发布时间:2024-04-19 16:11:36
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇人工智能教学课程,期待它们能激发您的灵感。
关键词:人工智能;授课内容;讲授方法
人工智能概论课程是我校智能科学与技术专业开设的一门重要的专业基础课,它在整个专业教学体系中起到奠基的作用,如何针对其特点制定合理的教学目标与授课内容,并有效地组织课堂教学,取得良好的教学效果是非常重要的,本文将从多个角度对其进行全方位的思考与探索,为相关课程教学的改革提供新的思路。
1教学目标的精确定位
首先,人工智能概论课程在智能科学与技术专业整个教学体系中起到引导和奠基的作用,但不同于其他相关的专业基础课,其总的特点可归纳为“少而精”,即在较少的教学授课学时中起到画龙点睛的作用,为学生进一步的深入学习打好基础,并激发他们对智能专业的学习兴趣和爱好。基于以上特点,通常选择一学期共32学时课程的安排计划,并且在大三上学期开始进行授课。
其次,要研究解决同学们所反映的“虚与实”问题。人工智能是一门涉及到多个学科的课程,具有相当复杂的背景,其与哲学、数学、经济学、神经科学、心理学、计算机工程、控制论和语言学都有着密切的联系,并且随着这些学科的发展而深化,不断产生新的思路和新的问题。以上特点决定了该课程内容较为抽象,且难以把握全局,学习起来不易消化理解,从而造成了学生学习的困难,容易产生畏惧感,并且学生常常对其在实际环境中的具体应用产生疑问。
如何在这么短的授课学时里使学生产生学习兴趣并且能取得良好的教学效果是一个具有挑战性的课题,这需要对该课程的授课内容、教材选择、讲授方法和考核形式进行全方位的思考与探索,并在教学过程中落在实处。一方面让学生了解和掌握人工智能的发展历史和思想渊源,并指出各个分支的本质特点和整个领域的发展趋势;另一方面有意识地穿插介绍人工智能在实际中具体应用的例子,开阔学生的眼界,打消他们的疑虑。这些将在本文的后面部分进行深入的介绍。
最后人工智能概论这门课程还要兼顾研究型和应用型这两种特点的共同发展。在以前,由于人工智能授课内容的特点,常常讲授时偏向研究型,往往涉及到复杂的数学推导和逻辑运算,增加了老师讲授的难度和学生学习的困难。因此,针对上述问题,在教学过程中可以引入多种形式的事例说明和多媒体演示环节,以讲授思想为主,具体技术为辅,这将直接反映到授课内容的选择上。
2授课内容的选择
人工智能概论授课内容的选择至关重要,本着该课程“少而精”的特点,既需要让学生在较短时间内掌握基本的思想与概念要点,又要对该课程进行全方位的介绍,并点出其发展趋势,因而对授课教师有着非常高的要求。由于授课课时的限制,我们无法做到既面面俱到,又对每个具体方向进行详细的讲解;而且这样也容易陷入复杂的数学推导和逻辑运算的误区。因而,整个课程的讲授内容应该以传授思想和概念要点为主,并在讲授的过程中加入有趣的事例,通过这些形象的事例说明和多媒体演示环节折射出人工智能思想的精髓和应用的广阔前景。
人工智能概论主要涉及到知识表示、搜索推理、计算智能、专家系统、机器学习、自动规划、Agent和自然语言理解等内容,其中以知识表示、搜索推理和计算智能为授课内容的重点,在讲授的过程中需要对这些内容加以整理精简,分清主次,合理地安排授课内容在总学时内。除了这些基本的授课知识外,还应该在教学环节引入多媒体演示,通过形象生动的视频演示让学生们了解人工智能的科学价值和实际应用所在。视频可以选用世界一流大学实验室的开放多媒体内容,例如:MIT计算机科学与人工智能实验室的相关科研项目中间过程及结果的视频演示,以此来开阔学生的眼界,增长他们的见识,使之了解其应用前景和未来的发展空间。
人工智能领域的发展受到多个学科的影响,这些学科在不同历史时期都对人工智能领域起到了各种推进作用,也产生了许多不同层面的争论,至今也是如此。如何在授课过程中形象地对人工智能历史进行回顾,阐述这些学科对人工智能领域的影响,尤其是思想方面的影响特别重要。“回顾历史,立足当今,展望未来”――给学生形象地描绘出人工智能发展的思想史,并以画龙点睛之笔指出人工智能领域发展的广阔未来,是授课教师艰巨而光荣的任务,只有这样才能使学生把握住人工智能领域的整个发展脉络,激发出他们的学习兴趣和爱好。
以哲学家对强人工智能方向的争论为例,向学生们介绍这些收集整理的资料对于他们思想的启迪是非常有益的。这里值得说明的是这种思想的阐述事实上是非常不容易的,其难度甚至高于复杂的数学推导,因为它常常要求授课教师掌握思想的精髓所在,并用非常形象生动的语言对其进行说明,而这些常常是现在书本中所没有的。例如:知识的表示、获取、存储和推理是人工智能领域中重要的组成部分,虽然目前已经有很多书籍详细地介绍了这些方面,但学生仍然反映听起来比较抽象。为什么会这样?其原因是一些基本的问题并没有得到圆满的说明和阐述,如“什么是知识”,“知识能够表示吗”,“有统一表示各种各样抽象、复杂知识的工具吗”,“抽象的美学与复杂的人类情感,知识能够表示吗”……其中有些问题看似容易回答,却往往涉及到一些复杂的哲学问题,目前在各种人工智能的教科书和专著里常常对这些问题避而不谈,只在数学的层面上针对具体的问题来进行说明和讲授。如果想在这方面有所突破的话,就需要阅读大量的哲学书籍,如认知学、知识论和心智哲学等领域的著作,还需要大量时间的理解和参悟,这些有价值的资料也是对授课内容的极大丰富和补充。近年来,认知神经科学、心理学、生物学、语言学甚至社会学对人工智能领域有着较大的推进作用,也是将来融合发展的总体趋势,如何在课堂上结合具体的事例对其加以说明也是授课内容的一个重要环节。
3相关教材的选择
众所周知,关于人工智能的国内外优秀教材有很多,例如:S.J. Russell和P. Norvig所著的《Artificial Intelligence――A Modern Approach》被全世界89个国家的900多所大学用作教材[1],国内可以考虑使用其影印版或中文翻译版本,大大的降低了购买国外原版教材所需的费用,并可以在此基础上考虑实现双语教学。此外还有蔡自兴教授等编著的人工智能及其应用,详细而恰当地介绍了人工智能领域中的各个研究方向(分别适合于本科生[2]和研究生[3])等。我们从整个教学时间安排上看,因其所占学时较少,所以人工智能概论课程的教材选择不适用于大部头的书籍,宜选用篇幅较小但内容较全的适合于本科生的教材。除了选择合适的教材外,对于任课教师还要拥有大量的参考书,包括上述提到的其他领域的书籍和资料,只有这样才能拓展所掌握的知识,为实现良好的教学效果而服务。
4讲授方法和考试形式的选择
课程讲授时注意主线的选择,着重以思想介绍为主,详细地介绍人工智能发展的历史以及各种学派和学说,如符号主义、连接主义和行为主义等,要重点介绍他们的特点和本质,指出它们形成的原因以及其中的不足之处,并向学生介绍新的学说,例如机制主义[4]等。整个教学过程并不涉及较为复杂的数学,要注重各个分支的思想源流,主要从其机制上做定性介绍。同时可在讲授过程中穿插相关历史问题的争论,例如:中国屋问题[5]等,引发学生学习的兴趣和爱好,开展交互式教学,使学生和老师产生互动。授课方式采用板书和多媒体交互使用方式,力争在每节课的空闲时间里穿插加入人工智能领域的实际应用介绍,放映相关的视频录像,开阔学生们的眼界。在最终考试形式的选择方面不是要学生死记硬背知识点,而是要注重学生思想的发挥,鼓励学生提出新想法和新思路,并丰富其掌握的相关知识,为将来的进一步学习打好基础和做准备。
5结语
我们认为在教学方式上力争采用“启发式”教学,能真正做到启迪学生思想的作用,尤其要鼓励思想创新,在高等教育阶段培养学生具有独立思考、勇于探索的能力,使之成为社会的有用之才。希望这些在人工智能概论课程教学中的思考和探索能在日常教学活动起到有益的作用,并与同行们共同交流和探索。
参考文献:
[1] S.J. Russell, P. Norvig. Artificial Intelligence:A Modern Approach[M]. 2nd Ed. 北京:清华大学出版社,2006.
[2] 蔡自兴,徐光佑. 人工智能及其应用本科生用书[M]. 3版. 北京:清华大学出版社,2003.
[3] 蔡自兴,徐光佑. 人工智能及其应用研究生用书[M]. 3版. 北京:清华大学出版社,2004.
[4] 钟义信. 机制主义方法与人工智能统一理论:人工智能的新方法与新进展[J]. 计算机教育,2010(19):7-10.
[5]J. Preston, M. Bishop. Views into the Chinese Room: New Essays on Searle and Artificial Intelligence[M]. Oxford: Oxford University Press,2002.
