要的作用。随着网络技术和通信技术以及半导体技术的发展,计算机的功能越来越强大。计算机科学是对社会各个层面影响最大,渗透力最强的高新技术。

回顾20世纪人类所取得的科学成就,以计算机技术为代表的信息技术得到高速的发展和应用。在以计算机科学为代表的信息科学取得快速发展的同时,现代生物科学研究也取得了极大的成功。

二 进展

计算机在生物学研究中的应用并不是一个很新的话题,作为一门学科,它是新的,但实际上它的研究工作的开展已经有了一段历史。

(一)计算机在国内生物学研究中应用的情况

我国的科研人员在20世纪60-70年代就开始利用计算机在生物学研究中进行数据的统计分析,但是应用的层次低,多用于教学和实验数据分析处理。我国的生物信息工作是逐步发展起来的,20世纪80年代初仅在个别单位开展了一些计算分子生物学的工作,如核酸序列统计分析、生物大分子二级结构预测、分子动力学等。虽然我国在1993年就在中国人类基因组计划中加入了生物信息学的相关研究内容,但是真正的开始是在1995年。目前,我国所用到的生物数据库和生物系列软件多半来自于国外,基础力量还比较薄弱。

1997年,香山会议专题讨论了我国生物信息学的发展。1999年,国家自然科学委员会生命科学部、信息科学部、数理科学部、材料科学部在北京召开了“生命科学中的信息科学问题”论坛,提出了建立国家生物医学数据库与服务系统,同时开展基因组及功能基因组信息分析工作。2000年国家自然科学基金委员会主持召开的“生物信息学前沿方向”研讨会上,与会专家提出了我国生物信息学发展的方向是:建立国家生物医学数据库与服务系统、人类基因组信息结构分析、功能基因组相关信息分析和研究遗传密码起源与生物进化(尤其是分子进化)的过程与机制。

近几年来,我国对生物学中的计算机应用工作越来越重视,研究的层次也不断提高。在“HGP1%的测序工作”、“中华民族基因组中若干位点基因结构的研究”和“重大疾病相关基因的定位、克隆、结构与功能研究”等项目中,计算机都起到了重要的作用。

北京大学于1997年3月成立了生物信息学中心,中科院上海生命科学研究院也于2000年3月成立了生物信息学中心,分别维护着国内两个专业水平相对较高的生物信息学网站。

2003年8月18日,“作为国内服务器品牌三甲之一” 的曙光信息产业(北京)有限公司(以下简称曙光公司)与国内著名的基因组、生物信息研究中心华大基因联合推出国内第一款完全拥有自主知识产权的生物信息专用计算机,采用先进的基因数据库架构技术、数据定制可视化技术、数据密集技术、网格使能技术、在线扩展技术及机群系统等技术,为国内用户搭建了一套与国际生物信息研究主流趋势相接轨的系统平台。该系统是建立在华大基因和曙光公司在生物信息研究领域长期合作成果的基础之上,通过运用曙光公司每秒3万亿次浮点峰值运算能力的Linux超级服务器,以支持数据密集应用为主,为国内大量致力于基因组研究的科研工作者们提供方便、快捷的服务。“生物信息专用计算机” 采用机群结构,系统中节点根据功能划分为计算节点、数据库节点、服务节点三种类型,为生物信息学研究提供了一个基于硬件、软件和数据库集成环境下的统一运行平台,为各个分析软件、子数据库模块提供一致的运行和管理环境。同时用户可以根据需要选择软件和数据库模块,无缝集成到平台上。平台提供ORACLE数据库和软件的集成接口和管理工具。生物信息专用计算机以模块化的方式提供大量基因组学、生物信息学研究的常用分析工具, 并能实现分布式高性能计算。用户也可以根据需要定制分析软件,添加到该专用计算机应用平台中。

对于我国来说,生物信息学人才的培养是当务之急。生物信息学是一个交叉学科研究领域,这对生物信息学研究人员在知识结构上提出了非常高的要求,特别是对于来自数学或计算机专业的研究人员,不仅要掌握生物学的基础知识,还要求深入了解生物学中的相关问题,这样的人才不是单一学科能够培养出来的,要求跨学科地培养生物学和信息科学的复合型人才。目前中国科学院和国内一些著名大学已经开始较大规模地培养生物信息学专业人才,这为我国今后生物信息学的发展奠定了良好的基础。可以相信,我国未来计算机在生物学中的应用一定会有着很大的进步与发展。

(二)福建省“计算机在生物学研究中应用”学科发展简介

福建省计算机在生物学研究中的应用虽然起步较早,但是发展一直相对较慢,目前还没有形成较大的研究规模和较完整的研究体系。但是,福建省对计算机在生物学研究中的应用十分重视,福建农林大学、厦门大学等多所高校开办了计算机在生物学研究中的相关专业或研究团队并举办了几场相关的学术会议。

福建省的厦门大学生命科学学院和福建农林大学的生命科学学院已经开办了生物信息学本科专业,为我省培养生物信息科学人才提供了一个很好的平台。该专业整合了生物和计算机的相关资源,有望为我省培养出更多的精通于计算机在生物学研究中的应用人才。福建省的其它院校如福建医科大学、福建师范大学、福建中医学院、国立华侨大学、集美大学等多所高校也有不少的教学和科研工作者在这方面进行了一定的研究工作,福建省农科院也开展了一些生物信息学的研究工作。

例如:福建省厦门大学生命科学院的纪志梁博士主要从事生物信息学、功能基因组和蛋白组学、计算机辅助药物设计、生物数据库和生物信息软件的开发及应用、数据挖掘、分子进化、生命起源与进化等方面的研究,主持了生物信息辅助药物不良反应(ADRs)的分子机理研究及预测的国家自然科学基金项目。

福建农林大学借助于其在生物学特别是农林学科上的优势,联合校内的计算机与信息学院一起开办生物信息学专业,计算机与信息学院还成立了生物信息研究团队,以期望借助于两个学院的实力,更好地为我省培养相关的人才。

目前福建省在发展该学科时面临的主要问题是相关人才的缺乏和研究硬件设备的不齐全。目前,福建省尚未能在“计算机在生物学研究”的学科发展中形成一个理想的研究梯队,从而导致了在相关的科研上以应用研究为主,缺少理论上的创新性,而应用的研究多集中于特定的领域:如福建农林大学的相关研究主要在于农业领域;华侨大学的方柏山教授所做的工作多集中于工业微生物的优化控制等方面。全方位,多角度的研究格局还没有形成。

从学科建设的硬件平台来看,虽然有了较大的发展,但是距离科研的要求还有较大的距离。因为“计算机在生物学研究中的应用”学科是一门交叉学科,需要用到许多方面的仪器设备,而目前福建省内的这方面的投入与科研所需要的设备还有一定的距离。

(三)计算机在生物科学研究中的学科现状

自20世纪80年代,IBM公司制造出第一台PC机以来,计算机迅速得到了普及。而且近二十年来,计算机与信息科学已经成为发展最为迅速的学科领域,也为生物学的研究提供了更多的技术支持。在这个时期,生物学与计算机科学相结合的学科――生物信息学产生了,是当今生命科学和自然科学的重大前沿领域之一,也是21世纪自然科学的核心领域之一。从国外近几年的应用情况来看,生物信息学在理论上促进了生物学研究(特别是分子生物学)研究的发展,使人类对生命本质的认识更加深刻。生物信息学已经改变了传统生物学的研究方法,提高了生物学实验的科学性和研究的效率。

在这个阶段,计算机在生物学研究中的应用更为广泛与深远,这一时期在生物学研究中用到的计算机技术大体有以下几个方面:

(1)数据库技术、数据挖掘技术与海量存储技术:生物信息数据库具有数据结构和组织方式复杂、数据量增长十分迅速等特点。《核酸研究》(Nucleic Acids Research)杂志连续七年在其每年的第一期中详细介绍最新版本的各种生物学数据库。在2000年1月1日出版的28卷第一期中详细地介绍了115种通用和专用数据库,包括其详尽描述和访问网址。在DNA序列方面有GenBank、EMBL和DDBJ等。在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等。在蛋白质和其它生物大分子的结构方面有PDB等。在蛋白质结构分类方面有SCOP和CATH等。

很多数据库涉及非结构化的数据,例如:PDB中的蛋白质三级结构等。利用传统的关系数据库对这些非结构化的数据进行管理就显得有些力不从心了,所以,必须要采用面向对象等数据库新技术来处理复杂结构的生物数据。生物信息数据库具有种类繁多的特点,目前各种生物信息数据库大至有600种左右,分布在全球各个数据库服务器中。

