发布时间:2024-04-19 16:11:36
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇人工智能教学课程,期待它们能激发您的灵感。
关键词:人工智能;授课内容;讲授方法
人工智能概论课程是我校智能科学与技术专业开设的一门重要的专业基础课,它在整个专业教学体系中起到奠基的作用,如何针对其特点制定合理的教学目标与授课内容,并有效地组织课堂教学,取得良好的教学效果是非常重要的,本文将从多个角度对其进行全方位的思考与探索,为相关课程教学的改革提供新的思路。
1教学目标的精确定位
首先,人工智能概论课程在智能科学与技术专业整个教学体系中起到引导和奠基的作用,但不同于其他相关的专业基础课,其总的特点可归纳为“少而精”,即在较少的教学授课学时中起到画龙点睛的作用,为学生进一步的深入学习打好基础,并激发他们对智能专业的学习兴趣和爱好。基于以上特点,通常选择一学期共32学时课程的安排计划,并且在大三上学期开始进行授课。
其次,要研究解决同学们所反映的“虚与实”问题。人工智能是一门涉及到多个学科的课程,具有相当复杂的背景,其与哲学、数学、经济学、神经科学、心理学、计算机工程、控制论和语言学都有着密切的联系,并且随着这些学科的发展而深化,不断产生新的思路和新的问题。以上特点决定了该课程内容较为抽象,且难以把握全局,学习起来不易消化理解,从而造成了学生学习的困难,容易产生畏惧感,并且学生常常对其在实际环境中的具体应用产生疑问。
如何在这么短的授课学时里使学生产生学习兴趣并且能取得良好的教学效果是一个具有挑战性的课题,这需要对该课程的授课内容、教材选择、讲授方法和考核形式进行全方位的思考与探索,并在教学过程中落在实处。一方面让学生了解和掌握人工智能的发展历史和思想渊源,并指出各个分支的本质特点和整个领域的发展趋势;另一方面有意识地穿插介绍人工智能在实际中具体应用的例子,开阔学生的眼界,打消他们的疑虑。这些将在本文的后面部分进行深入的介绍。
最后人工智能概论这门课程还要兼顾研究型和应用型这两种特点的共同发展。在以前,由于人工智能授课内容的特点,常常讲授时偏向研究型,往往涉及到复杂的数学推导和逻辑运算,增加了老师讲授的难度和学生学习的困难。因此,针对上述问题,在教学过程中可以引入多种形式的事例说明和多媒体演示环节,以讲授思想为主,具体技术为辅,这将直接反映到授课内容的选择上。
2授课内容的选择
人工智能概论授课内容的选择至关重要,本着该课程“少而精”的特点,既需要让学生在较短时间内掌握基本的思想与概念要点,又要对该课程进行全方位的介绍,并点出其发展趋势,因而对授课教师有着非常高的要求。由于授课课时的限制,我们无法做到既面面俱到,又对每个具体方向进行详细的讲解;而且这样也容易陷入复杂的数学推导和逻辑运算的误区。因而,整个课程的讲授内容应该以传授思想和概念要点为主,并在讲授的过程中加入有趣的事例,通过这些形象的事例说明和多媒体演示环节折射出人工智能思想的精髓和应用的广阔前景。
人工智能概论主要涉及到知识表示、搜索推理、计算智能、专家系统、机器学习、自动规划、Agent和自然语言理解等内容,其中以知识表示、搜索推理和计算智能为授课内容的重点,在讲授的过程中需要对这些内容加以整理精简,分清主次,合理地安排授课内容在总学时内。除了这些基本的授课知识外,还应该在教学环节引入多媒体演示,通过形象生动的视频演示让学生们了解人工智能的科学价值和实际应用所在。视频可以选用世界一流大学实验室的开放多媒体内容,例如:MIT计算机科学与人工智能实验室的相关科研项目中间过程及结果的视频演示,以此来开阔学生的眼界,增长他们的见识,使之了解其应用前景和未来的发展空间。
人工智能领域的发展受到多个学科的影响,这些学科在不同历史时期都对人工智能领域起到了各种推进作用,也产生了许多不同层面的争论,至今也是如此。如何在授课过程中形象地对人工智能历史进行回顾,阐述这些学科对人工智能领域的影响,尤其是思想方面的影响特别重要。“回顾历史,立足当今,展望未来”――给学生形象地描绘出人工智能发展的思想史,并以画龙点睛之笔指出人工智能领域发展的广阔未来,是授课教师艰巨而光荣的任务,只有这样才能使学生把握住人工智能领域的整个发展脉络,激发出他们的学习兴趣和爱好。