Teaching Reflection on Introduction to Artificial Intelligence
YANG Dedong, SUN Hexu, YANG Peng, ZHANG Lei
(School of Control Science and Engineering, Hebei University of Technology, Tianjin 300130, China)
关键词:航天类专业 人工智能 教学探索
中图分类号:G64 文献标识码:A 文章编号:1674-098X(2014)10(b)-0155-02
面对航天科技迅猛发展,现代军备技术快速提升,培养具有专业性的高素质航天类人才,是我国航天科技发展的战略选择,也是航天重点高校面向并有效服务航天事业的历史责任。航天类本科生的教育形式也需要突破传统的方式,着重多样性、前沿性、工程性,因此,该专业的各门课程教育都应该结合专业特点,探索新的教学模式。
人工智能自1956年诞生50多年以来,引起众多科研机构、政府和企业的空前关注,已成为一门具有日臻完善的理论基础、日益广泛的应用领域和广泛交叉的前沿学科。由于航天领域的特殊要求,人工智能在其发展中发挥着不可替代的重要作用,各发达国家都相继开展了人工智能与航天技术相结合的研究,致力于实现可重构的、具有容错能力的、智能的飞行系统和管理系统。因此,“人工智能”作为航天类专业的一门特色选修课,应结合专业特点展开更具有实用性和创新性的教学。
1 人工智能课程特点
一方面,“人工智能”是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域,具有知识点多、涉及面广、内容抽象、不易理解、理论性强等特点,使得该课程的教学具有较大的灵活度和较高的难度。另一方面,“人工智能”是一门正在发展中的学科,具有较强的前沿性,计算机科学、信息科学、生物科学等相关学科的发展不断的提出了许多新的研究目标和研究课题,使得人工智能的技术和算法也需要不断更新,这在很大程度上增加了“人工智能”课程的教学难度。
2 航天类专业特点
首先,航天类专业具有较强的工程性。在专业的教学改革中有统一的特点,即强调要体现航天工程技术的综合性、系统性, 注重培养复合型人才。其次,航天类专业具有一定的前沿性。因为航天飞行器作为现代高科技和多种学科技术综合应用的结晶,应及时把现代先进科技融入到了专业基础和专业类的课程教学中, 专业知识更新快成为又一特点;另外,航天类专业应注重实践性教育。尊重个性和兴趣,强调动手能力,实验室对学生开放,要求学生自主地设计完成实验,强调对学生设计理念和创造能力的培养。最后,航天类专业应重视产学合作。产学合作的目的在于推动学校与航天产业的持续全面合作,造就一支科学技术研究和工程实践兼备的教师队伍。
3 教学模式的探索
3.1 教材的选择
人工智能作为一门新兴的学科,其理论与方法都还在不断的发展与完善中。就目前来看,关于人工智能的定义和范围都没有一个统一的标准,不同的教材所介绍的内容也不尽相同。在教材选用方面,需要综合考虑专业特点和学生的知识背景。本课程主要针对航天类专业高年级本科生,该类学生具有一定的数学、计算机、信息论、通信理论等基础知识,对航天应用的基本需求有初步的了解,因此,“人工智能”课程难度应该控制在中级,可以较深入的介绍人工智能的基础算法和应用案例。
中南大学蔡自兴教授积累了多年的教学与科研经验,借鉴了国内外其他专家和作者的最新研究成果,吸取了国内和国外人工智能领域学术书籍的长处,于1987年编写了“人工智能及其应用”一书,该书根据人工智能学科的新发展不断修订,推出四个版本。本课程采用“人工智能及其应用(第4版)”,其中大部分内容适合本科生学习。另外,本课程还给学生提供其他一些参考书目,如N.J.Nilsson 的“Artificial Intelligence:A New Synthesis.Morgan Kanfmann”等经典教材。
3.2 课堂教学形式的探索
“人工智能”课程内容较抽象,概念较为繁多,若采用单一的课堂讲授的方式,学生容易概念混淆、理解不透,逐渐产生厌倦情绪,导致教学效果差。本文探索不同的课堂教学手段,根据不同内容采用不同的教学手段,有利于学生对课程内容的理解与吸收。另外,考虑到航天类的专业特点,突出课程内容的工程应用,增加研究性质的教学内容与形式,有利于培养学生的创新能力和实践能力。
(1)课件采用图文并茂的PPT。综合利用文字、图像、声音、视频等多种媒体表示方法,在介绍原理和概念时采用精辟的文字,介绍算法流程时采用图像,介绍算法应用时采用视频。在PPT中适当利用不同的字体、颜色或动画来突出重点,细化流程,引导学生的思路,便于集中注意力接受重点内容。
(2)适当增加课堂讨论与练习。对于人工智能的一些基本问题,可以引导学生进行调研和讨论,来深化课程内容的了解,并提高学生的学习兴趣;对于重要的算法和理论,可以增加课堂练习,让学生实际动手进行公式的推导或演算,并在练习中分析学生对问题的理解程度,有针对性的增加讲解或指导。
(3)适当采用类比的讲解方式。对人工智能的不同学派,不同方方法,以及方法的不同应用,广泛的采用类比的形式进行讲解,不仅可以复习已学习的内容,也利于对新内容的理解。并且,通过对不同内容的比较总结相似点、区分不同点,可以避免概念的混淆,清晰的掌握课程内容。
(4)增加研究性教学。研究性教学强调通过问题来进行学习,有必要将实际应用案例或者授课教师的科研项目融入日常的教学工作中去,用“启发式”、“案例式”教学激发学生“自主学习”能力。
3.3 课程内容的探索
一方面,鉴于本科生知识结构还不够完善,“人工智能”课程的内容要控制在适应本科生学科基础的中等难度;另一方面,鉴于航天类专业的特点,课程内容应更注重与航天应用相结合的内容,并且在课程中增加具体应用的介绍。具体的课程内容如表1所示。
3.4 考核形式的改革
“人工智能”课程注重学生创新能力和实践能力的培养,传统的试卷形式不能全面的反应学生的学习效果,因此,应采用课堂表现和课程报告相结合的方式进行综合考核。
一方面,重视学生提出问题、分析问题和解决问题的能力,对学生课堂讨论与练习的表现进行考核评分,作为总成绩的参考;另一方面,注重学生课题调研和实践的能力,采取提交课程论文的形式进行考核。正确引导学生根据个人兴趣、课程内容、可行性、实践难度进行合理选题,并根据所选题目进行文献查阅和总结,完成调研报告或算法实现报告。结合者两个方面进行最终成绩的评定,综合衡量学生问题分析能力、论文写作能力和创新实践能力。
4 结语
航天类专业的本科生教学需针对专业特点有的放矢,该专业的课程教育都应该趋向于前沿性、专业性和实用性。本文的“人工智能”课程教学改革方案不仅考虑到该课程属于前沿叉学科的特点,也综合考虑了航天类专业的特点。为了使课程教学更好地服务于学生,本文提出的改革方案打破传统的教学模式,将课堂理论讲解、课堂讨论、课后调研、项目实践等相结合,充分调动学生的学习兴趣和积极性,提高学生的创新能力,有利于培养真正符合航天领域所需要的综合型高级人才。
参考文献
[1] 王甲海,印鉴,凌应标.创新型人工智能教学改革与实践[J].计算机教育,2010(15):136-138,148.
[2] 刘兴林.大学本科人工智能教学改革与实践[J].福建电脑,2010(8):198-199.
[3] 怀丽波.32课时《人工智能基础》课程教学的几点思考[J].华章,2013(34):193-194.
[4] 纪霞,李龙澍.本科人工智能教学研究[J].科教文汇(上旬刊),2013(6):91-92.
[5] 肖春景,李建伏,杨慧.《人工智能》课程教学方法改革的探索与实践[J].现代计算机(专业版),2013(26):32-34.
[6] 熊德兰,李梅莲,鄢靖丰.人工智能中实践教学的探讨[J].宿州学院学报,2008(1):146-148.
[7] 张伟峰.本科高年级人工智能教学的几点思考[J].计算机教育,2009(11):139-141.
人工智能作为一门课程[1],开设时间距今只有40多年,但发展极为迅猛。人工智能课程的内容涉及计算机科学、数学、系统科学、控制科学、信息科学、心理学、电子学、生物学、语言学等等,几乎所有科学工作者都可以在人工智能中找到自己感兴趣的问题。目前,国内外已有众多高校指定人工智能为计算机科学与技术及其相关专业的主修专业基础课程,它在拓展计算机和自动控制的研究和应用领域方面有着极其诱人的学科发展前景。自2003年起,国内诸多高等院校陆续开设“智能科学与技术”本科专业,同时也有更多高校在传统信息类专业中加大了人工智能课程的课时比重,因此如何提高人工智能课程的教学质量显得尤为重要。?
本文结合人工智能课程的特点以及自己教学与研究的实践,对本课程的教学进行一些探讨,以期改进人工智能课程教学方法,达到提高本课程教学质量的目的。??
一、兼顾课程内容的统一性和差异性??
人工智能课程的核心内容主要集中在对基本概念、基本原理、基本方法和重要算法及其应用的认识和理解上,尽管各种基本概念、原理、方法和算法在一定程度上自成体系,但是它们之间又存在着许多内在联系和规律。从这一点来看,人工智能课程与其他很多计算机课程是不同的,这就要求人工智能课程的授课要具有自己的特色。?
知识表示、知识推理、知识应用是人工智能课程的三大内容,解决任何一个人工智能问题都离不开两个步骤,即知识表示和问题求解。由此,人工智能课程从总体结构上就有了一个比较清晰的脉络,即首先必然要学习各种知识表示方法,然后是利用这些知识进行推理,进而实现知识应用,最终达到问题求解的目的。问题求解又分为基本的问题求解方法和高级问题求解方法。图搜索策略、启发式搜索、消解原理以及规则演绎系统等都属于基本的问题求解方法。计算智能、专家系统、机器学习、自动规划等属于高级问题求解方法。?
同时,人工智能课程某些章节或者某些方法算法在一定程度上又自成体系。例如,各种不同的知识表示方法不管是数据结构还是表示形式都完全不相同。又例如,人工智能有许多不同的学派[2],本课程往往同时会介绍不同学派的算法,这些学派在人工智能的基础理论和方法、技术路线等方面是完全不同的,甚至是对立的。?
这些都要求我们在教学过程中不仅要强调人工智能课程理论的统一性和完整性,又要兼顾各学派的特点,尊重甚至调动学生们对不同人工智能学派及其方法的兴趣。在编写和选用教材时也要注重这一点,我们选用的是蔡自兴教授编写的《人工智能及其应用》系列教材[1,2],该教材以逻辑主义学派为主线,兼顾引进其他学派的精华内容,具有较强的科学性。
??二、实施分层次教学??
各高校一般同时为计算机相关专业的本科生和研究生开设了人工智能课程,甚至有的非计算机类专业也开设有人工智能课程。不同层次的学生对人工智能课程要求掌握的程度不同,我们首先明确本科生和研究生以及非计算机类专业学生的教学目的和教学内容,做到分层次设计人工智能课程教学?过程。?
本科阶段的人工智能课程课时量较少,本科层次只需要做到对大部分人工智能概念和算法了解、认识,少部分达到理解层次。本科生一般都是在高年级(三年级下期或者四年级上期)开设人工智能课程,这时已有不少学生准备继续读研或者已经被保研,因此在兼顾全体学生教学层次的同时,要注意给这部分学生足够的相关参考书目,让他们能够利用课余时间广泛深入了解人工智能相关算法,老师在课后还应和他们进行充分讨论,培养他们对人工智能的特别兴趣。?
非计算机类专业的学生往往需要学习如何利用人工智能知识解决该专业领域内的问题,因此在教学中要尽量有专业针对性地进行教学。例如针对农科类专业,在教学专家系统过程中,我们要求学生参考北京农业信息技术研究中心开发的农业专家系统开发平台(paid5?0)理解并开发与本专业领域相关的简易农业专家系统。?
给研究生开设人工智能课程要求做到概念理解,基本算法精通,即要求全面、系统地掌握人工智能的基本概念、基本原理、典型方法和若干应用实例,并且能灵活运用所学知识阐述解决实际问题的方法和途径。课程教学中要致力于培养学生分析问题与解决问题的能力,要求研究生将人工智能方法与自己的研究方向相结合,用人工智能方法解决所研究课题中的实际问题,并撰写相关的课程论文,以小型研讨会的形式进行报告交流。实践证明,我们的研究生的人工智能教学效果明显提升,成效突出。
??三、案例驱动,寓教于乐??
采用案例教学是为了充分调动学生的学习兴趣,增强学生学习的自觉性[3]。通过案例教学能把枯燥的人工智能理论知识具体化、形象化,可以使学生更加感性地理解课堂教学内容。这些案例都是以教师所从事的科研项目中的实际应用环境为背景进行阐述的,让学生能在实际环境中理解概念和知识,学会利用人工智能知识去分析和解决实际问题。在教学过程中要选择学生容易接受的案例,体现理论联系实际的特色,激发学生的兴趣。?
例如,在讲授“计算智能”内容时,我们结合黄河三门峡和小浪底水库水沙联合智能调度系统[4]进行讲解。综合三门峡水库和小浪底水库防洪运用的基本原则、历年调度方案、专家的经验、历年数据和现有的调水调沙数学模型,分别利用模糊决策、神经网络、遗传算法及综合集成方法来实现三门峡、小浪底水库水沙联合调度。?
又例如为了让学生走近机器人,我们进行了一场机器人展示课,将研究所现有的MOROCS?1(中南一号智能移动机器人)、ASR(广茂达)、AmigoBot(自主移动机器人)、CanDroid(罐头机器人)、MD?375 Rover(人控漫游车)、Fokker D7(人控飞机,1:72)、Rockit OWI?769K(声按、压控火牛机器人)、Hexapod Monster(六足爬行机器人)、Hubo(多机能歌舞机器人)等各类机器人全部拿出来给学生做了功能演示[5]。亲眼看到这么多机器人,同学们都非常兴奋,对人工智能课程的兴趣高涨。?
在进行案例教学时,引导学生带着问题和求知欲望深入理论的学习,让学生在案例中寻找问题的答案并获取知识。在讲授利用神经网络进行水库调度时,引导学生分析如何确定神经网络的输入端数据,什么是泛化能力以及如何提高神经网络的泛化能力。?
为了巩固所学内容,可以让学生组成讨论小组对教师提出的论题进行讨论,分小组阐述自己的观点,这样有助于提高学生学习的主动性,还有助于培养学生思考问题的能力和提高理论教学的效果。案例教学的关键在于引导学生利用所学到的理论知识去解释、分析和解决现实案例中的问题,以达到训练学生理论运用和深入理解理论知识的目的。?
此外,我们挑选了机器人足球、拖拉机扑克牌、中国象棋、五子棋等普遍受人喜爱的智能游戏,让学生亲手设计小型智能游戏软件,在设计的过程中掌握高深的人工智能理论知识,让学生学得会、用得上、记得牢。
??四、结语??