随着数据库技术、计算机网络和人工智能等技术的发展,出现了一种新的信息管理技术,即:数据仓库技术(data warehouse)。随着当代生物学实验的手段不断的进步,所产生的实验数据的信息量是十分庞大的。如何在如此浩渺的信息海洋中发现潜在的规律呢?而数据仓库技术中提供了一个解决方案,就是数据挖掘技术。数据挖掘技术一般分成四个基本步骤:数据选择,数据转换,数据挖掘和结果分析。数据挖掘与聚类分析的方法在蛋白质的结构预测中也有广阔的应用空间:数据挖掘可用于分析基因表达数据相似性度量,从中发现基因表达数据相似性和波动相似性类似,从而提出以波动相似性为依据的相似性度量函数。

(2)机器学习与模式识别技术:机器学习算法(machine-learning methods),抽象的统称,实质是一种统计学的方法,它自动地从一个样本的训练(train- ing)过程中获得数据信息,这种方法适用于有大量数据但缺乏相应理论的情况。如BRNNs(Bidirectional Recurrent Neural Networks,双向重复神经网络)算法即属于机器学习算法,它的训练过程即通过对样本进行有效编码,输入网络,训练网络各权值参数和阈值参数,使网络达到基本稳定。目前机器学习方法包括:神经网络法、决策树法、基于事例学习法、符号性知识优化法及基于逻辑的归纳学习法。

数据是机器学习的基础,对于生物学实验数据也一样。在大多数情况下,生物学中的知识和数据可以用序列的模式或序列的特征来概括。

随着人工智能研究不断取得进展,人们逐渐发现研究人工智能的最好方法是向人类自身学习。因此引进了一些模拟进化的方法来解决复杂优化问题。其中较有代表性的是:进化主义思想和联接主义思想。近年来,许多科学家致力于这两种方法的研究。

模式识别是机器学习的一个主要任务。所谓模式,指的是对感兴趣客体定量的或者结构的描述,而模式识别就是利用计算机对客体进行鉴别,将相同或者相似的客体归入同种类别中。模式识别的关键是通过数据分析,提取分类对象的本质特征,建立分类特征模型。在此基础上设计模式分类规则和分类器,判别待识别模式的分类情况。分类特征模型描述各种目标对象的特征,以便于工作于利用特征进行识别。模式识别主要有两种方法:一种是根据对象统计特征进行识别,另一种是根据对象的结构特征进行识别。利用机器学习的方法可以应用于蛋白质结构的预测,但现在的问题是从蛋白质一级结构序列预测蛋白质二级结构和三级结构的准确率低,还有许多现实的问题需要解决。

(3)人工心智和心脑科学在生物学中的应用:了解脑及其全部功能是2l世纪重大挑战之一,人类脑计划开始于1993年,这项行动的主要目标:创立以web为基础的神经科学所有数据的数据库,并提供数据分析、整合、合成、建模与模拟的先进工具,有助于实现了解健康与有病神经系统功能的最终目标。脑是生物体内结构和功能最复杂的组织,人脑内有上千亿个神经细胞,神经突触超过1014个,是生物体接受外界信号、产生感觉、形成意识、进行逻辑思维、发出指令产生行为的指挥部,但它的功能目前还不为人们所了解。

在人类脑科学计划提出后,产生了一门新的交叉学科――神经信息学。神经信息学产生的先进的信息学解决方案,将加速对脑的了解,并能将基础研究转化为诊断、监视、处理和预防脑疾病的更好手段。反过来,关于数据与信息的获得、存储、提取、分析、合成及可见的生物学机制的阐述,将更加清楚地解释信息学技术,以至随着时间的推移,计算机将能超过人脑的工作。

人脑的结构和功能极其复杂,需要从不同的层次对其进行研究,包括:从DNA、RNA、蛋白、神经元、神经网络到全脑。其中对神经网络和全脑功能的研究近年来发展很快,成为神经信息学研究的重点。神经信息学主要从信息和信息处理的观点来研究人脑,研究神经系统信息的载体形式,神经信息的产生、传输与加工,以及神经信息的编码、存储与提取机理等,并从系统和信息的观点建立以生物学实际为基础的神经网络模型。

(4)生物分子的计算机模拟技术:传统的生物分子研究主要是能过生物学实验来分析和表征生物分子,如利用测序技术确定DNA或RNA分子的序列;能过分子遗传学方法确定基因的多态性;能过X射线衍射技术来确定蛋白质等生物大分子的结构;通过生物化学实验来研究生物大分子之间的相互作用、药物分子和靶分子的结合等。

现代对生物分子的研究也可有采用计算机模拟生物分子的技术。所谓生物分子的计算机模拟就是从分子或者原子水平上的相互作用出发,建立分子体系的数学模型,利用计算机进行模拟实验,预测生物分子的结构和功能。可以模拟生物大分子与大分子之间的相互作用、模拟生物大分子与具有活性的小分子之间的相互作用、研究分子之间的识别与及分子间的特异性结合。

(5)网络技术:随着人类进入了信息社会,网络已成为社会的基础设施,对人们的生活起着重要的影响。电子邮件和新闻组已经成为生物学科研中的最要交流工具。而且网络提供的各种服务,如:FTP服务,WEB服务等也为科研人员提供了重要的服务。

目前,Internet上有着巨大的生物学资源和生物学的相关数据库与知识库。使用者可以通过网络查询或搜索所需要的生物学信息,使用各个网络站点提供的分析工具对生物实难进行分析。生物信息的研究者能够下载大量的数据,但如何集成这些数据不是一件容易的事。

而Web Services技术由于使用标准的Web协议(http 、SMTP等)和一系列标准协议(XML、SOAP、WSDL等)为生物信息集成提供了一种崭新的方法。当把Web Services应用到生物数据库中时,所有生物数据库系统都成了一个松散结构中的组件,系统接口、应用通信、数据转换和目录信息都是建立在开放的、被广为接受的标准之上,用户能迅速地访问到他们所需要的信息。

(6)高速计算能力与网格计算技术:生物学研究需要对大量的样本进行分析计算或统计,这就为为高性能计算提供了一个大的应用领域。生物学研究中的计算面临巨大的计算量与海量的数据,如:利用分子动力学模拟一个蛋白质的折叠就需要一个巨型机几个星期的运算。这给高性能计算、并行计算和网格计算提出了挑战。

(7)专家系统:专家系统(exepert system)是一种基于知识的智能系统,它将领域专家的知识用知识表现的方法表示出来,并放入知识库中,供推理机使用。专家系统利用知识和推理机解决那些需要特殊的、重要的人类专家知识才能解决的复杂问题。一般的专家系统是由六大部份:知识库、数据库、知识获取部份、推理机、解释机构和使用界面组成的。知识库中的知识也可以分成事实性知识和启发性知识两大类。生物学研究中已经有了不少的专家系统。

(8)计算机图形学:众所周知,DNA序列是两条碱基互补的脱氧核糖核酸形成的双螺旋结构。一般认为,它们可以用一条序列来进行表示。根据文献按照某种规则,人们可以把DNA序列转换为一条z型曲线,该z曲线与所表示的DNA序列的关系是一一对应的,即:一个特定的DNA序列,有唯一的一条z型曲线与它对应;反之,对任意一条给定的z曲线,可找到唯一的一个DNA序列与之对应。也就是说,z曲线包含了DNA序列的全部信息。z曲线是与符号DNA等价的另一种表示形式。这样就可将复杂的DNA序列转换为一条空间中的曲线。对z曲线曲率和挠率的计算和分析,可用于识别DNA序列的不同的功能区等。DNA序列的几何学研究是建立在计算机图形学的基础上的,对DNA序列几何学的研究必将为计算机图形学的研究提出一些新的课题。

三 计算机在生物学中的应用研究展望

虽然计算机在生物学应用中取得了不小的成果,但还有许多的问题摆在人们面前。目前计算机在生物学研究中的应用面临着许多的挑战:

(1)需要建立交互性好的生物学应用软件,生物学数据库及相关的数据挖掘技术。现有的生物学软件种类繁多,功能也不尽相同,但是,大部份软件都要求用户有较强的计算机基础,甚至还有一些软件是基于linux或windws控制台的,起特殊的命令语法不是一般的科研人员所能掌握的。而且,有些软件的源代码不是公开的,特定用户就不能根据自己的需要对程序进行修改,进而适应自己研究的需求。寻求一种好的方法来开发出交互性好、操作方便而功能强大的生物学研究软件是今后一个重要的目标。

(2)需要能提示大规模数据集合中不同组分之间关系的统计分析方法及优化算法。在生物学研究中,获取所得的实验数据往往可以根据其数据特征的不同分成若干组分,这些组分之间的关系是怎样的?如何在实验数据中确定分组的标准?如何用更快的算法更有效率的确定数据的分组标准等等都让科研人员十分困惑。例如:不同物种间可能包含了同源或非同源的数据基因,而不同基因可能在DNA或蛋白质序列上具有较高的异质性。因而,在基因组水平上比较不同物种或不同基因之间的相似性,有助于揭示整个基因组进化与物种进化的规律。

(3)需要开发适合于微阵列和基因芯片等新技术的数据分析工具。微点阵杂交中涉及上万个寡核苷酸,并依杂交信号强弱、探针位置和序定靶DNA的表达及多态性等。目前,迫切需要提高检测的自动化程度和数据的并行处理能力。

四 小结

综上所述,尽管福建省的计算机在生物学研究的应用学科目前发展还比较滞后,但只要能够抓住计算机在生物学科发展的契机,整合各方面的优势,进行协作式的研究,就能够更好地促进该学科的发展。

参考文献

[1]宁正元编著,计算机在生物科学研究中的应用,厦门大学出版社,

2006.11.