以哲学家对强人工智能方向的争论为例,向学生们介绍这些收集整理的资料对于他们思想的启迪是非常有益的。这里值得说明的是这种思想的阐述事实上是非常不容易的,其难度甚至高于复杂的数学推导,因为它常常要求授课教师掌握思想的精髓所在,并用非常形象生动的语言对其进行说明,而这些常常是现在书本中所没有的。例如:知识的表示、获取、存储和推理是人工智能领域中重要的组成部分,虽然目前已经有很多书籍详细地介绍了这些方面,但学生仍然反映听起来比较抽象。为什么会这样?其原因是一些基本的问题并没有得到圆满的说明和阐述,如“什么是知识”,“知识能够表示吗”,“有统一表示各种各样抽象、复杂知识的工具吗”,“抽象的美学与复杂的人类情感,知识能够表示吗”……其中有些问题看似容易回答,却往往涉及到一些复杂的哲学问题,目前在各种人工智能的教科书和专著里常常对这些问题避而不谈,只在数学的层面上针对具体的问题来进行说明和讲授。如果想在这方面有所突破的话,就需要阅读大量的哲学书籍,如认知学、知识论和心智哲学等领域的著作,还需要大量时间的理解和参悟,这些有价值的资料也是对授课内容的极大丰富和补充。近年来,认知神经科学、心理学、生物学、语言学甚至社会学对人工智能领域有着较大的推进作用,也是将来融合发展的总体趋势,如何在课堂上结合具体的事例对其加以说明也是授课内容的一个重要环节。
3相关教材的选择
众所周知,关于人工智能的国内外优秀教材有很多,例如:S.J. Russell和P. Norvig所著的《Artificial Intelligence――A Modern Approach》被全世界89个国家的900多所大学用作教材[1],国内可以考虑使用其影印版或中文翻译版本,大大的降低了购买国外原版教材所需的费用,并可以在此基础上考虑实现双语教学。此外还有蔡自兴教授等编著的人工智能及其应用,详细而恰当地介绍了人工智能领域中的各个研究方向(分别适合于本科生[2]和研究生[3])等。我们从整个教学时间安排上看,因其所占学时较少,所以人工智能概论课程的教材选择不适用于大部头的书籍,宜选用篇幅较小但内容较全的适合于本科生的教材。除了选择合适的教材外,对于任课教师还要拥有大量的参考书,包括上述提到的其他领域的书籍和资料,只有这样才能拓展所掌握的知识,为实现良好的教学效果而服务。
4讲授方法和考试形式的选择
课程讲授时注意主线的选择,着重以思想介绍为主,详细地介绍人工智能发展的历史以及各种学派和学说,如符号主义、连接主义和行为主义等,要重点介绍他们的特点和本质,指出它们形成的原因以及其中的不足之处,并向学生介绍新的学说,例如机制主义[4]等。整个教学过程并不涉及较为复杂的数学,要注重各个分支的思想源流,主要从其机制上做定性介绍。同时可在讲授过程中穿插相关历史问题的争论,例如:中国屋问题[5]等,引发学生学习的兴趣和爱好,开展交互式教学,使学生和老师产生互动。授课方式采用板书和多媒体交互使用方式,力争在每节课的空闲时间里穿插加入人工智能领域的实际应用介绍,放映相关的视频录像,开阔学生们的眼界。在最终考试形式的选择方面不是要学生死记硬背知识点,而是要注重学生思想的发挥,鼓励学生提出新想法和新思路,并丰富其掌握的相关知识,为将来的进一步学习打好基础和做准备。
5结语
我们认为在教学方式上力争采用“启发式”教学,能真正做到启迪学生思想的作用,尤其要鼓励思想创新,在高等教育阶段培养学生具有独立思考、勇于探索的能力,使之成为社会的有用之才。希望这些在人工智能概论课程教学中的思考和探索能在日常教学活动起到有益的作用,并与同行们共同交流和探索。
参考文献:
[1] S.J. Russell, P. Norvig. Artificial Intelligence:A Modern Approach[M]. 2nd Ed. 北京:清华大学出版社,2006.
[2] 蔡自兴,徐光佑. 人工智能及其应用本科生用书[M]. 3版. 北京:清华大学出版社,2003.
[3] 蔡自兴,徐光佑. 人工智能及其应用研究生用书[M]. 3版. 北京:清华大学出版社,2004.