以上谈到的一些教学方法是我们在教学过程中总结体会比较深刻的方面,以供探讨。事实上,要进一步提高人工智能课程的教学质量,还有很多方面需要改革和加强。如不断强调人工智能教师的专业素质,要求他们在讲授好人工智能课程的同时,努力提升出自身的专业素质,给学生一个良好的专业素质导向。其次,在人工智能课程教学过程中还需要有培养实用型人才的教学理念,特别是注重培养有创新意识的实用型人才。注重培养学生的质疑能力,只有通过质疑和提出问题,学生的创新意识才能够得到不断强化,创新思维能力才能够得以不断提高。?
人工智能学科是一门非常年轻、又非常前沿的学科,有其自身的突出特点,人工智能课程教学必然与其他计算机专业课程教学不同,需要更多的从事人工智能教学的教师在自身的教学实践中不断积累经验,进行广泛的教学交流。
参考文献?
[1]
蔡自兴, 徐光祐. 人工智能及其应用(第三版)(研究生用书)[M]. 北京: 清华大学出版社, 2004(8): 1-4.?
[2]蔡自兴, 徐光祐. 人工智能及其应用(第三版)(本科生用书)[M]. 北京: 清华大学出版社, 2003(8):288-290.?
[3]雷焕贵, 段云青. 中美案例教学的比较[J]. 教育探索, 2010(6): 150-151.?
1.1集先进性、实用性和前沿性为一体的教学内容改革对国内外优秀的人工智能教材[2-6]的内容进行整合,建立人工智能的知识体系,并提取人工智能课程的知识要点,确定集先进性、实用性和前沿性为一体的教学内容。人工智能的核心思想是研究人类智能活动规律和模拟人类智能行为的理论、方法和技术,因此人工智能应围绕“智能”这个中心。由于智能本身的复杂性,难以用单一的理论与方法来描述,因此可以通过建立人工智能的不同层次来刻画智能这个主题。人工智能的主要内容可按图1所示划分为最底层、抽象层、逻辑层和应用层这4个不同层次。在最底层,神经网络与演化计算辅助感知以及与物理世界的交互。抽象层反映知识在智能中的角色和创建,围绕问题求解对知识进行抽象、表示与理解。逻辑层提出学习、规划、推理、挖掘的模型与方式。应用层构造智能化智能体以及具有一定智能的人工系统。将人工智能划分为这4个层次可确定人工智能课程的教学内容,并保证教学内容的循序渐进。
1.2基于人工智能知识体系的教学案例库建设根据所确定的教学内容、知识重点和知识难点,从国内外经典教材、科研项目、研发设计、生产建设以及国内外人工智能网站等多种途径,收集案例素材,加以整理,撰写各知识要点的教学案例及其内容。表1给出基于人工智能知识体系的教学案例示例。
2人工智能课程教学案例的详细设计
在教学案例具体设计时应包括章节、知识重点、知识难点、案例名称、案例内容、案例分析过程、案例教学手段、思考/讨论内容等案例规范,分别从以下单一案例、一题多解案例和综合应用案例3种情况进行讨论。
2.1单一案例设计以人工智能课程中神经网络课堂教学内容为例,介绍基于知识点的单一案例的设计。神经网络在模式识别、图像处理、组合优化、自动控制、信息处理和机器人学等领域具有广泛的应用,是人工智能课程的主要内容之一。教学内容主要包括介绍人工神经网络的由来、特性、结构、模型和算法,以及神经网络的表示和推理。这些内容是神经网络的基础知识。其重点在于人工神经网络的结构、模型和算法。难点是人工神经网络的结构和算法。从教学要求上,通过对该章节内容的学习,使学生掌握人工神经网络的结构、模型和算法,了解人工神经网络的由来和特性,一般性地了解神经网络的表示和推理方法。采用课件PPT和演示手段,由简单到复杂,在学生掌握人工神经网络的基本原理和方法之后,再讲解反向传播BP算法,然后运用“手写体如何识别”案例,引导学生学习理解人工神经网络的核心思想及其应用方法。从国外教材中整理和设计该案例,同时应包括以下规范内容。章节:神经网络。知识重点:神经网络。知识难点:人工神经网络的结构、表示、学习算法和推理。案例名称:手写体如何识别。案例内容:用训练样本集训练一个神经网络使其推广到先前训练所得结果,正确分类先前未见过的数据。案例分析过程:①训练数字识别神经网络的样本位图;②反向传播BP算法;③神经网络的表示;④使用误差反向传播算法训练的神经网络的泛化能力;⑤一个神经网络训练完毕后,将网络中的权值保存起来供实际应用。案例教学手段:手写体识别的神经网络演示。思考/讨论内容:①训练改进与权值调整改进;②过学习/过拟合现象,即在一个数据集上训练时间过长,导致网络过拟合于训练数据,对未出现过的新数据没有推广性。
2.2一题多解案例设计一题多解案例有助于学生把相关知识点联系起来,形成相互关联的知识网络。以人工智能课程中知识及其表示教学内容为例,介绍一题多解案例的设计。知识及其表示是人工智能课程三大内容(知识表示、知识推理、知识应用)之一。教学内容主要包括知识表示的各种方法。其重点在于状态空间、问题归约、谓词逻辑、语义网络等知识表示方法。难点是知识表示方法的区别及其应用。从教学要求上,通过对该章节内容的学习,使学生掌握利用状态空间法、问题归约法、谓词演算法、语义网络法来描述和解决应用问题,重点掌握几种主要知识表示方法之间的差别,并对如何选择知识表示方法有一般性的了解。通过讲解和讨论“猴子和香蕉问题”案例,来表示抽象概念。该案例从国内外教材中进行整理和设计,同时包括以下规范内容。章节:知识及其表示。知识重点:状态空间法、问题归约法、谓词逻辑法、语义网络法等。知识难点:知识表示方法的区别及其应用。案例名称:分别用状态空间表示法与谓词逻辑法表示猴子和香蕉问题。案例内容:房间内有一只机器猴、一个箱子和一束香蕉。香蕉挂在天花板下方,但猴子的高度不足以碰到它。猴子如何摘到香蕉?如何采用多种知识表示方法表示和求解该问题?案例分析过程:①状态空间法的解题过程。用n元表列表示该问题的状态;定义问题的操作算符;定义初始状态变换为目标状态的操作序列;画出该问题的状态空间图。②谓词逻辑法的解题过程。定义问题的常量;定义问题的谓词;根据问题描述用谓词公式表示问题的初始状态、中间状态和目标状态。案例教学手段:猴子和香蕉问题的演示。思考/讨论内容:①选择知识表示方法时,应考虑哪些主要因素?②如何综合运用多种知识表示方法获得最有效的问题解决方案?
2.3综合应用案例设计与单一案例、一题多解案例相比,综合应用案例能更加有效地启发学生全方位地思考和探索问题的解决方法。以机器人行动规划模拟为例,介绍人工智能综合应用案例的设计,该案例包括以下规范内容。章节:人工智能综合应用。知识重点:人工智能的研究方向和应用领域。知识难点:人工智能的技术集成。案例名称:机器人行动规划模拟。案例内容:综合应用行为规划、知识表示方法、机器人学、神经网络、人工智能语言等多种人工智能技术与方法,对机器人行动规划问题进行描述和可视化。案例分析过程:①机器人行为规划问题求解。采用状态归约法与分层规划技术,将机器人须完成的总任务分解为若干依序排列的子任务;依据任务进程,确定若干关键性的中间状态,将状态对应为进程子规划的目标;确定规划的执行与操作控制,以及机器人过程控制与环境约束。②基于谓词逻辑表示的机器人行为规划设计。定义表达状态的谓词逻辑;用谓词逻辑描述问题的初始状态、问题的目标状态以及机器人行动规划过程的中间状态;定义操作的约束条件和行为动作。③机器人控制系统。定义机器人平台的控制体系结构,包括反应式控制、包容结构以及其他控制系统等。④基于神经网络的模式识别。采用神经网络方法以及BP算法对桌面茶壶、杯子等物体进行识别,提取物体图形特征。⑤机器人程序设计语言。运用人工智能语言实现机器人行动规划行为的可视化。案例教学手段:机器人行动规划的模拟演示。思考/讨论内容:人工智能将会怎样发展?应该在哪些方面进一步开展研究?
3案例教学环节和过程的具体实施细节
人工智能案例教学的实施面向笔者所在学院软件工程专业三年级本科生展开。具体实施细节如下。(1)教学内容的先进性、实用性和前沿性。引进和整合国外著名人工智能教材内容,保证课程内容具有先进性。同时将前沿人工智能的研究成果与技术有机地融入课程案例教学之中。(2)案例教学的创新教学模式。在教师的引导下,将案例中涉及的人工智能内容推广到对人工智能的一般性认识。案例的教学过程,成为认识人工智能、初步运用人工智能的理论与方法分析和解决实际应用问题的过程,使学生具备运用人工智能知识解决实际问题的意识和初步能力。在课程教学中,打破国内常规教学方式,建立和实施开放式案例教学模式。采用动画课件、录像教学、实物演示、网络教学等多种多媒体教学手段,以及集中讲授与专题讨论相结合的教学方式将理论、方法、技术、算法以及实现有机结合,感性认识与理性认识相结合,理论与实际相结合,极大地激发学生自主和创新性学习的热情。(3)“课堂教学—实践活动—现实应用”的有机融合。在案例教学过程中,从传统教学观以学会为中心转化为创新应用型教学观以创新为中心,以及从传统教学的以课堂教学为中心转化为以课堂教学与实践活动并重为中心,构造具体问题场景以及设计教学案例在情境中的现实应用,加深学生对教学内容的理解,同时提高学生的思考能力和实际综合应用能力。
4结语
关键词:人工智能;专家系统;ARM;单片机
人工智能(AI)[1]是计算机科学的重要分支,是计算机科学与技术专业的核心课程之一。本课程在介绍人工智能的基本概念、基本方法的基础上,主要是研究如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的“智能”,本课程重点阐明这些方法的一般性原理和基本思想,使得计算机更好得为人类服务。
1人工智能课程体系
人工智能主要研究传统人工智能的知识表示方法,包括状态空间法、问题归约法谓词逻辑法、语义网络法、框架表示、剧本表示等;搜索推理技术主要包括盲目搜索、启发式搜索、消解原理、规则演绎算法和产生式系统等。
人工智能的研究论题包括计算机视觉、规划与行动、多Agent系统、语音识别、自动语言理解、专家系统和机器学习等。这些研究论题的基础是通用和专用的知识表示和推理机制、问题求解和搜索算法,以及计算智能技术等。
人工智能课程在我校计算机科学与工程学院是作为大三年级的一门专业选修课开设,总共学时数为:60(其中理论学时为36,实验学时为24),随着计算机技术的不断更新发展,人工智能的应用领域变得越来越广,因此人工智能(AI)这个学科已不再陌生,很多学生对其充满兴趣,所以在选课人数上远远超过其他选修课的人数,另外结合我校的实际情况,部分理论或实验设计项目可以与其他相关专业结合起来而应用。
2人工智能教学实践
50多年以来,人工智能获得很大的发展,已经引起众多学科和不同专业背景学者们的日益重视,成为一门广泛的交叉和前沿科学,但是到目前为止人工智能至今仍尚无统一的定义,要给人工智能下一个准确、科学和严谨的定义也是困难的。
由于人工智能[2]是一门交叉性的学科,涉及到了控制论、语言学、信息论、神经生理学、心理学、数学、哲学等许多学科。所以该学科具有知识点多、涉及面广、内容抽象、不易理解、理论性强、需要较好的数学基础和较强的逻辑思维能力等特点,导致了在教学过程中老师讲得吃力、学生听得吃力。尽管在多年的教学过程中积累了一些经验,但是对于如何把握这门课程的特点,提高学生的学习兴趣,帮助学生更好的理解这门课程,目前仍然有很多问题需要研究解决。
目前在整个教学过程中存在的主要问题[3]是:
1) 教学内容陈旧,部分参考书相关内容或案例都过于陈旧。在整个教学过程中,多数教学案例涉及到人工智能理论的高级应用――机器人,目前在国际及国内机器人的水平已经达到相当高的水平,但是部分教科书中仍沿用关节型机器人为例,教学内容稍显陈旧。
2) 教材难易程度不均匀,部分章节学生难以理解。由于人工智能课程的部分章节,本身就可以独立成一门课程,但由于是面向本科生的内容,因此很多内容压缩于一章来讲解,同时由于课时所限,完全不能将相关的内容讲透讲通;例如:神经计算中的神经网络,与模糊逻辑控制的相关理论与应用。
3) 教学手段单一,教学过程中缺乏师生之间的沟通与交流。经过自己的实践教学及对兄弟院校的人工智能的教学内容与教学手段的调研,同时也在学生之间进行沟通交流,发现多数同学反映,理论与应用虽然前沿,但是在学习过程中,教师教学手段单一,内容枯燥乏味,一般的教学模式,多采用“老师讲,学生听”的方法,整个教学效果并不理想。
4) 考核方法不科学,不能体现学生实际的学习情况。目前对于课程学习的考核采用闭卷考试的方式,很多考点有的同学根本不理解,完全死记硬背,考后又将内容丢弃,从学习的效果来讲,收获甚微且完全没有达到真正学习及应用的能力。
3教学方法改进
3.1注重激发学生的学习兴趣
科学家爱因斯坦曾说过:“兴趣是最好的老师。”如何在教学工作中激发和培养学生的学习兴趣,提高他们学习的主动性和积极性是当前教学改革中迫切需要解决的重要问题。