[2]H.M.erman,J.Westbrook,Z.Feng,et al. The protein Data Bank[J]. Nucleic Acids Research,(28):235-242.

[3]D.R.Westhead,J.H.Prish,R.M.Twyman.Instant Notes in Bioinformatics[M].United Kingdom:Bios Scientific Pub Ltd,2002.

[4]SCRATCH servers,hpdb.省略/thesis/2005/yht/principle/principle.asp[EB/OL].

[5]卢美律.蛋白质结构预测与机器学习[J],科学,1996,46(5):22-27.

[6]沈均贤人类脑计划与神经信息学[J],生物物理学报,2001.12(17):607-612.

[7]Ligeng Ma,Jinming Li,LiJin qu,et al.Light control of Arabidopsis development entails coordinated regulation of genome expression and cellcular pathways[J].Plant Cell,2001,13912):2589-2607.

[8]生物信息学对计算机科学发展的机遇与挑战[J],生物信息学,2001 (3):37-41.

[9]BSML Organization.Bioinformatic Sequence Markup Language Version 3.1[EB/OL]. 省略/resource/, 2003.

[10]Fenyo ,The biopolymer Markup Language[J],Bioinformatics,1999,(15):339-340.

[11]Lichun wang.XEMBL:distributing EMBL,data in XML format[J].Bioinformatics,2002,(18):1147-1148.

[12]郝柏林,刘寄星,理论物理与生命科学[M],上海:上海科学技术出版社,1997.

[13]Hang C T,Pickover C A,et al.Viusalizing Biological Informatin[M].Singapore.World Science Pub co,1993.

[14]钟扬,张亮等,简明生物信息学[M],北京:高等教育出版社,2001.

[15]赵青,黄小兵,生物信息研究的加速剂[J],互联网天地,76-77.

[16]厦门大学生命科学院:life.xmu.省略[EB/OL].

[17]方柏山教授主页:clxy.hqu.省略/clxy/informations/layout.mht/

篇9

关键词:高性能计算;应用;中医药

中图分类号:R-3 文献标识码:A 文章编号:2095-5707(2016)06-0010-03

Abstract: High performance computing (HPC), as a new and important research tool, has been applied in many fields successfully. Application of HPC in the TCM field is still in the exploratory stage. HPC in the future may be innovatively applied in the field of genomics Chinese herbal medicine, virtual medicine screening of new TCM, TCM data mining and big data analytics, modeling and simulation and so on.

Key words: high performance computing (HPC); application; TCM

高性能计算是计算机科学的一个分支,研究并行算法和开发相关软件,致力于开发高性能计算机。高性能计算是世界各国竞相发展的前沿技术,是体现一个国家综合实力和科技竞争力的重要指标。

科学计算作为科研方法变革的产物,已经发展成为与传统的理论、实验并驾齐驱的第三种科研方法,并且日益成为越来越重要的科研方法。科学计算方法的运用,是高性能计算应用的基础和前提条件,而使高性能计算真正发挥作用主要取决于高性能计算的应用研究水平[1]。本文对于促进高性能计算未来在中医药领域的应用、丰富中医药信息学的研究内容及由此产生的中医药科研方法的创新具有推动作用。

1 高性能计算应用概况

1.1 我国在高性能计算应用领域仍处于落后水平

在高性能计算的研发和应用领域美国一直处于世界领先水平,日本和欧洲国家紧随其后长期位居世界先进行列。近年来,我国在高性能计算硬件的研发方面取得了突破性进展,通过自主创新逐步掌握了一批硬件研发的关键技术。中国国防科技大学研制的天河系列超级计算机连续多次在世界超级计算机排行榜中名列首位,标志着我国高性能计算的硬件研究水平目前已经接近国际先进水平。但在应用软件方面的发展严重滞后于硬件的发展水平,自主开发的高性能计算应用软件严重匮乏,需要大量购买和引进国外开发的应用软件,重要和关键部门的应用受制于人[2]。应用软件是高性能计算应用的基础,由于应用软件研发水平的严重落后,目前我国在高性能计算应用领域仍处于落后水平。

1.2 国内外高性能计算主要的应用领域

高性能计算作为崭新和重要的科研工具,目前已经在众多的领域得到了成功应用,各种前沿科学研究、技术开发和工程设计都越来越多地使用了高性能计算,高性能计算已经日益成为科技创新的重要力量。目前主要的应用领域包括气象数值模拟与预报、地震预报、纳米技术、生物医学、环境科学、空间科学、材料科学、计算物理、计算化学、流体力学、地震三维成像、石油勘探、天体星系模拟、大气与海洋模拟、固体地球模拟、工业设计、核武器研究、全球气候模型、湍流分析、飞行动力学、海洋环流、流体力学和超导模型等[1]。在生物医学领域的应用目前主要集中在人类基因组学、蛋白质组学、药物设计、分子动力学模拟等方面。

1.3 高性能计算应用的瓶颈

高性能计算虽然已经在众多领域得到了成功应用,但由于技术难度等的限制,仍然属于高投入高产出的非普及型应用。目前制约高性能计算应用的主要问题包括软件开发的技术难度非常大,系统使用成本过高,不仅体现在软硬件购置费用昂贵,而且系统运行维护成本过高,大型系统的年电费需上千万元[2]。比较高精尖的应用范围、非常高的技术要求和过高的使用成本,这些都限制了高性能计算的广泛应用。

2 高性能计算在中医药领域应用的可行性分析

2.1 高性能计算在领域应用的前提条件

高性能计算在领域应用的条件首先需要应用领域具有较高的科研水平,特别是能够通过科学计算的方法建立相应的数学物理模型和应用软件来解决实际问题,利用高性能计算才有可能促成应用领域研究水平的大幅度提高。通过对高性能计算应用领域的最高学术奖戈登奖获奖项目的分析,这些获奖的应用项目绝大多数都具有多学科交叉融合的背景,这反映了高性能计算的应用需要应用领域与计算机科学、数学等学科的跨学科合作[3]。随着高性能计算的应用,近些年高性能计算与应用学科的交叉学科不断涌现,产生了计算化学、计算物理学、计算生物学等许多新兴学科,这些交叉学科的产生标志着高性能计算在这些领域得到了高水平应用。

2.2 计算生物学的启示

计算生物学是一门以生命科学中的现象和规律作为研究对象,以解决生物学问题为最终目标,通过模拟和仿真的方法对生物学问题进行定量和定性研究的新兴学科。计算生物学与生物信息学比较,最大的不同之处在于生物信息学侧重于生物信息的采集、存储、处理和分析,而计算生物学侧重于对生命现象进行研究、解决生物学问题[4]。目前计算生物学领域的研究主要集中在蛋白质行为的模拟、药物分子的筛选、基因测序等方面。

虽然目前中医药领域还不满足高性能计算的应用条件,但通过借鉴计算生物学的研究方法,未来有可能在中医药领域开展具有创新性的高性能计算的应用研究。

3 高性能计算在中医药领域应用的展望

3.1 中药植物药的基因组学

基因组学是遗传学的一个分支,研究生物基因组和如何利用基因,涉及基因作图、测序和整个基因组功能分析,研究内容包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学。基因组学是高性能计算应用的一个重要方向,没有高性能计算人类的基因组计划就不可能实现,高性能计算已经成为基因组学研究不可或缺的科研工具。随着基因组学研究的深入、技术的成熟和成本的大幅度下降,使得基因组学的研究逐渐由人类的基因组学扩展到动物、植物等多个相近领域。利用高性能计算在基因组学方面成熟的应用软件开展中药植物药的基因组学研究未来有可能是高性能计算在中医药领域的重要应用。