[4] 钟义信. 机制主义方法与人工智能统一理论:人工智能的新方法与新进展[J]. 计算机教育,2010(19):7-10.
[5]J. Preston, M. Bishop. Views into the Chinese Room: New Essays on Searle and Artificial Intelligence[M]. Oxford: Oxford University Press,2002.
Teaching Reflection on Introduction to Artificial Intelligence
YANG Dedong, SUN Hexu, YANG Peng, ZHANG Lei
(School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China)
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。?
本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。??
一、兼顾课程内容的统一性和差异性??
人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。?
知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。?
同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。?
这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。
??二、实施分层次教学??
各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。?
本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。?
非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。?
给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。
??三、案例驱动,寓教于乐??
采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。?
例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。?
又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。?
在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。?
为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。?
此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。
??四、结语??
以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。?
人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。
参考文献?
[1]
蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.?
[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.?
[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.?
1.1集先进性、实用性和前沿性为一体的教学内容改革对国内外优秀的人工智能教材[2-6]的内容进行整合,建立人工智能的知识体系,并提取人工智能课程的知识要点,确定集先进性、实用性和前沿性为一体的教学内容。人工智能的核心思想是研究人类智能活动规律和模拟人类智能行为的理论、方法和技术,因此人工智能应围绕“智能”这个中心。由于智能本身的复杂性,难以用单一的理论与方法来描述,因此可以通过建立人工智能的不同层次来刻画智能这个主题。人工智能的主要内容可按图1所示划分为最底层、抽象层、逻辑层和应用层这4个不同层次。在最底层,神经网络与演化计算辅助感知以及与物理世界的交互。抽象层反映知识在智能中的角色和创建,围绕问题求解对知识进行抽象、表示与理解。逻辑层提出学习、规划、推理、挖掘的模型与方式。应用层构造智能化智能体以及具有一定智能的人工系统。将人工智能划分为这4个层次可确定人工智能课程的教学内容,并保证教学内容的循序渐进。
1.2基于人工智能知识体系的教学案例库建设根据所确定的教学内容、知识重点和知识难点,从国内外经典教材、科研项目、研发设计、生产建设以及国内外人工智能网站等多种途径,收集案例素材,加以整理,撰写各知识要点的教学案例及其内容。表1给出基于人工智能知识体系的教学案例示例。