在实际的课堂教学中发现,刚开始听课由于有兴趣学生整体学习的积极性很高,但是一段时间过后发现部分学生由于教学内容抽象,难点比较多,不便于理解,兴趣日渐变少,针对此种情况,可以采用任务驱动式教学或案例教学。
例如:在讲专家系统章节时,在授课之前先通过互联网,采取案例教学法,给学生们实时在线演示一个医疗专家诊断系统,演示其中的功能,同时与学生互动,以问答式与学生互动,了解目前专家系统的具体应用、可以解决的问题、给人民生活带来的益处等。通过这种教学的形式,一方面可以激发学生的学习兴趣;另一方面也使同学们体会到人工智能与我们生活的贴近程度。第二步,采用任务驱动法,具体来说,它是指教学全过程中,以医疗专家诊断系统若干个具体任务为中心,通过完成任务的过程,介绍和学习基本知识和具体设计方法。
3.2注重教材选择
这一任务的执行者主要是由教研室主任或任课老师来完成。目前在各高校中所使用的人工智能相关教材的种类繁多,章节和内容的设置上也存在差别。笔者在订阅教材或参加教材展销的活动中,都比较重视人工智能教材的情况,通过比较发现,有的教材内容及难度太低,完全不符合高等本科院校的要求,而部分出版社的教材则是内容及章节安排内容太多太泛,有些知识点讲的又过于深奥,限于学时所限也不适合选用。在选教材方面,除了关注内容方面外,还要注重书上所讲的一些实例,注重这些例子的典型性、时效性及新颖性,例如,部分教材在自动规划这一章,选用机械手作为例子来说明积木世界的机器人规划问题,还有一些选择关节机器人,前些年这样的机器人技术确实是个难点,但是依据现在成熟的机器人技术,无论是国际还是国内都已不再是技术难点,再拿这个例子去配合理论去讲解,无论内容还是形式都稍显陈旧,目前机器人技术发展水平基本上达到尽可能高仿真状态。
3.3运用现代化的多媒体教学手段
针对人工智能课程相关内容比较抽象,公式推导比较繁琐,除了具有完善的教学大纲、合理的教学计划以及好的教材外,还应该根据学校的实际硬件条件尽可能地选择多媒体教学手段来辅助教学。因此在实践教学中,配合教学内容,充分利用计算机、投影仪以及互联网的优势,结合多种教学方法与手段组织整个教学过程。例如:在讲述搜索推理技术时,使用一些小的演示软件,将相关推理技术的理论通过动画的形式一步一步演示出来;在讲专家系统相关理论知识时,尤其是各种类型的专家系统,采用互联网上的一些在线视频资源为例,给同学进行详细讲解,同时结合农业院校的特点,在线资源有如农业专家系统或动物专家诊断系统等,这样学生可以加强对理论知识的理解,同时也体会到理论不再是抽象空洞的文字描述;在自动规划这一章,给同学们选择演示发达国家目前研制的各种类型机器人,通过这些形象生动、行为举止逼近真实人的机器人来给学生讲理论,这样学生通过观看视频资源,不仅可以拓宽知识面及视野,同时也可以及时地了解国际及国内机器人的发展水平及差距,不断更正自己的错误观点并更新自己新的专业认识,另一个方面也可以同时激发学生们的学习热情和积极性,这一点在课堂实践教学中得到验证,得到广大同学的认可和接受,整个教学课堂不再那么单调枯燥呆板了,基本可以达到在娱乐中传授专业知识。
3.4加强对实验教学的重视
目前高校在人工智能的教学过程中,实验所占的学时比较少,有的甚至就不安排实验课学时;另外实验内容也相对比较简单,应用不到理论课堂上所学到的人工智能原理,实验效果不是很好。面向人工智能课程的程序设计语言,多采用Prolog程序设计语言,该语言是一种基于一阶谓词的逻辑程序设计语言,它在AI和知识库的实现技术方面具有十分重要的作用,具有表达力强、表示方便、便于理解、语法简单等优点。但在整个实验教学环境也遇到了如下问题:首先是目前有关人工智能的专门配套实验教程很少;其次是即使有诸如《面向人工智能程序设计Prolog》教程,则主要是侧重介绍这门自然语言的程序设计,而其中很多部分与AI实验环节关联度不大,另外教材价位也比较高。针对此种情况,笔者在24个学时的实验教学过程中,安排7个实验内容,其中最后一个专家系统的设计与实现作为一个综合性实验来设计。在进行实验教学的过程中,首先参考多本Prolog程序设计教程,选择其中与实验教学计划中相关的内容,专门编写相应的电子教程,同时也结合我校学生本身的特点[4],有侧重地体现和编写,总的目的是给学生一份完整的、系统的、规范的电子教程。这样做的目的是:一方面作为学生参考的技术文档;另一方面也可以节省学生的部分经济开支。电子教程的结构分为三个部分来完成,首先为人工智能理论及原理,Prolog语言的使用说明;其次具体的例子演示(均经过调试正常运行);最后为布置给学生具体的实验内容及相关题目,以提供给学生自己动手实践的机会。此外在实验教学过程中,同时也会给学生们自由发挥的机会,比如专家系统的设计与实现作为一个综合性实验,学生可以采用Prolog编程实现,也可以采用其他自己擅长的程序设计语言,例如有的同学选择C语言、VC++、Visual Basic、Java及网页开发设计语言ASP/JSP等,此外在实验内容方面,实验递交的专家系统涉及多个领域(有动物辨别、医疗诊断、动物养殖咨询等专家系统)、范围也颇广,实验内容重复性很小,在设计过程中,绝大部分同学均是结合自己的兴趣爱好来完成设计。
4结语
人工智能的研究成果将能够创造出更多、更高级的智能“制品”,并使之在越来越多的领域超越人类智能,同时将为发展国民经济和改善人类生活做出更大的贡献。作为一名当代的大学生有必要学好这门课程,但是根据实际教学情况,教师与学生仍然需要继续进行相应的研究与发展,只有不断地探索和提高,才能使我们的教学工作更上一层楼,才能培养出符合时代和社会需求的人才。另外人工智能与农业等方面存在很多结合应用的契机,这样计算机就可真正地服务于社会、服务于人类、服务于农业、应用于农业、发展农业。
参考文献:
[1] 蔡自兴. 人工智能及其应用[M]. 3版. 北京:清华大学出版社,2007.
[2] 陈峰,文运平. 浅谈人工智能课程的教学[J]. 消费导刊,2006(12):123.
[3] 赵蔓,何千舟. 面向21世纪的人工智能课程的教学思考[J]. 沈阳教育学院学报,2004,6(4):131-132.
[4] 王莲芝. 高等农林院校人工智能教学的探讨[J]. 高等农业教育,2003(12):64-65
Study of the Artificial Intelligence Teaching Methods
HAN Jie-qiong1, YU Yong-quan2
(1. School of Computer Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
2. School of Computer, Guangdong University of Technology, Guangzhou 510075, China)
关键词:中西合璧;人工智能;双语教学
双语教学是我国高等教育适应国际化趋势、培养富有创新精神和国际视野的复合型高素质人才的需要。作为一种全新的教学方式,它承接了中外文化的碰撞和融合[1]。各校在教学过程中都遇到了各种困难,也探索了不少经验。自2005年秋季,我校在人工智能课程中采用双语授课,在教学实践中摸索出一套中西合璧的双语教学模式,将中西方的优势有效结合起来,比较适用于工科专业课程的双语教学。
1中西合璧的双语教材
教材是体现教学内容的知识载体,是教师和学生进行教学活动的基本工具。我们重点调查了MIT、Stanford和CMU等国外高校,他们均选用了Stuart J. Russell和Peter Norvig合著的《Artificial Intelligence: A Modern Approach》,该教材几乎涵盖了CC2001关于人工智能课程的全部内容。该书网站(aima.cs. berkeley.edu/)的统计数据显示,目前已有100多个国家的1 100多所大学选用该书作为教材。我们对选用该教材的部分高校授课情况作了追踪调查,结果表明绝大部分人工智能课程的实际授课内容都与该教材内容基本一致。在国内,中南大学的人工智能课程是国家级精品课程,教材是课程负责人蔡自兴教授与徐光佑教授主编、清华大学出版社出版的《人工智能及其应用》(第三版)(该教材分本科生用书和研究生用书两种版本),与其课程内容设置完全配套。
我校选用了《Artificial Intelligence: A Modern Approach(2nd)》一书,清华大学出版社出版了影印版(人民邮电出版社出版了中译文版本),同时将Nils J. Nilsson著的《Artificial Intelligence: A New Synthesis》作为辅助教材,机械工业出版社出版了英文影印版及中译文版本。
人工智能这一学科诞生于西方,目前该领域的诸多成果和文献均以英文为语言载体。选用英文原版教材、推行双语教学,为学生的后续学习和研究深造奠定了良好基础。另外,与国内教材相比,国外教材更注重知识产生的过程、解决问题的思维方法,对提高学生的学习兴趣、培养学生的创新能力极其有益。另一方面,选用原版教材的问题也显而易见。一是原版教材内容过多,需要精心筛选、分清主次后才能使用;二是原版教材昂贵,增加了学生的经济负担,再购买配套中译文版,负担更重;三是学生英语水平参差不齐,双语授课的课程还不成体系,前后课程缺乏衔接性和延续性,学生直接使用原版教材有一定的语言障碍,即使有配套的中译文版,同时翻看两本书也不方便。
我们正在逐步消化吸收英文原版教材,在无损原版教材思想精髓的前提下,自主编写适用于双语教学的中西合璧讲义。双语教材以英文语言为主,以中文注释为辅,有效降低学生阅读的难度,更趋实用。
2中西合璧的授课语言
语言是信息传递的载体,是教学过程中必不可少的工具。双语教学涉及到这种信息传递载体的改变。
在双语教学中,外语的使用比例要求不低于50%,这是不够科学的。双语教学不是语言课,教学质量依然是核心,语言仅仅是载体,引入外语教学的目的无非是为了保证知识的“原汁原味”,同时训练学生的专业外语听说能力,但这一切都应以学生听懂课为前提。双语授课进度慢已是不争的事实,更有些双语教师,为了兼顾上述目的,先用外语讲一遍,再用汉语解释一遍,这种做法极不可取,也是紧张的课时限制所不允许的。双语课味同嚼蜡,引不起学生兴趣,也是普遍存在的现象。
我校人工智能课程的授课对象是计算机专业的四年级本科生,学生的英语水平很不均衡,如果不考虑实际情况,大比例地采用英语讲授,是难以保证教学效果的。我们把握的原则是:1)英语主要用于讲解专业性内容,如专业术语、技术原理、算法等,这样学生在学术交流中就不会对专业技术内容存在语言障碍;2)只用学生能听懂的语言讲授专业性内容,对过于生涩的专业技术内容,还要使用汉语讲解,这样学生就不会把专业技术内容学“夹生”了,在作研究时才不会有技术上的障碍;3)用母语调节课堂气氛,适当穿插的人工智能领域人物、故事及笑话以汉语为主,把学生发散的注意力快速集中起来,把学生的学习兴趣激发出来;4)中英文衔接,不重复表述,这样就不会额外占用课时。
例如,在讲解Agent技术时,对于Agent的定义、结构等核心内容,我们采用英语讲解;而对于Agent涉及到的心理学、逻辑学等方面的生涩理论,则用汉语给出扼要的说明;对于为阐释Agent的rationality概念而举的吸尘机器人、黑足泥蜂搬运食物的例子,则主要用汉语讲解,激发学生的兴趣,抓住学生的注意力。
3中西合璧的教学课件
作为一种新型的教学手段,多媒体以其鲜明的图像、生动的画面、灵活多变的动画及声音效果克服了传统教学模式的诸多不足,受到师生的认可与好评[2]。本文探讨的重点不是如何设计媒体的表现形式,而是如何利用课件更好地发挥双语教学的效果。很多双语教学任课教师只注重追求授课过程中外语的使用比例,课件全文用外语制作,在讲解过程中还要费尽周折地解释,收效甚微。我们在制作课件时,不单纯追求英语比例,而是想方设法让课件能更好地辅助学生理解,在关键处均用双语同步给出内容,或者以英文为主,给出扼要的中文注释。这样,学生能够通过视觉信息更好地理解授课内容,而教师也不必再用中英文重复叙述。
此外,在课件素材的选取上,也应注意国内外结合。比如,在讲解启发式搜索技术时,国外课件(包括教材)常用的素材是八皇后、八数码等问题,其中八皇后问题相对大多数同学来讲比较陌生,而国内的重排九宫(与八数码问题是一个问题)、华容道等问题对学生来讲则更熟悉。用国内的素材入门、用国外的素材拓宽视野,也是多媒体课件的中西合璧之道。
4中西合璧的文化熏陶
文化是生活在一定地域内的人们的思想、信念及生活与行为方式的总称。从人才培养的角度,我们一般将培养目标分为知识、能力和素质三个层面,文化属素质培养范畴。文化的熏陶和感染在育人中具有重要作用,这一点往往容易被工科专业课教师忽略。