3.2 中药新药的虚拟药物筛选

利用高性能计算进行虚拟药物筛选目前已经成为西药新药开发的一条崭新和重要的途径。新药研发的核心工作之一是从大量的化合物样品库中发现有药理活性的化合物,计算机虚拟筛选辅助新药开发是利用统计学和分子模型化技术来指导新的先导结构的发现或设计,从而减少实验室的工作量,缩短开发周期、降低开发成本。近年来对多靶点药物的研究已经成为国际上新药开发的一个重要的研究热点,中药是天然的多靶点药物,蕴含着巨大的新药创制的潜力[5-6]。应用高性能计算开展中药新药的虚拟药物筛选有可能成为中药新药开发的崭新途径。

3.3 中医药数据挖掘和大数据分析

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。大数据分析是指对规模巨大的数据进行分析,目前世界各国对大数据分析技术高度重视,大数据被视为国家重要的战略资源。数据挖掘和大数据分析是高性能计算应用的重要领域之一。目前中医药领域的数据挖掘和大数据分析主要集中在对方剂配伍规律、中医证治规律等的研究,现有的研究水平还不能构成对高性能计算的迫切需求。随着数据挖掘和大数据分析在中医药领域应用水平的提高,数据研究的内容、方法和结果的日趋丰富,随着数据量的积累和研究方法复杂度的提高,中医药数据挖掘和大数据分析未来有可能成为高性能计算在中医药领域富有潜力的应用。

3.4 模拟与仿真

模拟与仿真是依靠计算机通过数值计算和图像显示的方法,对工程、物理、生物等各类问题进行研究。高性能计算不仅具有强大的计算功能,还可以模拟或代替由于受经济或者其他条件限制不能进行的实验。2013年10月,哈佛大学教授Martin Karplus、斯坦福大学教授Michael Levitt和南加州大学教授Arieh Warshel因“为复杂化学系统创立了多尺度模型”而获得诺贝尔奖,评委会声明中称这一成果意味着对于化学家来说计算机已经成为同试管一样重要的工具[1]。

计算机模拟方法在生命科学中已经得到了迅速的发展和广泛的应用。高性能计算应用领域的最高学术奖戈登奖获奖项目“在20万CPU核和异构体系结构上的千万亿次持续性能血流模拟”,该项目模拟了血液流动状态,可以辅助血栓的早期病理学诊断及抗血栓药物的研究。另一项获奖项目“呼之欲出的猫:包含109规模神经元、1013规模突触的大脑皮质模拟”,对神经元和突触规模与猫大脑相当的大脑皮质功能进行了模拟,并以此为基础开展了认知计算的研究[3]。此外国内外大量的高性能计算被用于分子动力学模拟,分子动力学模拟是一种数值模拟方法,通过将分子抽象为由化学键连接的质点按照基于牛顿力学的数学模型迭代求解分子体系的行为。利用高性能计算进行分子动力学模拟已经成为化学和生物学研究中与实验手段相当的标准研究方式[7-8]。模拟和仿真技术在中医药研究中的应用未来有可能成为高性能计算在中医药领域创新性的应用。

4 小结

高性能计算的应用是使高性能计算真正发挥作用的软实力,是高性能计算领域重要的研究内容。高性能计算的应用需要多学科的交叉与合作,计算生物学的产生标志着高性能计算在生物医学领域得到了成功应用。

高性能计算在中医药领域的应用目前还处于探索阶段,尚不具备大规模应用的条件和基础。未来有可能通过借鉴计算生物学的研究方法在中药植物药的基因组学、中药新药的虚拟药物筛选、中医药数据挖掘和大数据分析、模拟与仿真等领域进行开创性的应用研究。高性能计算在中医药领域的应用将会对中医药科研方法的创新与发展产生深刻的影响。

参考文献

[1] 顾蓓蓓,武虹,迟学斌,等.国内外高性能计算应用发展概况分析[J].科研信息化技术与应用,2014,5(4):82-91.

[2] 周兴铭.高性能计算技术发展[J].自然杂志,2011,33(5):249-254.

[3] 张理论,邓小刚.戈登奖――分析与思考[J].计算机工程与科学, 2012,34(8):44-52.

[4] 徐书华,金力.计算生物学[J].科学,2009,61(4):34-37.

[5] 朱伟,罗颂平.治疗输卵管阻塞性不孕的中药多靶活性成分计算机虚拟筛选[J].时珍国医国药,2012,23(6):1531-1532.

[6] ,孙晓波.网络药理学:中医药现代化的新机遇[J].药学学报,2012,47(6):696-703.

篇10

医学实验技术专业则偏重于实验,实验诊断学、医学影像学、实验动物学、实验核医学、形态学实验技术、分子生物学实验技术、医学信息学技术等都是这个专业的学生的必修课(该专业的学生不是在实验室里,就是在去实验室的路上)。不过,只要你喜欢动手,又勤于思考,做实验又何尝不是一种享受呢?

职业前景

医学检验技术:该专业的学生本科毕业后主要在医药公司(如辉瑞、默沙东、扬子江等)做市场销售与推广等工作。若想在各类学校的实验室里从事实验工作,或者在医疗机构从事医学检验工作,则需要继续深造,读硕攻博。

医学实验技术:该专业的学生本科毕业后主要去医院或者与生物科技相关的企业,做诸如实验员、科研助理这类比较基础的工作,若想去医院或者科研院所从事一份专业对口又有编制的工作,也是需要继续深造,且读硕攻博的。

高校t望台

医学检验技术专业实力较强的医科大学有重庆医科大学、首都医科大学、南方医科大学等,综合性大学有北京大学、上海交通大学、中山大学、华中科技大学、中南大学、江苏大学等。如果报考医科大学或者合并过医学院的名校,将来就会有更多就业的机会。

开设有医学实验技术专业的高校相对较少,比较好的高校有北京大学、哈尔滨医科大学、首都医科大学、四川大学、南方医科大学和福建医科大学等。

计算机科学与技术专业涵盖的知识广泛,开设该专业的院校众多,培养方向也略有差别。主要有软件工程、嵌入式系统、网络工程和信息技术四个培养方向。这四个培养方向其实都是跟软件和编程有关,由于软件的运用领域广、行业差异大,用到的编程平台、编程代码和硬件接口不同,所以很多高校会根据自己的科研实力和师资力量.在培养方向上有所区别。

软件工程:简单地说,是根据客户的需求来进行功能设计,然后通过软件语言的编写、调试来得以实现。核心的三要素是语言、算法、数据库。学生毕业后,一般从程序员做起,然后努力成为一名软件工程师。

相关院校:山东大学、广西大学。

嵌入式系统:嵌入式系统是一种专用的计算机系统,通常作为控制程序存储在控制板里,用于控制、监视或者辅助机器操作。嵌入式系统是当前最热门、最有发展前途的IT应用方向,技术更新快,对人才的要求较高,待遇自然也高。学生毕业后主要做嵌入式软件开发工程师。

相关院校:南京工业大学、江苏科技大学。

网络工程:运用计算机技术,对网络操作系统进行安装与配置,对网络服务器进行开发与管理。学生毕业后主要做网络工程师。

相关院校:重庆交通大学、湖南师范大学。

信息技术:根据客户的需求,运用计算机技术,创建并优化一个信息系统,然后对其进行维护和管理。学生毕业后主要做信息化服务工程师。

相关院校:天津大学、上海金融学院。

电子与计算机工程专业跟计算机科学与技术专业(嵌入式系统方向)非常接近,开设的基础课程比较一致。但是,电子与计算机工程专业开设的时间较晚,开设该专业的院校极少,高校的培养方式也比较单一,属于比较冷门的计算机类专业。计算机科学与技术专业作为信息领域的核心学科之一,开设的时间较早,开设的院校众多,属于热门专业。

电子与计算机工程专业的学生毕业后主要从事电子设备和信息系统的设计、应用开发以及技术管理等工作。比如,做电子工程师,设计和开发一些电子器件与通信器件:做软件工程师,设计和开发与硬件相关的各种软件:做项目主管,研发一些大的系统,这对人才的经验和知识要求很高。

相关院校:上海交通大学。

应用化学,就是化学的应用。f白了,就是通过学习.掌握各种化学知识并应用到实际生产与生活中去。它的主要课程包括无机化学、分析化学(含仪器分析)、有机化学、物理化学(含结构化学)和高分子化学等。材料化学是从化学的角度来研究材料的设计、制备、组成、结构、表征、性质和应用的一门学科,该专业对理论知识的考查较多,学习的范围包括无机非金属材料、有机高分子材料和新兴复合材料等。