2人工智能课程教学案例的详细设计
在教学案例具体设计时应包括章节、知识重点、知识难点、案例名称、案例内容、案例分析过程、案例教学手段、思考/讨论内容等案例规范,分别从以下单一案例、一题多解案例和综合应用案例3种情况进行讨论。
2.1单一案例设计以人工智能课程中神经网络课堂教学内容为例,介绍基于知识点的单一案例的设计。神经网络在模式识别、图像处理、组合优化、自动控制、信息处理和机器人学等领域具有广泛的应用,是人工智能课程的主要内容之一。教学内容主要包括介绍人工神经网络的由来、特性、结构、模型和算法,以及神经网络的表示和推理。这些内容是神经网络的基础知识。其重点在于人工神经网络的结构、模型和算法。难点是人工神经网络的结构和算法。从教学要求上,通过对该章节内容的学习,使学生掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般性地了解神经网络的表示和推理方法。采用课件PPT和演示手段,由简单到复杂,在学生掌握人工神经网络的基本原理和方法之后,再讲解反向传播BP算法,然后运用“手写体如何识别”案例,引导学生学习理解人工神经网络的核心思想及其应用方法。从国外教材中整理和设计该案例,同时应包括以下规范内容。章节:神经网络。知识重点:神经网络。知识难点:人工神经网络的结构、表示、学习算法和推理。案例名称:手写体如何识别。案例内容:用训练样本集训练一个神经网络使其推广到先前训练所得结果,正确分类先前未见过的数据。案例分析过程:①训练数字识别神经网络的样本位图;②反向传播BP算法;③神经网络的表示;④使用误差反向传播算法训练的神经网络的泛化能力;⑤一个神经网络训练完毕后,将网络中的权值保存起来供实际应用。案例教学手段:手写体识别的神经网络演示。思考/讨论内容:①训练改进与权值调整改进;②过学习/过拟合现象,即在一个数据集上训练时间过长,导致网络过拟合于训练数据,对未出现过的新数据没有推广性。
2.2一题多解案例设计一题多解案例有助于学生把相关知识点联系起来,形成相互关联的知识网络。以人工智能课程中知识及其表示教学内容为例,介绍一题多解案例的设计。知识及其表示是人工智能课程三大内容(知识表示、知识推理、知识应用)之一。教学内容主要包括知识表示的各种方法。其重点在于状态空间、问题归约、谓词逻辑、语义网络等知识表示方法。难点是知识表示方法的区别及其应用。从教学要求上,通过对该章节内容的学习,使学生掌握利用状态空间法、问题归约法、谓词演算法、语义网络法来描述和解决应用问题,重点掌握几种主要知识表示方法之间的差别,并对如何选择知识表示方法有一般性的了解。通过讲解和讨论“猴子和香蕉问题”案例,来表示抽象概念。该案例从国内外教材中进行整理和设计,同时包括以下规范内容。章节:知识及其表示。知识重点:状态空间法、问题归约法、谓词逻辑法、语义网络法等。知识难点:知识表示方法的区别及其应用。案例名称:分别用状态空间表示法与谓词逻辑法表示猴子和香蕉问题。案例内容:房间内有一只机器猴、一个箱子和一束香蕉。香蕉挂在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多种知识表示方法表示和求解该问题?案例分析过程:①状态空间法的解题过程。用n元表列表示该问题的状态;定义问题的操作算符;定义初始状态变换为目标状态的操作序列;画出该问题的状态空间图。②谓词逻辑法的解题过程。定义问题的常量;定义问题的谓词;根据问题描述用谓词公式表示问题的初始状态、中间状态和目标状态。案例教学手段:猴子和香蕉问题的演示。思考/讨论内容:①选择知识表示方法时,应考虑哪些主要因素?②如何综合运用多种知识表示方法获得最有效的问题解决方案?
2.3综合应用案例设计与单一案例、一题多解案例相比,综合应用案例能更加有效地启发学生全方位地思考和探索问题的解决方法。以机器人行动规划模拟为例,介绍人工智能综合应用案例的设计,该案例包括以下规范内容。章节:人工智能综合应用。知识重点:人工智能的研究方向和应用领域。知识难点:人工智能的技术集成。案例名称:机器人行动规划模拟。案例内容:综合应用行为规划、知识表示方法、机器人学、神经网络、人工智能语言等多种人工智能技术与方法,对机器人行动规划问题进行描述和可视化。案例分析过程:①机器人行为规划问题求解。采用状态归约法与分层规划技术,将机器人须完成的总任务分解为若干依序排列的子任务;依据任务进程,确定若干关键性的中间状态,将状态对应为进程子规划的目标;确定规划的执行与操作控制,以及机器人过程控制与环境约束。②基于谓词逻辑表示的机器人行为规划设计。定义表达状态的谓词逻辑;用谓词逻辑描述问题的初始状态、问题的目标状态以及机器人行动规划过程的中间状态;定义操作的约束条件和行为动作。③机器人控制系统。定义机器人平台的控制体系结构,包括反应式控制、包容结构以及其他控制系统等。④基于神经网络的模式识别。采用神经网络方法以及BP算法对桌面茶壶、杯子等物体进行识别,提取物体图形特征。⑤机器人程序设计语言。运用人工智能语言实现机器人行动规划行为的可视化。案例教学手段:机器人行动规划的模拟演示。思考/讨论内容:人工智能将会怎样发展?应该在哪些方面进一步开展研究?