从历史文化的角度看,中西方文化从萌芽、发展到现在的格局,无疑是各具特色的。双语教学提供了开放的空间,让学生在学习的同时广泛吸纳西方文化,但这也给中国传统文化造成了一定的冲击,如不注意调和,势必造成文化失衡,对培养学生的世界观、人生观、价值观都不利。尤其计算机类课程中的技术内容大部分诞生于西方,如果不在教学过程中进行一种文化平衡,往往会使学生产生一种我不如人的自卑心理或崇洋心理。
中西方文化对人与自然的基本观点是不同的。中国文化关注的对象是人,人与人的关系自先秦时期便成为中国文化的核心与基础问题。而西方文化较多关注的是自然,人与自然的关系是古希腊注重的中心问题,由此衍生出理智和科技。中国的哲学是一种人生哲学,在处理人与自然的关系上,中国文化讲究天人合一、顺天应物、道法自然。把自然人格化,追求人与自然和谐发展。从古希腊泰勒斯的自然哲学开始,探索自然奥秘,开发和利用自然资源为人类服务就成为了欧洲思想的主流。西方科学起源于对自然的探索和研究,很早就出现了毕达哥拉斯、阿基米得这样名垂千古的科学家。在人与自然的关系上,西方文化认为人与自然处于对立的斗争状态。西方人也讲人与人之间的关系,但首先关注的不是伦理而是竞争,因而出现了“优胜劣汰”的规律[3]。
在工科专业课堂上,涉及到文化要素的主要是两方面内容,一是与课程技术内容有关的哲学观点,二是本学科发展历程中的人物、事件和形成的学派等等。在教学过程中,教师要注意穿插上述内容,对学生进行文化熏陶,要注意中西合璧。比如,介绍人工智能发展过程中的重要人物时,必然提及Turing、McCarthy、Minsky、Shannoon、Simon、Newell、Feigenbaum、Hopfield、Brooks等西方学者,但同样也不能忽略国内的吴文俊、王守觉、蔡文等学者,他们近年分别在机器定理证明、仿生模式识别、可拓学等领域取得了开创性成果,而这些还没有来得及写进人工智能教科书。
5中西合璧的思维方式
对学生思维方式的培养也是教学任务之一。中西方文化的差异也将导致思维方式的不同。在技术思维方面,中国强调系统和整体,更具辩证性;而西方强调细节和局部,更注重逻辑性。西方人的思维方法更偏于二元对立,而中国文化环境则造就了中国人思维方式的连续统合特征[4]。外文教材的编写体例与中文教材有着明显的不同,这就是中西方思维方式不同的原因。教师首先要注意到这种思维方式的差异,并在教学活动中让学生也逐步意识到这种差异,并进一步接纳和学会西方的思维方式,将中西方的思维方式融于一身。举例来说,在讲解逻辑推理技术时,可以通过介绍逻辑学的三大起源(古希腊的形式逻辑、古印度的因明学、我国先秦时期的名辩学)向学生呈现这种思维方式的差异,在讲解演绎推理、模糊推理、云推理时,也要注意体现中西方思维方式中各自的特长,以利于学生吸纳。
6结语
自2005年开展双语教学以来,我们每年授课后都进行一次教学效果的问卷调查,“接受双语教学”的学生比例从2005年的37%逐年上升到2009年的89%,说明这套双语教学模式已经得到了绝大多数学生的认可。
中西合璧的双语教学模式是我们在人工智能教学过程中探索出来的,但是也可以推广到其他工科专业课中。双语教学中各种要素的中西合璧不是简单相加,而是要结合专业内容进行深度融合,这需要任课教师广泛涉猎、精心加工、用心引导。双语教学不能停留在语言形式和技术内容层面上,还要上升到文化和思维层面。
注:本论文受到哈尔滨工程大学教学改革工程项目支持。
参考文献:
[1] 施锦芳. 高校双语教学模式及方法的研究与实践[J]. 沈阳教育学院学报,2010,12(2):33-35.
[2] 周荃,胡奕. 多媒体教学:传统教学手段的历史性转型[J]. 广州市经济管理干部学院学报,2006,8(2):69-71.
[3] 邓绍建. 中西方文化差异研究[J]. 价值工程,2010(5):220-221.
[4] 马丽,滕修攀. 中西方思维方式的文化差异研究:二元对立与连续统合的视角[J]. 社会心理科学,2010,25(2):13-17.
Sino-west Style Bilingual Teaching Mode for Artificial Intelligence
LIU Hai-bo, SHEN Jing, ZHANG Guo-yin, LIU Jie
(College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China)
关键词:人工智能;研究型实验教学;民族关系
人工智能是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,对它的研究涉及控制论、信息论、系统论、语言学、神经生理学、数学、哲学等诸多的学科及领域,是一门综合性的交叉学科[1]。
人工智能的研究、应用和发展,在一定程度上代表着信息技术的发展方向,同时信息技术的广泛应用也对人工智能技术的发展提出了迫切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响[2]。
实践教学环节在大学教育中是一个非常重要的教学环节,是提高人才素质与能力的重要途径。人工智能课程除了具有较强的专业性之外,还具有突出的实践性,为了能深入理解和掌握所学内容,必须把讲授和实践结合起来。本文结合该课程实验教学,将研究型教学的理念引入到实验教学,并对教学过程中的经验和问题加以初步的总结。
1研究型教学模式背景
研究型教学是相对于以单向性知识传授为主的传统教学提出的,是指教师以课程内容和学生的学识积累为基础,引导学生创造性地运用知识和能力,自主地发现问题、研究问题和解决问题,在研究中积累知识、培养能力和锻炼思维的新型教学模式。研究性教学是对现有的大学课堂教学模式的突破。有利于开发大学生的创造潜能,提高学生适应社会需要的创造性和创新能力,充分展现现代大学培养人才、发展科学、服务社会的三大基本职能[3]。
19世纪初,德国著名教育家洪堡最早提出了教学与科研相统一的原则,为研究型教学模式的发展奠定了基础。20世纪50、60年代,美国著名教育心理学家布鲁纳提出了著名的“发现教学模式”[4],成为后来探究性学习和研究型教学的先导。20世纪70年代,美国研究教学专家萨奇曼正式提出了研究训练教学模式。他认为学生会本能地对周围新奇事物发生兴趣,并想方设法弄清这些新奇事物背后究竟发生了什么,这是一种进行科学研究的可贵的动力。
自此,研究型教学理念开始广泛使用。现在,哈佛大学、牛津大学、剑桥大学等世界著名大学,都非常注重学生能力的培养,普遍采取了研究型教学模式。以美国高校为例,虽然美国高校83%的教师在课堂教学中主要采用讲授法进行教学,但在整个教学过程中都渗透着研究型教学的方法,如积极引导学生参与教学过程,开设研究性课程,引导学生积极主动地参与科研活动等。我国自20世纪90年代初推出211工程建设以来,清华大学、北京大学、人民大学、复旦大学、浙江大学等一些重点大学都提出了建设世界一流的综合性研究型大学的目标。这些高校在实现从单向知识传授的传统型教学向关注创新性教育的研究型教学转变方面进行了许多有益的尝试。
2研究型实验教学
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。大学是培养未来一线创新人才的主要基地,必须从本科教学人手,深入探索研究型教学的手段和方法,才能满足未来经济增长和社会发展的需要,才能符合建设研究型大学的需要。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。
人工智能课程在计算机专业人才培养方案中占据着重要的位置。在专业理论方面,它承续了离散数学中的逻辑知识;在专业方法方面,是数据结构、算法分析与设计的继续;在专业工具方面,是面向对象程序设计的生动实例。并且人工智能的每一部分内容都可以作为一个深入的研究课题,课堂上讲解的内容不可能面面俱到,学生们也不可能对人工智能的每一领域都做很深入的学习。并且人工智能涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,学生往往被动“听讲”,难以获得预期的教学效果。
针对这一特点,在人工智能教学中,如何引导学生系统学习人工智能的知识、激发学生的研究兴趣,树立目标意识找准研究方向,为未来的科研工作打下基础,研究型实验教学就成为了人工智能课程教学的一个重要环节和必然选择。
2.1实验教学中加强学生的研究导向
在实验教学中,如果照搬一些教材中的例子或习题教学,一方面学生们会缺乏兴趣,另一方面学生对这个领域的知识缺乏全面的了解。应不断提出一些学生们感兴趣的开放性课题,比如基于支持向量机的人脸识别、基于肤色的人脸检测,基于内容的图像检索等,培养学生们的学习兴趣,让学生们逐渐深入的学习某一领域的知识。比如BP神经网络,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用,是一种具有强大的非线性学习能力的计算智能技术。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等,而支持向量机在这些方面具有显著优点。我们可以设计一个人脸识别的实验,用神经网络和支持向量机分别实现,并作以比较。让学生们在了解人工智能新技术的同时,也培养学生们如何分析问题、解决问题的科研能力。
2.2人工智能课程实验
该课程是一门对实验技术有较高要求的课程,对于基本原理和方法的实现,要求学生进行严格的计算机专业技能训练和培养良好的科研工作作风。因此对课程中的技能及技术性内容,除单独进行必要的基础训练外,还融入到综合和研究型试验中,通过多次反复实验练习,达到牢固掌握人工智能原理和人工智能的问题求解技术的目的。
该课程的实践环节主要是实践项目,由具备较强工程实践能力的任课教师和助教负责,学生可在全天候开放的专用机房完成。在实践环节的设计上,我们尝试把验证性实验和开发性实验相结合,结合实验教学进度,安排相应的开放实验,开放性实验以科学研究实验为主。并在课程的教学过程中,不断深化和扩展教学内容,结合人工智能学科的发展趋势和本院老师的最新研究成果,对实验内容进行更新。
课程主要设置三种层次的实验:1)基本原理和算法编程,测试例设计及程序测试实验;2)分析综合实验;3)研究型设计实验。整个实验包括课前讨论、实验操作、实验报告、结果讨论、总结提高等六个环节。对于综合性和研究型实验,把学生分成5个人一小组,每小组选做其中的一个。学生从指导老师处了解到实验课题后,即着手查资料,研读文献,钻研有关理论。在此基础上,学生先提出实验方案,经与老师讨论后,即可开始实验研究。
3实验平台的构建
民族关系问题对被访对象,特别对少数民族被访对象是非常敏感的问题,对民族关系的评价又存在个体层面、群体层面、不同阶层人群之间的差异,因此,仅仅以传统的文献分析、问卷统计和现场观察等民族学方法来进行调查,得到的数据会存在较多误差。
因此结合本校的民族特色和民族学领域独特的研究优势,将信息认知技术引入民族关系研究,运用图像、心电和脑电数据进行分析,将分析的结果和心理场景测试及民族学调查结果进行相互印证和参数修正,从而获得尽可能客观的数据,这些数据将有助于建立一个客观、完备、科学的民族关系监测体系,并真实全面地评估民族关系,从而使决策机构及时做出正确的决策。基于多信息融合的民族关系监测预警系统总体框图如图1所示。
目前该平台已经搭建,由北京市公共安全信息监测平台建设、北京市公共安全信息监测平台建设关键技术研究、基于多源信息融合的民族信任研究等多个重大项目支撑。在这个平台的下面,涉及到人脸识别、表情识别,视频监控、认识等领域,小波分析、神经网络、支持向量机、模糊数学、信息融合等人工智能知识得到了具体的应用。学生可以根据自己的兴趣爱好,自愿参加到该平台下的某一项目,切实对自己所学知识有一个深刻的理解和掌握。
4结语
研究型实验教学激发了学生的学习兴趣,不但使学生更好地掌握了人工智能的基本概念、基本理论和基本技术,也切实提高了学生的实际动手能力和编程能力。研究型实验教学在实践过程中还有以下问题需要改进:
1) 研究型实验教学的理念很难普及。很多教师对研究型教学模式的内涵未能准确把握,把研究型教学模式等同于学生实习或者写论文。
2) 研究型实验教学的辅导老师素养需要提高。研究型实验教学作为体现创新教育要求的现代教学模式,需要的不是知识传授型的教师,而是高素质的研究型教师。教师不仅是单一的教者,更应该成为一个学者,教师不仅要有研究型教学的教育观念、快速接受新知识的能力和高超的教学技能,要能够合理地规划和设计实验内容。
3) 需要建立一套合理的学生学业和教师绩效的评价体系。
参考文献:
[1] 王万森. 人工智能原理及其应用[M]. 北京:电子工业出版社,2007.