应用化学注重研究如何使化学成果转化为现实产品,偏重于应用;材料化学注重研究材料及其使用过程中所涉及的化学原理与技术,偏重于理论。通俗地说,研究一斤黄豆是怎么变成酱油的,是应用化学;研究除了黄豆,还能把什么变成酱油的,是材料化学。

小孙是北京林业大学园艺专业的学生。当年在填报高考志愿的时候,他的理想是做园林设计工作。翻开厚厚的高考志愿填报手册,一看到“园艺专业”四个字,小孙高兴得不得了。在他看来,园艺应该是园林艺术的意思,所以他就毫不犹豫地选报了园艺专业。入学后小孙才发现,园林专业与园艺专业尽管只有一字之差,却是迥然不同的两个专业。

园林是培养园林设计师的专业,园林设计师的工作是用植物来营造怡人的绿色空间,创造“四时有景,三季有花”的美好环境。园林专业的学生需要学习建筑制图和园林设计方面的理论知识.还要具备能应用艺术理论及设计理论对植物材料、自然景观进行艺术设计的基本能力。

学校推荐:北京林业大学、东北林业大学、中国农业大学、南京林业大学、华中农业大学。

篇11

译坛盛事千秋伟业——记首届清华—亚太地区翻译与跨文化论坛

面向21世纪的中美商务合作论坛

首届西湖国际儿科论坛

燃烧副产物及健康影响

微电子与等离子体技术的基础及应用研究

国际智能电网理论研究和应用

安全探测与信息技术

农业与食品检测用纳米技术与生物传感器研究

肿瘤发病分子机制联合研究

绿色超级作物的分子育种

北京化工大学与忠南国立大学双边学术研讨会

美国研究联络会第7次年会

第4届IEEE生物信息与生物医学工程国际会议

2010发育与疾病国际研讨会

第3届古桥研究与保护国际学术研讨会

第3届计算智能与设计国际学术研讨会

2010国际信号、系统和电子会议

第6届无线通信、网络技术及移动计算国际会议

澳大利亚的华文教育

专门用途英语在亚洲

美国犹他大学的学生事务工作

地球关键区界面反应:分子水平环境土壤科学

中日学者共探信息技术

量子物质科技正在成为新世纪重要前沿

大规模跨媒体数据挖掘与检索

裂纹路径研究新技术新方法

产品创新管理研究进展

产业集聚理论与区域协调发展

2009年数字制造国际学术会议述评

非传统安全与和平发展国际会议综述

工业文明和可持续发展——亚洲博士生创新研讨

核酸和糖化学生物学的研究热点和最新进展

岩土环境修复与可持续发展

移民与专业文凭互认

e社会传播:创新、合作与责任

信息保障与安全热点技术

无网格、粒子类和扩展有限元方法国际学术会议

第7届杭州植物病理与生物技术国际研讨会

法律、语言与全球公民权利

改革开放三十年中国行政国家的重塑

生态文明:环境、能源与社会进步

中美经贸关系——问题与前景

历史上的中国出版与东亚文化交流

住房保障与房地产业的可持续发展

2008美国岩石力学会议及学术访问

美国大学考察报告

概率统计的现状与未来

基础、临床与公共卫生需携手共进

工程塑性力学及应用进展

智能机器人与应用的现状与发展趋势

分子影像前沿研究与应用

专利信息管理和检索的最佳实践

2008年国际计算机科学、计算机工程及应用计算大会

国际管理科学学会2008年会

篇12

关键词 生物科学;交叉学科;编辑加工

中图分类号Q-0 文献标识码 A 文章编号 1674-6708(2015)131-0034-02

生物科学是研究生物的结构、功能、发生和发展规律的一门自然学科,它既研究各种生命活动的现象和本质,又研究生物与生物之间、生物与环境之间的相互关系,以及生命科学原理和技术在人类经济、社会活动中的应用。目前,科学的协同作用及相互激励作用逐渐被人们所认识,随着各国政府和科学界对生命科学的日益重视,化学家、物理学家和数学家从已经获取的新的生命信息中,不断修改、增添各自学科的理论、定义,从而使得一大批生物科学交叉学科蓬勃发展,如生物地理学、生物力学、生物光学、结构生物学、纳米生物学、计算生物学、生物信息学、耦合仿生学、合成生物学、生物医学工程学、系统生物学、生物伦理学等。

加工这类交叉学科的稿件,对编辑人员的业务能力要求较高,如知识结构、科学认知能力、逻辑分析能力、文字表达能力等。尤其是进行规范性编辑加工时,要求编辑具有掌握不同学科行业规范的能力。下面根据生物学与所交叉学科的不同,举例子说明编辑加工此类稿件的要点。需要说明的是,本文主要介绍稿件中遇到的相关学科内容的加工重点,至于生物学范畴内的基础知识加工规范,在此不再赘述。

1 与物理学的交叉

生物学与物理学交叉的学科主要有生物力学、生物光学、生物声学等,这类稿件中,除了对生物学基础知识的加工外,主要涉及对数学公式、数学符号规范方面的加工。

数学公式和数学符号的特点是字母多(英文、希文等)、符号多(各种运算符号和数学符号)、层次多(上下角标、行列式、矩阵等),因此编辑加工难度较大,且极易出现错误。为了使科技类图书做到标准化、规范化,使数学公式更加简明、规范、准确、直观,下面从数学公式和数学符号两个方面介绍加工要点。

1.1 数学公式

1)数学公式一般以另行居中排为原则。

2)公式前面,如上行末文字是“令”、“为”、“有”、“是”、“得”等字时,其后不加任何标点符号。

3)公式中常用的括号有圆括号、方括号、花括号,三种括号多重使用时,一般是圆括号外套方括号,外再套花括号。

4)一般情况下,如果公式不是特别复杂,则符号说明可在“式中,”之后按接排式的版式排(中间用分号隔开)。

5)公式需加排序号,采用阿拉伯数码,并用圆括号括起,放在公式右边行末版口处。

6)公式中的主辅线要分清(一般主线比辅线长),并且主线要与运算符号在同一水平线上。

7)方程组在编排时应尽量排在一面上。

8)编排行列式和矩阵时,应特别注意元素的行列要上下对齐,每一行的间距要均匀一致,行距通常为半个字距;对角矩阵的对角元素所在的列应明显区分,不能上下重叠,混淆不清。

1.2 数学符号

数学符号的字体以国家标准为依据,主要有大、小写的区别,白、黑体的区别,正、斜体的区别。

1)未知量的符号,表示变量的字母、变量符号,以及表示点、线段的符号用白斜体。

2)集合符号用黑正体,如集合B。

3)矢量(向量)符号、张量符号、矩阵符号都用黑斜体表示,如力F、张量T、矩阵A。

交叉类稿件的加工中还应特别注意公式里出现的容易混淆的字符,如英文字母的大小写容易混淆、英文字母O和阿拉伯数字0容易混淆、英文字母a和希腊文字α等。因此编辑在加工时一定要认真、仔细地标识清楚,以避免排版人员在排版时出错。

另外,一些物理学和数学家的名字也会有常用错别字,如“傅利叶”应该为“傅里叶”、“笛卡尔”应该为“笛卡儿”。

当然,关于数学公式和数学符号的使用还有很多详细的要求,以上列出的仅是生物类交叉学科图书中最容易遇到的问题。

2 与化学的交叉

生物学与化学交叉的学科中,主要任务是对化学式的加工,最容易出问题的主要有以下几处。

1)单箭头表示反应单向进行,双箭头表示反应双向进行。

2)化学元素符号用整体,表示反应组分数量的变量符号用斜体。

3)有机化学式中,化学键的键长要统一。

4)有机化学式中,元素符号和键号必须对准。

3 与计算机科学的交叉

随着后基因组时代的到来,生物学与计算机科学的交叉学科应运而生,包括生物信息学、计算生物学、合成生物学等。这类稿件的加工通常注意以下几点。

1)会出现数学公式和符号,加工重点见上。

2)有较多的计算机软件生成图或者屏幕抓图,因此加工时一定要注意图片的清晰度,图片模糊的话需要作者重新提供。

3)稿件中会出现较多的缩略词、简写,包括计算模型的缩略词、研究机构的缩略词、数据库的缩略词等,因此加工时要注意这些缩略词是否前后一致;同时要尽量保证这些缩略词的拼写正确。例如,“GenBank数据库”不能写成“GeneBank数据库”。