3案例教学环节和过程的具体实施细节
人工智能案例教学的实施面向笔者所在学院软件工程专业三年级本科生展开。具体实施细节如下。(1)教学内容的先进性、实用性和前沿性。引进和整合国外著名人工智能教材内容,保证课程内容具有先进性。同时将前沿人工智能的研究成果与技术有机地融入课程案例教学之中。(2)案例教学的创新教学模式。在教师的引导下,将案例中涉及的人工智能内容推广到对人工智能的一般性认识。案例的教学过程,成为认识人工智能、初步运用人工智能的理论与方法分析和解决实际应用问题的过程,使学生具备运用人工智能知识解决实际问题的意识和初步能力。在课程教学中,打破国内常规教学方式,建立和实施开放式案例教学模式。采用动画课件、录像教学、实物演示、网络教学等多种多媒体教学手段,以及集中讲授与专题讨论相结合的教学方式将理论、方法、技术、算法以及实现有机结合,感性认识与理性认识相结合,理论与实际相结合,极大地激发学生自主和创新性学习的热情。(3)“课堂教学—实践活动—现实应用”的有机融合。在案例教学过程中,从传统教学观以学会为中心转化为创新应用型教学观以创新为中心,以及从传统教学的以课堂教学为中心转化为以课堂教学与实践活动并重为中心,构造具体问题场景以及设计教学案例在情境中的现实应用,加深学生对教学内容的理解,同时提高学生的思考能力和实际综合应用能力。
4结语
关键词:人工智能;专家系统;ARM;单片机
人工智能(AI)[1]是计算机科学的重要分支,是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐明这些方法的一般性原理和基本思想,使得计算机更好得为人类服务。
1人工智能课程体系
人工智能主要研究传统人工智能的知识表示方法,包括状态空间法、问题归约法谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
人工智能课程在我校计算机科学与工程学院是作为大三年级的一门专业选修课开设,总共学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域变得越来越广,因此人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验设计项目可以与其他相关专业结合起来而应用。
2人工智能教学实践
50多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义也是困难的。
由于人工智能[2]是一门交叉性的学科,涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科。所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强、需要较好的数学基础和较强的逻辑思维能力等特点,导致了在教学过程中老师讲得吃力、学生听得吃力。尽管在多年的教学过程中积累了一些经验,但是对于如何把握这门课程的特点,提高学生的学习兴趣,帮助学生更好的理解这门课程,目前仍然有很多问题需要研究解决。
目前在整个教学过程中存在的主要问题[3]是:
1) 教学内容陈旧,部分参考书相关内容或案例都过于陈旧。在整个教学过程中,多数教学案例涉及到人工智能理论的高级应用――机器人,目前在国际及国内机器人的水平已经达到相当高的水平,但是部分教科书中仍沿用关节型机器人为例,教学内容稍显陈旧。
2) 教材难易程度不均匀,部分章节学生难以理解。由于人工智能课程的部分章节,本身就可以独立成一门课程,但由于是面向本科生的内容,因此很多内容压缩于一章来讲解,同时由于课时所限,完全不能将相关的内容讲透讲通;例如:神经计算中的神经网络,与模糊逻辑控制的相关理论与应用。
3) 教学手段单一,教学过程中缺乏师生之间的沟通与交流。经过自己的实践教学及对兄弟院校的人工智能的教学内容与教学手段的调研,同时也在学生之间进行沟通交流,发现多数同学反映,理论与应用虽然前沿,但是在学习过程中,教师教学手段单一,内容枯燥乏味,一般的教学模式,多采用“老师讲,学生听”的方法,整个教学效果并不理想。
4) 考核方法不科学,不能体现学生实际的学习情况。目前对于课程学习的考核采用闭卷考试的方式,很多考点有的同学根本不理解,完全死记硬背,考后又将内容丢弃,从学习的效果来讲,收获甚微且完全没有达到真正学习及应用的能力。
3教学方法改进
3.1注重激发学生的学习兴趣
科学家爱因斯坦曾说过:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。
在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣日渐变少,针对此种情况,可以采用任务驱动式教学或案例教学。
例如:在讲专家系统章节时,在授课之前先通过互联网,采取案例教学法,给学生们实时在线演示一个医疗专家诊断系统,演示其中的功能,同时与学生互动,以问答式与学生互动,了解目前专家系统的具体应用、可以解决的问题、给人民生活带来的益处等。通过这种教学的形式,一方面可以激发学生的学习兴趣;另一方面也使同学们体会到人工智能与我们生活的贴近程度。第二步,采用任务驱动法,具体来说,它是指教学全过程中,以医疗专家诊断系统若干个具体任务为中心,通过完成任务的过程,介绍和学习基本知识和具体设计方法。
3.2注重教材选择