[2] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2004.
[3] 李得伟,张超,李海鹰. 大学工科专业课程实施研究型教学的探讨[J]. 高等教育研究,2009(9):74-75.
[4] 彭先桃.大学研究性教学的理念探析[J].教育导刊,2008(3):56-58.
Exploration and Practice of the Research Experiment on Artificial Intelligence
ZHANG Ting, YANG Guo-sheng
(College of Information Engineering, Minzu University of China, Beijing 100081, China)
王湘浩(1915.5.5-1993.5.4),河北省安平县人。其父王桂山,靠耕田卖药为生,在村里免费行医;时常鼓励王湘浩读书,希望他将来做个教师。叔父早年毕业于天津北洋大学。在父亲和叔父的影响下,1931年王湘浩初中毕业后,考取了北洋工学院附属高中。王湘浩自小喜欢数学,小学和中学数学成绩一直很突出。1933年高中毕业,考取了北京大学算学系(数学系)。
王湘浩在北京大学数学系学习,如鱼得水,才能得到充分发挥,成绩遥遥领先,是著名数学家江泽涵教授的高足。在三四年级时他获得了最高奖学金。
1937年,王湘浩在北京大学数学系毕业时恰值爆发,北京大学南迁。王湘浩在西南联合大学当了助教,1939年成为江泽涵教授的研究生,专攻拓扑学,1941年毕业,担任西南联合大学讲师。1946年夏,他到美国普林斯顿大学,在著名代数学家E・阿廷指导下攻读学位,1947年夏取得硕士学位,1949年春又取得博士学位,其博士论文《关于格伦瓦尔德定理》纠正了格伦瓦尔德定理的错误,将该定理做了推广,重新证明了迪克森猜想。他的这项工作一直享誉代数学界。
1949年6月,王湘浩启程回国,在母校北京大学数学系任副教授,1950年晋升教授。1952年院系调整时,他到东北人民大学(后改名为吉林大学)数学系任系主任。1955年他被选为中国科学院学部委员(院士),年仅40岁。
1958年,王湘浩以其敏锐的洞察力,率先认识到开拓计算机科学研究的重大意义,毅然从代数方向转向计算机科学方向,创建了控制论专业,开展了计算机理论研究,使吉林大学成为国内最早开展计算机科学研究的单位之一。
20世纪60年代,王湘浩在“多值逻辑”和“自动机理论”两方面取得了具有国际先进水平的研究成果。
在那个被扭曲了的岁月中,王湘浩作为学术权威,遭受到了不公正待遇。而且还被莫须有地说成是员,被强制去住“牛棚”,遭受了严重的摧残。“”被粉碎后,王湘浩又振作起来,投身于他所热爱的教学和科研工作。那时,他虽然已经年过花甲,但仍然承担起吉林大学副校长的工作,承担起刚刚开始的博士生导师的重任。
1977年,王湘浩在国内最早提出要开展人工智能的研究,并于1980年受教育部委托,在吉林大学举办了全国性的人工智能讨论班,随之成立了全国高校人工智能研究会。王湘浩在定理机器证明的归结方法上做出了研究成果。1982年王湘浩和他的学生研究了归结方法中的取因子问题并提出了广义归结方法。
王湘浩很早就指出,越是有成就的教授,越要上基础课,为低年级学生上课。这是他从自己的成长道路获得的一个启示。他不仅坚持这一观点,而且身体力行,率先垂范。他的一个学生回忆道:“1957年,当我刚进入吉林大学数学系时,就是王湘浩教授为我们主讲数学分析课和高等代数课。名教授的点拨与教诲,对于我掌握这些课程,包括培养科学的治学态度,培养分析问题和解决问题的能力,都具有极其重要的作用。他不仅亲自为我们讲课,连讲课的讲义也是他亲自编写的。”这就是1960年代全国高校的通用教材《高等代数》和《离散数学》等。
此后,王湘浩教授仍坚持为低年级学生上课,几乎每年入学的一年级学生的高等代数,都由王湘浩教授主讲。正是这样的传统,使得吉林大学数学系的学生,不仅受到严格的训练,而且学者们严谨的治学态度、德艺双馨的人格魅力,成为学子们在大学期间乃至以后人生受用不尽的精神食粮。
王湘浩教授讲课,清晰、简练、明快、逻辑性极强。他善于抓住事物本质,并且引导你一下子就去研究问题的要害。这也就特别有益于学习他分析问题和解决问题的能力。他这样做时,自己也特别投入,往往是把精力全部集中于引导学生积极探索和深入思考之中。因此,有几次,当他一手拿粉笔,一手拿香烟时,他竞在不知不觉中,把粉笔当成香烟,塞进嘴里。每每在这时,他自己也会和同学们一起会心地笑起来。
王湘浩还业余从事红学研究,红学大师周汝昌(1918--2012)晚年以90多岁的高龄评价王湘浩的《红楼梦新探》道:“谁解其中味?君书动我心。同时不相识,字字惜千金。”
周汝昌说:“我艰难地坚持读完了王湘浩教授的《红楼梦新探》,不禁万感中来,悲喜交集,心中实难平静。这册书部头不大,编收论文只有6篇,正文不过108页,然而在近年红学专著中,这是我所见的一部令我心折的、学术品格很高、思力识力很深的著作。它的问世,意义之重大,必将逐步为学术文化界认识与评价。为什么重大?他是一位卓越的自然科学家。这样的学者,与一般‘红学家’显然不尽相同,由他来研
1993年5月4日,王湘浩逝世于大连,时年78岁。
他的《病榻感怀》是:
死去原知万事空,但悲未见教苑荣。
他的墓碑上镌刻着他的
这经文,若能背,微积分,便学会;
n次幂,算微商,乘以n,降一方;
赛因x,作微分,结果是,柯赛因;
柯赛因,求导数,得赛因,加个负;
微洛格,甚容易,自变数,取其逆;
关键词:新工科;人工智能导论;实践教学;校企合作;案例库
随着物联网、大数据、5G及人工智能等信息技术的发展,为了应对中国产业变革及新一轮的科技革命,适应“中国制造2025”国家战略需要及产业经济创新发展,同时将国际工程教育思想本土化,“新工科”应运而生[1]。信息技术发展催生出了人工智能相关的专业,国内高校纷纷设立了智能科学与技术专业。近年来,人工智能技术的发展引领着人类社会正逐渐走进智能社会,人工智能将深刻影响人类社会。随着人工智能的进一步发展,高等教育的价值也将进一步提高[2]。因此,各高校应尽快建立与新工科相一致的智能科学与技术专业,并深入研究我国人工智能的人才培养体系、课程设置、实验平台及成果转化等方法,改革传统人工智能的教育教学方法,形成有新工科特色的智能科学与技术专业工程教育方法。由于传统的专业是按学科划分的,因此,目前的智能科学与技术专业课程体系以理论为主,强调学科知识的系统性和完备性[3]。人工智能导论作为智能科学与技术专业的核心课程,同时也是人工智能“入门性”和“引导性”的课程。但是,目前人工智能导论的课程设置上主要存在课程内容陈旧、实践课程不足、教材理论过强、教学模式老旧及实践教学与企业需求不适应等问题。尤其是人工智能导论课程,缺乏实践教学将会降低学生学习人工智能的兴趣和积极性。因此,为了解决这些问题,并使高校跟上人工智能时代的脚步,抓住高等教育发展的新机遇,进行面向新工科的人工智能导论实践教学模式探索具有重要的现实意义。
1人工智能对新工科人才的新要求
1.1具备多学科交叉知识。人工智能导论是一个多个学科交叉而成的一门课程。人工智能导论主要包括知识系统、智能搜索技术、脑科学、机器学习、神经网络、支持向量机、专家系统、智能计算及分布式智能等内容[4]。因此,一个合格人工智能专业人才需要具备多学科知识。1.2具备多领域应用能力。人工智能导论的应用领域广泛,基本包含工业、农业及社会生活的各个行业(如工业生产、通信、医疗、金融、社会治安、交通领域及服务业等)[5]。人工智能导论课程要求学生在学好理论前提下也应该掌握各行业的相关知识,只有这样才能提高人工智能技术在各领域的应用。1.3具备人工智能创新创业精神。目前,创新驱动发展成为了我国现阶段发展的重要力量,人工智能成为经济发展的新引擎[5]。在大众创业、万众创新的号角下,人工智能技术作为创新创业过程中的一个大趋势。因此,当今新形势下培养具有创新创业精神的人工智能专业人才对我国经济发展及大学毕业生创新创业具有重要意义。1.4具备人工智能人文素养。人的内在品质就是人文素养,人文科学的知识水平和研究能力是人文素养的重要组成部分,人文素养是人文科学体现出来的以人为研究对象和中心的精神[6]。人工智能对人类社会带来的是便利还是带来灾难,关键是使用者的思想道德和人文素养。因此,培养具有人文精神的人工智能专业人才具有重要的意义。
2人工智能导论课程教学现状
目前,许多高校已经认识到传统的人工智能导论课程已经不能适应社会和学生发展的需要。尤其是地方普通高校在师资、科研及学科力量薄弱情况下进行人工智能导论的实践教学。目前人工智能导论的课程设置上主要存在的问题如下:⑴本科生课程内容陈旧。近年来,随着云计算、大数据、5G等信息技术的快速发展,也带动人工智能技术发展日新月异。对于高校来说,要紧跟人工智能技术前沿,传授学生的知识也要紧跟人工智能的发展。目前,虽然也出现了不少新的人工智能导论教材,但在课堂上能够教学的新内容仍然不多,教材内容仍然集中在传统的人工智能技术(如问题求解、知识表示、归结原理及经典推理等技术)上。⑵研究生课程内容重叠。研究生的人工智能导论课程应作为本科生课程的一个延续,但部分高校对研究生人工智能导论课程的教学重视不够。很多本科生已经学过的内容在研究生阶段又进行了重复。因此,在新工科背景下培养高层次的人工智能人才,就必须要在研究生阶段加强新工科人才实践能力的培养,选择合理的人工智能导论课程,改革研究生阶段人工智能导论的教学理念和教学模式。⑶实践课程不足。实践教学是提高人工智能新工科人才能力的重要路径。目前,大多数院校的人工智能导论课程理论与实践联系不够紧密,对学生实践能力的培养不够,只知道理论,而不进行实际的实践应用就不能成为合格的人工智能新工科人才。另外,大多数地方高校的人工智能实验室建设投入不足,实验条件差,验证性的实验较多,实验课时不足,学生对人工智能新技术的接触不够。⑷人工智能导论教材理论性过强。目前,现有的人工智能导论教材以理论为主,缺乏人工智能实践内容。在课程教学过程中学生经常会感觉索然无味,当实践课程开设不足时,这种情况会非常明显。学生会渐渐的对人工智能导论课程失去兴趣和热情,最终会导致课程的教学质量和效果下降,不能达到新工科人工智能专业人才培养的预期。⑸教学模式老旧。人工智能导论是多学科交叉的课程,课程内容理论性强、抽象、多知识点是新工科的特点。然而,大多数地方高校仍然采用过去的课堂教学模式(即“教师讲、学生听”的教学模式),这种单向灌输的教学方式以教师为主,学生的主动性不够,只是在被动接收知识。学校这种重视理论不重视实践的教学模式,在一定程度上影响了新工科人才的实践能力,从而导致教学内容与企业社会需求脱节。
3人工智能导论实践教学初探