4)稿件中有时会出现一些代码程序,特别注意,这时不能根据我们已有的编辑加工知识去随意修改,因为代码有其本身固有的格式。

4 与医学的交叉

生物学与医学的交叉学科包括生物医学工程学、生物医学影像学、生物制药、医学细胞生物学等。这类稿件的加工难点主要是一些常见医学术语的规范。例如,“罗音”应该为“音”、“爱滋病”应该为“艾滋病”、“抗菌素”应改为“抗生素”、“心肌梗塞”应改为“心肌梗死”等。

4.1 与环境科学、地理学的交叉

生物学与环境科学、地理学的交叉主要涉及一些生态学科类的图书,如水资源、森林资源、农业气候资源等。这类稿件的加工中,除了涉及生物学的基础知识外,加工的重点主要为地图、插图类问题和数据错误。

1)地图、插图类问题。

(1)岛点差错(漏标主要岛点)。

(2)界限画法错误(国界、未定界)。

(3)注记差错(级别、字色、错别字)。

(4)区域设色差错(如台湾底色)。

(5)比例尺差错。

2)数据错误。

(1)求和、求平均值、计算增长率等错误。

(2)正文中的数据与表中的数据不一致。

(3)同一个数据,前后文不一致。

(4)文字描述与数据不一致,如“第一年是272t,第二年是230t,增长了……”。

5 与社会科学的交叉

生命伦理学关注的是生物学、医学、控制论、政治、法律、哲学和神学这些领域的相互关系中产生的问题。因此其通常会存在较大的争议。在这类稿件的加工过程中要特别留意是否存在宗教、信仰方面的敏感问题。这类问题可能并不多见,一旦出现就要特别引起重视,属于政治性差错的范畴。

另外需要注意的是,在科技类图书中会出现很多专业名词,特别是交叉学科的图书,涉及的专业类别很广,编辑的知识不肯能面面俱到,如果遇到不太熟悉的专业名词,一定要核查准确,确定是错误的字、词才可以改动,绝对不能妄改。关于专业名词,可以在全国科学技术名词审定委员会网站上进行核实。

随着我国科学技术的不断进步和发展,科技类图书承载“介绍新知、推广技术、传播资讯、传承文化”的使命不断增强。因此,科技类图书的编辑应当密切跟踪相关学科发展前沿,以此为基础增强科技类稿件的科学性,判断稿件的真理性,提高稿件的逻辑性。作为联系作者与读者的桥梁,科技类图书的编辑要着力拓宽自己的知识领域,只有这样才能编辑加工出高质量、高水平的科技稿件。

参考文献

[1]张祖权.科技文献中插图编辑加工刍议.科技期刊编辑研究文集(第四集),1996.

篇13

生物医学工程(Bio毗dieazEngineering)学是一门年轻的新学科,从技术角度肴,生物医学工程技术其形成与发展的模式墓本上可归纳为:通过工程技术手段把物理、化学以及技术科学中新的技术、原理、方法应用于研制医疗装!、满足临床诊治的需要,随着科学技术进步、新的物理、化学方法和工程技术不断被应用于医学,医用产品越来越多.在工程学(含电子技术、计算机技术、信.息技术、材料科学)突飞猛进地发展的同时,生命科学也在迅猛发展,近年来迅速兴起的生物技术对给生物医学以极大的推动,将产生分子医学.因此我们对理工学科与生命科学交叉结合而产生的生物医学工程学必须有新的认识.美国学者指出,新的生物医学工程定义是:“生物工程学结合物理学、化学或数学和工程学原理,从事生物学、医学、行为学或卫生学的研究;提出基本概念,产生从分子水平到器官水平的知识,诱发创新的生物学制品、材料、加工方法、植入物、器械和信息学方法,用于疾病预防、诊断和治疗,病人康复,改菩卫生状况等目的”.因此,我们必须考虑到科学技术的进步给生物医学工程学带来的影响:不仅是工程学与生命科学、医学的交叉结合,也包括所有其他学科和生命科学、医学的交叉结合;不仅是工程技术的相应理论方法与生物医学中人体结构功能的交叉结合,而且要考虑工程技术的相应理论方法与生物技术的交叉结合.因此,我们引用根据美国国立卫生研究院有关名词命名专家组最近对生物医学工程学的定义:焦生物医学工程学是结合物理学、化学、数学和计算机科学与工程学厚理,从事生物学、医学、行为学或卫生学的研究;提出墓本概念,产生从分子水平到导官水平的知识,开发创新的生物学制品、材料、加工方法、植入物、导械和信,’.学方法,用于疾病预防、诊断和治疗,病人康复,改善卫生状况等目的.”

二.生物医学工程学科类型

生物医学工程学是理、工学科和生物医学相结合而发展起来的交叉边缘学科,涉及的领域十分广泛,与其他诸如材料、信息、电子技术、计算机科学关系密切,并在不断发展之中.根据学科具体内容可以分为:因为生物医学工程学科具有其他学科所没有的特点,我国仅设一级学科不设二级学科.

1.信息技术型生物医学工程(InformationTeehno一osyBiomediealEngsneering:IT一明E.)其知识体系的组成特点是以电子技术、计算机技术、信.息处理技术的知识为主线,以生物医学方面相应的领域为交叉、结合对象,对其中的问题进行研究.

2.材料技术型生物医学x程伽aterialTeehnologyBiomedicalEngineering:盯一翎E)其知识体系包含材料科学、生物技术、力学、化学、生物化学、信息和计算机技术、医学和生命科学的墓本知识,主要研究对象是生物材料和人工器官,包含新近发展起来的组织工程.

3.生物技术型生物医学工程(BiologiealTeehnologyBiomedicalEngineering,BT一BME)在生物医学工程发展的同时,由于分子生物学的发展产生了生物技术,使得生物医学工程与生物技术交叉结合.美国实验生理学学会联合会(F^SEB)对未来医学发展的分析是“分子医学将在2020年成为人类健康的基础.分子医学的实践将包括新的预防方法、新的诊断方法和新的治疗方法,新的治疗方法将直接针对造成疾病的分子、细胞或生理缺陷.这些新医学方法的墓础将是精确的和无创的成像及诊断技术,……”,这充分说明了在新的时期,生物医学工程必然和分子水平的诊疗技术交叉结合,也就是说生物医学工程必然和生物技术交叉结合,因此必然会产生生物技术型的生物医学工程.其知识体系包含数学、计算机技术、信.息技术、生物学、分子生物学、遗传学等等.

4.生物医学研究型的生物医学工程(BiologiealMediealstudyBi二。dicalEngineeringBMS一BME)由生物医学工程的定义和它的研究内容知道,我们要为深入研究生命过程的规律,揭示生命的本质.因此这类学科的着眼点和落脚点不在于应用,而在于用目前的一切科学技术的理论、方法、技术以某一生命过程为研究对象.所需的是所有理工科、生物学、医学、哲学知识的交叉融合.

5.医疗器械产业型的生物医学工程伽ediealDevieesBIOfnedicalEngineering:MD一BME)生物医学工程所有的研究的最终目的是以各种不同的产品服务于社会,在各种生物医学工程产品中,医疗器械(含各种医疗仪器、医疗设备和耗材等)产品占有很大比t.要过渡到产品必须有由实验室研究到产业化过度的研究阶段,就会形成产业型的生物医学工程.其知识体系包含电子技术、计算机技术、精密机械、生物医学的基本知识、管理学、市场经营等.以往我国医疗界械产业化的发展较发达国家滞后,就是因为这方面的力t相对薄弱,因此一方面应该在医疗界械的公司强化这方面的建设,另一方面应加强高校、研究所与企业的交叉结合.科研成果的产品化研究在医疗界械行业显得尤为重要。