这一任务的执行者主要是由教研室主任或任课老师来完成。目前在各高校中所使用的人工智能相关教材的种类繁多,章节和内容的设置上也存在差别。笔者在订阅教材或参加教材展销的活动中,都比较重视人工智能教材的情况,通过比较发现,有的教材内容及难度太低,完全不符合高等本科院校的要求,而部分出版社的教材则是内容及章节安排内容太多太泛,有些知识点讲的又过于深奥,限于学时所限也不适合选用。在选教材方面,除了关注内容方面外,还要注重书上所讲的一些实例,注重这些例子的典型性、时效性及新颖性,例如,部分教材在自动规划这一章,选用机械手作为例子来说明积木世界的机器人规划问题,还有一些选择关节机器人,前些年这样的机器人技术确实是个难点,但是依据现在成熟的机器人技术,无论是国际还是国内都已不再是技术难点,再拿这个例子去配合理论去讲解,无论内容还是形式都稍显陈旧,目前机器人技术发展水平基本上达到尽可能高仿真状态。
3.3运用现代化的多媒体教学手段
针对人工智能课程相关内容比较抽象,公式推导比较繁琐,除了具有完善的教学大纲、合理的教学计划以及好的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学。因此在实践教学中,配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;在讲专家系统相关理论知识时,尤其是各种类型的专家系统,采用互联网上的一些在线视频资源为例,给同学进行详细讲解,同时结合农业院校的特点,在线资源有如农业专家系统或动物专家诊断系统等,这样学生可以加强对理论知识的理解,同时也体会到理论不再是抽象空洞的文字描述;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止逼近真实人的机器人来给学生讲理论,这样学生通过观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断更正自己的错误观点并更新自己新的专业认识,另一个方面也可以同时激发学生们的学习热情和积极性,这一点在课堂实践教学中得到验证,得到广大同学的认可和接受,整个教学课堂不再那么单调枯燥呆板了,基本可以达到在娱乐中传授专业知识。
3.4加强对实验教学的重视
目前高校在人工智能的教学过程中,实验所占的学时比较少,有的甚至就不安排实验课学时;另外实验内容也相对比较简单,应用不到理论课堂上所学到的人工智能原理,实验效果不是很好。面向人工智能课程的程序设计语言,多采用Prolog程序设计语言,该语言是一种基于一阶谓词的逻辑程序设计语言,它在AI和知识库的实现技术方面具有十分重要的作用,具有表达力强、表示方便、便于理解、语法简单等优点。但在整个实验教学环境也遇到了如下问题:首先是目前有关人工智能的专门配套实验教程很少;其次是即使有诸如《面向人工智能程序设计Prolog》教程,则主要是侧重介绍这门自然语言的程序设计,而其中很多部分与AI实验环节关联度不大,另外教材价位也比较高。针对此种情况,笔者在24个学时的实验教学过程中,安排7个实验内容,其中最后一个专家系统的设计与实现作为一个综合性实验来设计。在进行实验教学的过程中,首先参考多本Prolog程序设计教程,选择其中与实验教学计划中相关的内容,专门编写相应的电子教程,同时也结合我校学生本身的特点[4],有侧重地体现和编写,总的目的是给学生一份完整的、系统的、规范的电子教程。这样做的目的是:一方面作为学生参考的技术文档;另一方面也可以节省学生的部分经济开支。电子教程的结构分为三个部分来完成,首先为人工智能理论及原理,Prolog语言的使用说明;其次具体的例子演示(均经过调试正常运行);最后为布置给学生具体的实验内容及相关题目,以提供给学生自己动手实践的机会。此外在实验教学过程中,同时也会给学生们自由发挥的机会,比如专家系统的设计与实现作为一个综合性实验,学生可以采用Prolog编程实现,也可以采用其他自己擅长的程序设计语言,例如有的同学选择C语言、VC++、Visual Basic、Java及网页开发设计语言ASP/JSP等,此外在实验内容方面,实验递交的专家系统涉及多个领域(有动物辨别、医疗诊断、动物养殖咨询等专家系统)、范围也颇广,实验内容重复性很小,在设计过程中,绝大部分同学均是结合自己的兴趣爱好来完成设计。
4结语
人工智能的研究成果将能够创造出更多、更高级的智能“制品”,并使之在越来越多的领域超越人类智能,同时将为发展国民经济和改善人类生活做出更大的贡献。作为一名当代的大学生有必要学好这门课程,但是根据实际教学情况,教师与学生仍然需要继续进行相应的研究与发展,只有不断地探索和提高,才能使我们的教学工作更上一层楼,才能培养出符合时代和社会需求的人才。另外人工智能与农业等方面存在很多结合应用的契机,这样计算机就可真正地服务于社会、服务于人类、服务于农业、应用于农业、发展农业。
参考文献:
[1] 蔡自兴. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2007.
[2] 陈峰,文运平. 浅谈人工智能课程的教学[J]. 消费导刊,2006(12):123.
[3] 赵蔓,何千舟. 面向21世纪的人工智能课程的教学思考[J]. 沈阳教育学院学报,2004,6(4):131-132.
[4] 王莲芝. 高等农林院校人工智能教学的探讨[J]. 高等农业教育,2003(12):64-65
Study of the Artificial Intelligence Teaching Methods
HAN Jie-qiong1, YU Yong-quan2
(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2. School of Computer, Guangdong University of Technology, Guangzhou 510075, China)