3.1人工智能导论课程实践平台建设。为了提高学生对实践教学的兴趣,南阳师范学院计算机科学与技术学院在人工智能导论授课过程中广泛应用多种计算机实验教学平台,如采用开源的PaddlePaddle百度飞桨深度学习平台,希冀一体化人工智能实践教学平台及大数据综合实验平台。教师可以在实践教学过程中方便的使用这些平台进行授课,学生也可以在课堂中跟随老师完成相关实验,并能够在课下进行相关实验练习及提交作业。3.2人工智能导论课程实验内容优化。在人工智能导论实践教学过程中,以学生兴趣为导向,开展相关应用课程实验,南阳师范学院计算机科学与技术学院对人工智能导论实验课程内容进行优化。优化后的主要实验课程包括搜索优化算法实现、智能计算实现、贝叶斯分类实验、最近邻算法实验、机器学习实验及神经网络实验。最后,通过期末课程设计进一步提高学生解决实际问题及创新创业的能力。3.3人工智能导论实践教学模式改革。⑴校企合作为使人工智能导论实践教学不与企业脱节,校企合作是关键。应积极派遣教师进企业进修,了解企业需求,并提高教师的工程能力。从2018年以来,南阳师范学院计算机科学与技术学院每年暑假期间累积派遣教师58人/次前往百度、中兴、科大讯飞、神舟数码及江苏传智播客公司等进修培训。同时已经在固定时间邀请相关企业讲师到学校进行人工智能方面的项目教学。建立起了具有地方区域特色的师资队伍及校企协调的实践教学模式,从而避免人工智能导论课程实践与企业实际脱节。⑵“双导师”负责制人工智能导论实践课程实行“双导师”制,邀请企业中实践经验丰富的人才任教或任职,校企合作建立实践教师指导团队,改革教学策略及教学方法,以项目为牵引,将人工智能导论实践课程作为第二课堂学分。还要积极制定人工智能相关的科技作品竞赛的奖励机制,积极引导学生参加各种人工智能相关的比赛,从而进一步提高学生在创新实践方面的能力。⑶采用案例教学法以案例导入进行教学,提高学生兴趣。首先,从人工智能竞赛的部分赛事中、(如百度的人工智能大赛,“2020年全国人工智能大赛”,“2020中国高校计算机大赛人工智能创意赛”等)中选取贴近实际问题的案例作为人工智能导论实践课程的案例来源。然后,采用目前主流的人工智能开发软件进行算法代码的编写,引导学生采用Python语言调用第三方接口库进行算法的实现。最后,让学生使用主流的编程语言(如C++、Java等)开发完善算法或进行系统设计与实现。
4结束语
在新工科背景下,人工智能导论作为智能科学与技术专业的基础核心课程,人工智能人才培养应注重提高学生解决问题的能力。在这种背景下,笔者结合近年来了解到的企业需求和上课的实际,对人工智能导论实践教学模式进行初探,具体如下:①校企合作,构建人工智能实践平台;②建立案例库,优化实践的内容;③校企“双导师”制,采用案例教学,从而进一步提高学生在创新实践方面的能力。
参考文献:
[1]杨晴,王晓墨,成晓北等.新工科背景下的新能源科学与工程专业——哈佛大学工科教育在学科交叉方面的启示[J].高等工程教育研究,2019.S1:23-24,33
[2]李明媚,成希,罗娟.人工智能时代的高等教育之变与不变[J].黑龙江高教研究,2020.2:41-44
[3]陈义明,刘桂波,张林峰等.智能科学与技术专业课程体系建设的理论思考[J].计算机教育,2020.309(9):103-107
[4]刘永,胡钦晓.论人工智能教育的未来发展:基于学科建设的视角[J].中国电化教育,2020.2:37-42
[5]姚琳,石志国.人工智能课程体系与教学方法研究[J].中国大学教学,2019.10:19-22
关键词:人工智能技术;教学方法;编程能力
中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)16-3865-02
1 概述
2008年11月16日,中国科协成立50周年新闻会在北京召开。在新闻会上,“五个10”系列评选活动,即10位传播科技的优秀人物、10部公众喜爱的科普作品、10个公众关注的科技问题、10个影响中国的科技事件、10项引领未来的科学技术评选结果揭晓。10项引领未来的科学技术是:基因修饰技术;未来家庭机器人;新型电池;人工智能技术;超高速交通工具;干细胞技术;光电信息技术;可服用诊疗芯片;感冒疫苗;无线能量传输技术。
人工智能技术学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、判别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可以用某种智能化的机器来予以人工实现[1]。
通过《人工智能技术》课程的学习,使学生对人工智能技术的发展概况、基本原理和应用领域有深入了解、对主要技术及应用有一定掌握,并对现代人工智能技术发展的方向有所研究。通过人工智能技术课程的学习与研究,启发学生对人工智能技术的兴趣,培养知识创新和技术创新能力,并能将人工智能技术融入到今后所开发的计算机软件之中。
《人工智能技术》是一门众多学科交叉的新兴课程,其涵盖范围广,涉及知识点多,知识更新快,内容抽象,不容易理解,理论性强,而且需要较好的数学基础和较强的逻辑思维能力,这给该课程的讲授带来了一定困难。《人工智能技术》也是一门应用型学科,怎样将理论运用到实践中,使学生将学到的人工智能技术知识和思想运用到自己的实际课题,这也是该课程需要解决的问题之一。
因此,对《人工智能技术》课程教学来说,我们要了解课程的最新信息,把握课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的创新思维能力,提高学习兴趣,该文给出了《人工智能技术》课程的教学与实践的探索。
2 教学与实践的探索
2.1 教材和实验教学内容的选取
1) 人工智能技术是整个计算机科学领域发展最快,知识更新最快,最前沿的学科之一。在教材选用方面,我们采用了蔡自兴教授等主编,由高等教育出版社出版的《人工智能基础》这本教材。蔡自兴教授的主要研究领域为人工智能、机器人学和智能控制等。这本教材是作者在美国国家工程院院士、普度大学教授傅京孙先生的指导和鼓励下编写,借鉴了国内外人工智能技术研究领域专家的最新研究成果和学术书籍的长处,该书比较全面地介绍了人工智能技术的基础知识与技术,材料新,易于理解,兼顾基础及应用[2]。
此外,我们还给学生自主学习提供多种类型的学习资料,其中包括参考书目,如:Russel S, Norvig P.等编著的《Artificial Intelligence: A Modern Approach》一书,人工智能技术国内外期刊,如电子学报,计算机学报,人工智能与模式识别,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技术会议,使学生能够掌握人工智能技术的更多前沿动态,提高学习兴趣。
2) 配套的实验教学内容。《人工智能技术》是一门理论性和实践性都很强的课程,实践性教学环节对该课程尤为重要。除了完成课本上的作业之外,还注重实验教学,培养学生的创新能力、算法设计能力和编程能力。首先,每个章节设置相应的实验,而实验内容经过严格的考虑,如:五子棋游戏,产生式系统,旅行商问题,传教士和野人问题,BP神经网络实现简单的分类,遗传算法、人工生命程序等,要求学生运用所学章节的知识,独立地设计和实现实验内容。实验报告包括简述实验原理及方法,给出程序设计流程图,源程序清单,实验结果及分析等内容,通过这种方式,进一步加强学生的信息获取能力和研究能力。
2.2 教学方法和手段的改革
人工智能技术课程交叉性强,涉及面广,传统的教学方法手段单一,缺少交流,课堂气氛沉闷,激发不起学生的学习兴趣,教学效果不理想。人工智能技术这门课程内容抽象,如何激发学生的学习兴趣是本课程需要解决的主要问题,也是关系教学改革成败的关键。本课程需采用多种方法进行教学,以此来激发学生的学习兴趣。
1) 问题启发式教学。《人工智能技术》这门课程中有很多似是而非、引人入胜的问题,主要是用计算机模拟人类的智能来解决这种问题。在教学中,有目的的提出这些问题,鼓励学生思考,提出自己的想法和解决方案,并进行分析和比较,这样强化学生的主动学习意识,提高学习积极性[3]。
2) 个性化学习和因材施教。学生中存在计算机专业和非计算机专业本科毕业的差别,由于他们每个人的基础不同,有的计算机知识比较匮乏,因此有必要针对每个学生的学习进度,课堂作业和实验报告情况进行及时评估,对学生提出个性化的教学。例如:在实验教学中,要求有能力和兴趣的学生可以做探究性和创新性的附加实验,从而引导学生发挥个性的空间,而对稍微吃力的学生则要求完成基本的实验,更注重基础知识的学习和夯实,这样就能达到因材施教的目的。同时对不同层次的学生进行分析,进一步提出学习建议,并进行有针对性的指导。
3) 多媒体使用和多学科知识的融合。本课程PPT课件图文并茂,提纲挈领,便于学生理解。课堂讲授、板书与PPT手段相结合,注重课程中的关键词用英文表示,并适当指定英文参考书,使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。PPT课件运用了大量多媒体技术,如动画、声音、图像,通过动画和视频演示抽象的概念、算法和过程,使人工智能技术中抽象的知识形象化,在课件中融入了文学,历史等其他学科的相关知识,便于学生较好地理解知识难点和重点[4]。
4) 师生互动和课内外答疑。在教学中,改变了传统的老师讲,学生听的教学模式。针对人工智能技术的实用性,适当提问,收集学生学习情况,尽量使用实例进行讲解。设置了实验讲解互动课程,对于实验的讲解,学生可以提出疑问,然后在课堂上展开讨论,学生可以看到问题从提出、分析到解决的整个过程,让学生自己在讨论中总结结论。为了解决教学中存在的疑难问题,还设有课后答疑,使学生能将所有的问题都理解透彻。
5) 理论研究与实践结合。在教学内容的安排上,注重学生的理论研究和动手能力,适当布置一些课程相关的论文和实验编程。通过课程论文,可以培养学生钻研问题的兴趣; 通过查阅科技文献使学生掌握如何查找相关文献的技能,可以培养学生撰写科技论文的能力。通过实验实践,使学生可以更加清楚地了解人工智能技术基本概念和难点,也能了解算法的设计具体运行过程,并对其进行验证,提高了学生的编程能力和和学习兴趣。
6) 考试考核方式改革。本课程的考核考试也是一个值得探讨的问题,本课程应采用多种综合考试方法,注重学生对基础概念、知识和基本的技能的掌握以及理论联系实际的能力。平时作业考核成绩,实验实践教学成绩、提交课程论文成绩,以及最后的期末考试成绩形成一种有效的考试考核方法,促进学生主动学习,提高教学质量。实验的评价指标在于算法设计、编程的准确性和实验结果及分析。课程论文评价指是选题是否严谨科学和具可研究性,论文结构、思路是否严谨,论文内容科学性、正确性,能否提出自己的见解。考查查阅科技文献的能力主要通过是否查找到权威的、最新文献以及撰写是否规范。
2.3 学生学好《人工智能技术》课程的建议
《人工智能技术》是一门理论与实践相结合的应用课程,学生如何学习这么课程,也是我们应该探讨的问题。
学生应该正确看待《人工智能技术》这门科学的发展。人工智能技术孕育于20世纪30、40年代,形成于60、70年代,发展至今,人工智能技术只有短短60多年的历史,它是一门不断发展和完善的崭新学科,还有许多课题处于探索中,理论和技术还远未成熟,我们应该对它有科学的认识。
针对非计算机专业本科毕业的学生,除了课堂听讲之外,还应该课下自学该课程的先修课程,如:数据结构、离散数学等课程。人工智能技术中涉及到大量的数学知识,如:模式识别需要具有较好的概率论,数理统计知识,另外还会用到少量随机过程、模糊数学的一些知识。人工智能技术是一门应用课程,编程语言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神经网络,遗传算法等算法,实现这些算法要求学生具有较强的编程能力。
学生应该多读,多查阅资料,特别是国外的期刊文献和重要国际会议论文,多了解人工智能技术最前沿的信息,理论联系实际,加深对基本算法的理解,并将人工智能技术的知识运用到自己所研究的领域,以做到学以致用。
3 结论
人工智能技术在一定程度上代表着信息技术的前沿,该文对《人工智能技术》的课程教学进行了一些探讨,教学与实践效果有了显著提高,但仍然有许多方面还需要我们继续探讨和改进。
参考文献:
[1] 蔡自兴,徐光佑.人工智能技术及其应用[M].北京: 清华大学出版社,2003.