6.在医院中的生物医学工程-----一临床工程随若科学技术和现代医学的发展,生物医学工程对促进医学科学的发展起到了很重要的作用,尤其是在医院的建设和发展中所起的作用更为重要,所居的地位更为明显.医疗机构为了满足社会的需求,在医疗市场的激烈竞争中求得生存与发展,就必须加快自身的现代化建设,在这一进程中,生物医学工程的分支学科一一临床工程已成为现代化医院不可缺少的组成成份,将起到举足轻重的作用.临床工程师、医生和护士共同构成现代化医院的三大支柱川.临床工程在医院中的发展是一个值得关注问翅.临床工程的定义:前面讲过生物医学工程学是一门新发展起来的交叉性学科,它研究内容非常广泛,从纵向看,生物医学工程学的组成除了研究开发以外还有一个重要的组成部分,就是在医院中应用生物医学工程的所有成果---一临床工程,临床工程则是为了利用现代科学和工程技术知识,将现代的生物医学工程学的新技术和成果安全、可东地应用到临床,以提高医疗水平为目的的一个生物医学工程的学科分支.那么,什么是临床工程呢?目前,一般认为在医院中医疗设备的维修管理就是临床工程,我们认为,在医院中所有为了提高医院医疗水平而应用现代工程技术的工作都应该属于临床工程的范畴.在医院临床工程墓本上由五大部分组成:一是以医疗设备的全程技术管理为主,解决医院装备现代化中技术、设备、质t保证和经济管理方面的问题,包含了医院中的设备工程和设备管理工程;二是医疗信息的现代化管理-一Hls(HospitalInfor.tionsystem)系统:使用计算机和通讯设备采集、存储、处理、传翰和翰出门诊、住院息者医护和管理信息,包括临床辅助科室的信息,形成网络系统,实现信息共享,提商医院工作质t和效益;三是和影像存档和通讯--一P^cS(Pict盯e^r。hi,ing.eo二unie。tson:system,):是医院用于管理医疗设备如CT,MR等产生的医学图像的信息系统;四是远程医疗网络系统等:远程医疗就是利用电子通讯网络以电子信号来传递有关医学诊断、治疗、护理、咨询及教育等的信息及数据,其即可以为偏远地区的息者提供医疗服务,也可以作为医生之间进行交流的有效工具;五是参与临床的诊断与治疗一线工作的工程技术:例如放射治疗计划的制定、虚拟手术、理疗和康复等等.临床工程与生物医学工程研究开发是两个紧密相连的必要环节,又具有各自的发展规律.因此,我们既要重视前者的发展,也要重视后者的发展,在医院中更应将后者放在发展的重要的地位.

三.国内外生物医学工程教育棍况

科学与学科有非常密切的关系.科学自身的规律决定学科的规律,科学发展决定学科的建设和发展,当然,学科的建设反过来形响科学的发展.随若人们对健康的关心程度的增加,医学上疾病分析、诊断、治疗和康复等方面的仪器设备逐年增多.因此,在教学科研单位需要有研究人的生命的物理原理、控制过程和研究新的检测、监测生理、生化物理指标的原理、方法、仪器设备;在工业部门,需有设计、制造适于医护人员操作和人事科医学要求的仪器设备的工程师.在医院里,需有掌握医学设备的均t和维修以及培训使用这些设备的人员的工程师;这就要求有一个系统地培养生物医学工程师的教育计划.生物医学工程师要用工程学的方法来解决生命科学上的难题,因此,要求有一些涉及生命科学和工程学的交叉训练,使得学生既要性得工程原理,又要了解如何应用知识来解决生物学和医学上的问题.二十世纪50年代,随着生物医学工程科学研究的发展,产生了生物医学工程学科.由于科学研究的需要,在国外生物医学工程学科发展的最初阶段,是趋向于培养博士水平的高级人员.后来由于注意到实际应用,产生了硕士和学士水平的教学计划.

1.国外高校生物医学工程专业的情况

目前发达国家的很多大学都设有生物医学工程系,仅美国就可在Inter网上查到近百所大学生物医学工程系的主页.《共国新闻》及《世界报道》两媒体2002年联合公布的生物工程/生物医学工程领域最佳研究生院的排名(根据设施、人员、研究成果引用系数等)前十名的学校。.设有叫S方向与BT的较多.以研究生教育为主,本科为附在我国,涉及生物医学工程专业最早的是中专教育、大专教育(1,60年成立的北京商学院就有医疗器械系),真正的生物医学工程学科开始于70年代未,19,8年国家科委成立了生物医学工程学科专业组.从此生物医学工程作为一门独立的学科在我国很快地发展起来.经二十多年的发展,目前全国己有近几十所高校建立有该专业,这些高校均系国内工科、理科、医学的著名院校.我国生物医学工程学科的墓本情况见表2从以上可以看出我国的生物医学工程专业发展非常迅速,据不完全统计,52个院校设有生物医学工程专业,其中有37个理工或综合大学,15个医科院校.

2.我国离校生物医学工程专业的情况分析

(1).我国生物医学工程专业与国外生物医学工程专业的共同点①学科发展迅速国内外高校生物医学工程专业发展十分迅速,国外从20世纪60年代起步,70年代、80年代迅速发展•国郎20世纪’0年代末,8。年代初仅有几所高校建立生物医学工程专业,短短二十年就发展到50个院校建立该专业.②从比较知名的重点院校开始形成辐射美国约翰霍普金斯大学、加利福尼亚大学、麻省理工学院、宾西法尼亚大学、华盛顿大学、密歇根大学等都是较早建立生物医学工程专业的.我国清华大学、浙江大学、西安交通大学、上海交通大学、东南大学、中国科技大学等都是我国著名的科研水平很高的大学,也是我国首批建立生物医学工程专业的高校.③生物医学工程专业的学科以研究生教育为主在国外,很多大学招收研究生的数t超过本科生的数t,研究生的来源更强调从理工科或生物医学专业中选拔.在我国50多个生物医学工程专业中有17个博士学科(14个也收本科,3个仅招收硕士、博士),6个博士后流动站,5个长江学者学科,11个招收本科、硕士,8个院校仅招收硕士,U个院校招收本科、2个招收大专.这充分说明生物医学工程专业教学和科研相比,生物医学工程科研占的比重更大.

3.我国高校生物医学工程专业与国外的不同点(差距)

近年来我国生物医学工程教育发展很快,如前所述建立本科教学的至少有35所院校,通过分析不难发现:①学科模式(研究方向)设!较少所有开设生物医学工程本科专业的学校都是以电子、信.息、计算机应用与医学结合为目标,只有个别学校在培养目标中增加生物材料和人工器官方面的内容.本科教育的专业设!面比较集中在IT一明E,没有川S一SME,各院校的研究生培养(科研方向)基本以生物医学信号的检测处理、医学成像、医学图象处理、医学仪器研究为主,部分涉及到分子电子学、分子光子学、生物力学、生物医学材料、人工器官、组织工程等方向,只有少数大学比较集中在纳米材料、生物医学材料及人工器官、生物医学图像处理.研究生培养的专业面比本科生的专面相对宽广.与生物医学工程专业搜盖面相比显得专业面过于窄.而国外的专业设t显然比我们有优势.从表1中可以看出有很多“生物移植、心血管电生理、脊健损伤研究、功能生物技术、心肺动脉、临床整形外科研究、临床整形外科研究、细胞影像、疼痛神经生理、分子及细胞生物、重组蛋白质表达、药物传输、.生物界面现象、生物热传递、麻挤研究、听觉研究、神经肌肉研究、神经系统分析、视觉研究”一的研究方向,在我国,这些研究方向都被认为是生物医学的研究内容,而不是生物医学工程的研究内容.②以科研带动学科的特点不如国外突出我国本科教育有进一步扩大的趋势,有些没有科研方向的学校纷纷设立生物医学工程专业③没有重视传统中医工程研究④生物医学交叉结合的程度我们不如国外,我们的叫E没有研究生命系统的就是个证明.

4.就业问题

生物医学工程师的就业前景是广阔的,主要就业单位是研究机构、公司和医院.研究机构可以是研究所或大学里的研究中心,他们从事设计和研制医院里所铸的很专门的新设备,也有一部分作为外科或生理研究组的成员参与复杂电子系统的选择使用,也可以研制新设备公司,可以是仪导及制药公司,他们参与新的医疗仪器以及医学及生物学研究用的仪器的研制和生产.他们能够决定一种新的设计是否有藉要,有梢路,能否满足各种要求并符合政府的法律规定,他们也可做为公司产品的推销及售后服务工作.在医院里,他们从事自动化、研制实验室用计算机,病人一一计算机的接口以及有关计算机软件.他们也可以在某一科室〔例如:内科、外科和临床实验室工作),也可以在医院里直接经管生物医学工程部门的工作.他们是医院中工程情报的主要提供者,负贵所有仪器的使用、维修和采购的任务,研究分析和处理数据的方法.生物医学工程师亦参与许多国家研究计划,如在空间计划中设计遥测装I,生命维持系统,人一一机接口设备以及参与空问医学.他们也参与国防计划,环境研究,也可做为环境开发及污染、医院自动化方面的顾问等.

5.生物医学工程专业的继续教育

生物医学工程专业的高等教育与国外相比起步较晚,但经过近20年的发展,现已形成较完菩的学科体系,开设了大专、本科、硕士和博士研究生教育层次.而我国生物医学工程专业继续教育发展较慢,在国家成人教育专业目录中还没有该专业.我校1,%年首次在全军开展了生物医学工程专业专科升本科的函授教育,现已招收7届学员,深受全军各医疗单位技术人员的欢迎,目前地方许多医院有关技术人员也来信询问要求学习.我们认为在新形势下,生物医学工程专业继续教育有着广泛的前景和开展空间.主要原因是:

(1).随着科学技术和现代医学的发展,医院各种诊疗技术和设备越来越多,高新技术和自动化程度越来越高,如果没有生物医学工程专业技术人员的有效参与,现代化医院不可能有现代化的管理和诊疗水平.

(2).从医院实际看.医院医学工程科、信息科、放射科、放疗科、超声科和理疗科的临床工程技术人员是生物医学工程专业专业本科毕业的为数不多,大都是本专业或相关专业大专毕业,知识结构和实际水平很难适应未来的发展需要,必然有一个知识更新、技术提高的问题.

(3).以现代科学技术为核心的、建立在知识和信息的生产、存储、使用和消费之上的经济称为知识经济时代,知识经济时代的到来对现代化医院的科技水平、人才综合素质和创新能力有了更高的标准.开展生物医学工程专业继续教育,必须满足实际,若眼未来,在教育观念、人才培养目标、教学内容和教学方法等方面进行大胆探索.

6.在医学院校内开设生物医学工程专业的特点

生物医学工程专业是一门工程科学,它要求有深厚工程墓础知识,学生的大部分时问都是在学习工程知识,因此,很容易认为在工科院校开设此专业有优势,在医学院校开设这个专业有很大困难.经过几年的实践,我们认为在医学院校办生物医学工程专业.开始时要建立起一整套的工程葵础课教研室和实验室,,这样需要的经费、人员较多,起步比较困难,但只要具备了墓本条件,会有很多优势.

(1).生物医学工程是工程科学对医学的渗透,在医学院校中开设了本专业以后,工程人员和医务人员思想上的沟通就比较方便,较能做到互相理解,这样就便于合作.

篇14

中图分类号: G643;Q-3 文献标识码: B 文章编号: 1008-2409(2008)05-0967-03

人类基因组计划的成功实施使生命科学进入了信息时代。基因组学、蛋白质组学和生物芯片 技术的发展,使得与生命科学相关的数据量呈线性高速增长。对这些数据全面、正确的解读 ,为阐明生命的本质提供了可能。连接生物数据与医学科学研究的是生物信息学(Bioinform atics)。应用生物信息学研究方法分析生物数据,提出与疾病发生、发展相关的基因或基因 群,再进行实验验证,是一条高效的研究途经。医学是研究生命的科学,医学研究在基础上 就注定离不开对生物信息的了解。

我国目前医学研究生教学模式主要有两种, 一是医学本科教育延续过来的理论型, 这种类型 的教育是在本科教学大纲的基础上, 按照教学计划进行理论讲授, 最后按照导师指定的课题 完成毕业论文。这种培养模式突出理论学习, 忽视了实验机能和科研能力的培养。二是科研 能力培养的前轻后重型, 前期只是进行理论授课, 后期由导师指导学生的科研。这种模式虽 然开设了一定的实验项目, 但对研究生科研能力的培养缺乏系统性, 并且前期的培养不足直 接影响到研究生后期的学位课题和论文的进度、质量。

因此,笔者对生物信息学在医学硕士研究生中的教育初探,不但有利于该门课程尚未完全形 成成熟的课程体系之际,为教师学习借鉴先进的教育思想与教学实践经验,更有利于医学硕 士研究生对生物信息学的学习。

1 生物信息学的研究范围

生物信息学是一门新兴的交叉学科,涉及生物学、数学和信息科学等学科领域,并注定以互 联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种 生物信息分析,以理解海量分子数据中的生物学含义。

生物信息包括多种类型的数据,如核酸和蛋白质序列、蛋白质二级结构和三级结构的数据等 。由实验获得的核酸蛋白序列和三维结构数据等构成初级数据,由此构建的数据库称初级数 据库。由初级数据分析得来的诸如二级结构、疏水位点、结构域(Domain),由核酸序列翻译 来的蛋白质以及预测的二级三级结构,称为二级数据。创新算法和软件是生物信息学持续发 展的基础,高通量生物学研究方法和平台技术是验证生物信息学研究结果的关键技术。因此 ,现代生物信息学是现代生命科学与信息科学、计算机科学、数学、统计学、物理学和化学 等学科相互渗透而形成的交叉学科,是应用计算机技术和信息论方法研究蛋白质及核酸序列 等各种生物信息的采集、存储、传递、检索、分析和解读,以帮助了解生物学和遗传学信息 的科学。从其研究所涉及的学科上看,生物信息学是集生物学、数学、信息学和计算机科学 一体化的一门新的科学;从其研究的主要内容上看,基因组信息学、蛋白质的结构模拟以及 药物设计是生物信息学的三个重要组成部分,并有机地结合在一起[1]。

2 医学硕士研究生中的生物信息学教学初探

2.1 课堂教学重在教授实践技巧与方法

生物信息学在医学研究生中的教学应以教授实践技巧为主,以介绍原理为辅,深入浅出,注 重课堂知识与科研实践的紧密结合。课堂讲授应简要介绍生物信息学的相关算法、原理,着 重介绍其使用技巧与方法,真正做到“有的放矢”,而这也是教学的重点和难点。

在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免 空洞复杂的算法讲解让学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,知难而退;注重讲解 使用技巧与方法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力 ,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进的掌握复杂的内容,介 绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系,其他学科的 思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物 学问题的科学素质。 任何学科都处于不断地发展、更新中,生物信息无论是理论研究还是 应用研究仍处于不断发展完善中,同时随着新的应用领域和新问题的发现,其他学科的方 法也在不断地应用于生物信息学,进一步增加了其多学科交叉融合的深度和广度。

2.2 充分利用现代化教育技术,采用案例教学

目前,高等院校在教室内配备的多媒体投影播放系统,促进了多媒体教学的广泛应用。生物 信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基 本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是 对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等 内容涉及到的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和 掌握,提高学生理论与实践相结合的能力。

但多媒体教室也有局限性,学生主要以听讲为主不能及时实践,教师讲解与学生实践相脱节 ,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式可以解 决上述问题。在教学中采用启发式教学,为学生建立教学情景,学生通过与教师、同学的协 商讨论,参与操作,发现知识,理解知识并掌握知识。例如在讲授“目的基因序列的查寻” 时,除对基本内容的介绍,如数据库的发展、分类等,其他采用案例法,让学生利用搜索工 具查找三大公共核酸数据库,并通过数据库网站的介绍内容对该数据库的发展、内容、特点 进行学习并总结,通过讨论和实际的数据库浏览操作了解三大公共核酸数据库并且掌握数据 库使用方法。

2.3 采用“讲、练”一体化的教学模式,强调学生实践能力的培养

生物信息学课堂教学积极学习借鉴职业培训和计算机课程教学中“讲、练、做”一体化的教 学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变了传统的“以教师 为中心、以教材和讲授为中心”教学方式。

根据教学内容和学生的认知规律,灵活地采用先理论后实践或先实践后理论或边理论边实践 的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、 综合发展。通常采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容 让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解采取了进行实际演示 的方法,教师边讲解边示范,学生在听课时边听讲边练习或者教师讲解结束后学生再进行练 习,理论与实践高度结合,充分发挥课堂教学的生动性、直观性,加深学生对知识的理解, 培养和提高学生的实践操作能力。

2.4 发挥网络教学优势,优化生物信息学实验教学内容

生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生 物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识 解决问题的能力和独立思考、综合分析的能力。生物信息学实验教学内容的选择与安排应按 照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容 为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习 的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以 互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络 的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工 具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教 师在网上批改实验报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况。

生物信息实验教学与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较 其他课程更具优势。区别于其他生命科学课程,在教学过程中要求有发达的互联网和计算机 作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000 M主干带宽的高校已占调 查 总数的64.9%,2005年一些综合类大学和理工类院校将率先升级到万兆校园网[2] ,这些都为生物信息学课程在高校开设提供了良好的物质基础。

2.5 考试无纸化,加强实践能力考核

考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力 。因此,在生物信息学考试中尝试引入实践技能考试,重点考核学生知识应用能力。实践技 能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行 解释,不仅考核学生对基本知识和基本原理的掌握,而且考查学生进行生物信息分析的实际 能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,促进学生 注重提高理论用于实践的综合能力,同时更有效地提高学生计算机应用能力。除采用实践技 能考试并将其作为学生成绩的主要部分外,还加强了对学生平时学习态度、学习能力、创新 思维等方面的考核。

总之,生物信息学教学是网络环境下生物教学的全新内容。通过上述教学措施,提高了学生 的 学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学 效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,随着 教师自身素质的提高和进一步的教学改革将会不断完善生物信息学教学,培养具有“大科学 ”素质和意识的医学研究生人才。

参考文献:

[1] 张阳德.生物信息学[M].北京:科学出版社,2004:4.