[2] 蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能技术课程建设[J].中国大学教学,2004(1):28-29.
关键词:人工智能 优选教材 考核方式内容 手段 实践
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行教育体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能足球机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。
(三)提倡课堂辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列辩论会。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验报告。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.
一、顶层设计,构建全方位、多层次、可操作的指导体系。
为了保障人工智能教育在我校真正落实和长期发展,学校将人工智能教育工作纳入到学校整体三年发展规划中,并作出明确要求。
为了让师生更加重视人工智能教育,促进学生全面发展,特修订了我校“五美”能行课程体系,将人工智能课程进行了重新定位和设计。
为了建设符合我校校情、学情的人工智能课程体系,学校成立了人工智能课程建设与实施的探索与研究项目管理团队,制定了项目计划书,从项目名称、项目团队、项目背景、项目创新点及解决问题、项目推进措施、项目完成期限等方面进行了具体规划。
二、支撑保障
完善软硬件设施和文化建设,为人工智能教育开展做好支撑和保障。除了四楼独立的人工智能实验室,我校还自主改造了五楼的创客教室和阅览室,扩宽了人工智能教育场所,尽全力满足学生人工智能上课需求。
学校高度重视人工智能教育,不断加大投入。在资金紧张的情况下依然给学生购买了小学生C++趣味编程书和人工智能超变战场的场地。
三、具体做法
1.基于校情和学情的人工智能课程设计
课程设置:开学之前,课程部整体规划,实行信息技术课两节联排。
人工智能课程开设内容安排:基于校情学情,本学期3-6年级全面铺开人工智能课程,3年级以信息技术基础知识、编程猫、乐高搭建基础入门为主;4年级AI神奇动物,5-6年AI变形工坊,是集搭建和编程于一体的人工智能课程体系。本学期信息技术类人工智能特色社团的开设:人工智能机器人社团、信息学奥C++社团、创意编程社团。
2.三位一体,三组联动推进人工智能课程的开发与实践。三组是:项目组、教研组和集备组。具体做法是:
项目组的做法:根据人工智能项目管理计划书的内容和要求,3月初进行项目工作总结和4月份计划汇报,5月份进行了中期汇报。进一步梳理人工智能校本课程的内容,促进人工智能课程实施与落地,进行了生本AI人工智能校本课程的开发与研究,重点对课程目标和课程内容进行了设计和探索。
教研组的做法:1.参加区首次信息技术教研活动,明确方向和工作重点。组织信息技术教师按时参加区里首次信息技术教研活动,并将区里的要求传达给每一位信息技术老师,为接下来的工作做好铺垫指明方向。2. 教研组内进行磨课,四年级潘倩老师执教了四年级AI神奇动物—敏捷的蛇;徐娜老执教了五年级AI神奇变形工坊—设计“地雷”,课后及时听评课,提出优点与不足,并进一步改进完善。
集备组活动:各年级备课组利用双周周二上午时间进行集备,研究本周的上课内容、梳理课堂具体流程及教学设计。
3.加强教师培养力度,积极组织教师参加人工智能培训和学习。学校鼓励教师进行小课题的研究,提升教学专业素养。2019年区级小课题《小学人工智能课程体系、教学策略和教学评价的研究》顺利结题。2020年区级小课题《奎文区人工智能教育专项课题--小学人工智能教育教学策略及评价方法的研究》立项。
4.为了拓宽视野,为人工智能教育的发展进一步指明方向。落实请进来:邀请区教研室专家进校为学校人工智能开展情况进行诊断;邀请优必选指导老师入校指导人工智能课程,并进行赛事辅导和培训。
5.为了给学生的学习搭建更广阔的平台,丰富学生的课余文化生活,促进学生信息素养的提升。以赛促学,积极组织学生参加各级各类比赛。
四、取得成效
1.学校层面:以人工智能教育为契机近年来,我校的信息化、数字化、智能化水平不断提升,互联网+教育、智慧校园工作取得了巨大的进步,学校获得省市区多项荣誉。
[关键词]人工智能;财务机器人;会计电算化;人才培养
0引言
正如会计电算化替代传统手工会计一样,随着信息化、智能化、互联网、大数据等科技元素在会计信息化中的应用,人工智能悄然到来。自2017年“会计证被取消”,到普华永道、安永、德勤等国际会计师事务所纷纷推出财务机器人,这些举动在财务圈引起了轩然大波,许多中职学校会计相关专业的学生,担心基础核算会计将被人工智能取代,对未来颇感担忧。根据世界经济论坛2016年的调研数据预测,到2020年,在全球15个主要的工业化国家中,机器人与人工智能的崛起,将导致510万个就业岗位的流失,未来20年最有可能被机器人抢走饭碗的岗位包括低端制造业的生产、会计等[1]。2017年7月,中国《新一代人工智能发展规划》,将人工智能上升为国家战略。所以笔者认为,基于人工智能背景下的中职会计电算化专业人才培养方式将面临变革,在教学中应站在未来发展的高度,适应信息化发展,及时掌握人工智能相关技术,实现由传统会计电算化专业人才培养向智能化管理会计转型。
1人工智能的概念[2]
人工智能即AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学,它是指由人工制造出来的系统表现出来的智能。目前人工智能在计算机科学领域内,受到了广泛的发挥。在机器人、经济政治决策、控制系统、仿真系统中得到应用。人工智能是信息技术发展的必然,它已悄悄地改变着人类的各行各业。人工智能在会计行业中应用,促使会计由简单核算向管理方向变革,推动了会计行业的发展,同时也促使着中职学校会计及相关专业的人才培养转变。人工智能取代传统的会计电算化操作人员是一种趋势,但也是一种转变,自我提升的机遇。
2中职学校传统会计电算化专业人才培养[3]
2.1课程偏传统基础核算类,轻参与、管理类会计课程
在多数中职学校会计电算化教学计划课程设计中,传统财务会计类课程占大多数,管理会计类课程设置单一或者没有。而财务机器人的出现,则能够替代大部分重复性、流程性基础会计核算工作。
2.2会计实操偏基础性会计技能,轻数据分析、挖掘
在实践教学及技能培养中,过于注重培养学生点钞、传票的翻打、会计书写、凭证装订,会计电算化软件操作机械性录入等。在当前大数据、人工智能背景下,可以让会计人员摆脱繁杂事务,重点放在会计数据分析与数据挖掘,为企业决策提供服务。
2.3课程偏模拟操作,轻实际操作
无论是手工核算还是会计电算化记账,大多数实操是模拟一个企业一个月的业务,学生根据教材或老师给予的信息进行会计处理,过账,做报表。一学期就是这样反反复复练习。学期结束,虽然考试合格,但仍有很多学生不明白为什么这么处理,特别在月末业务处理更加模糊不清,例如工资发放,计提税费、费用摊销、成本及费用结转等。还有绝大多数学生不知道真实环境如何计税、报税、纳税,只是理想中的学习,为了做账而做账。
3人工智能背景下的中职会计电算化人才培养[4]
3.1由基础核算型初级人才向有思想的中级人才转变
人工智能在会计行业中的应用,会计核算软件中的基础数据录入、凭证录入与审核、记账、编制科目汇总表、材料的收发统计、报表的编制等操作很容易被财务机器人替代,但是也有一些是机器无可替代的,需要有思想的“人”来处理。例如:由于大环境变化,企业的固定资产有明显减值趋势,而财务机器人并不能分析与判断这个固定资产是否会减值或减值多少,如果财务上不及时做出处理,将可能导致企业少确认资产减值损失,虚增了企业的资产和利润,对于企业来说,这属于信息失真。在大数据时代,中级类型的会计人才储备相对较少,中职学校的会计电算化教育,需要培养的应当是此类会计人才。教学会学生不能只拘泥于看财务数据,还要学会合理利用有效的会计数据服务于企业的发展,提高企业的核心竞争力。
3.2由传统的财务会计向人工智能环境下的管理会计人才转变
财务机器人的出现,替代了传统的财会人员进行基础数据的录入,日常凭证的填制、审核、记账;凭证、账簿、报表的生成;成本结转、折旧等财务处理;纳税申报等,这不仅提高了会计工作的效率,减少了传统的会计人员繁杂的日常账务处理工作,但同时也让传统的会计人员失去工作。作为会计的教育者,如何让学生在未来立于不败之地,不被财务机器人替代,就需要学校适应时代趋势,教学重点由传统的基础核算向智能管理型会计演变。会计从事的活动,除了重复、机械、烦琐的事情外,还可以创造更多价值,比如:评估、判断、沟通、协作、建议等。管理型计人才就是通过智能机器人核算出的精确信息,对企业的未来做出评估、预判、建议等,甚至帮助企业管理者做出决策。
3.3由会计电算化软件操作员向人工智能会计系统的设计者转变
人工智能环境下的财务机器人,实质就是一种自动化运行的程序,这种程序的设计,需要设计人员既要懂计算机又要懂会计。而现在的中职学校,会计电算化专业主要培养的是会计专业人才,操作会计核算软件,而很少在计算机方面进行教学。在人工智能环境下,懂得会计专业的人才只是人工智能会计系统设计的主导者,而计算机方面人才则根据会计法及相关规则进行系统设计,自动化处理会计业务需要想到协作,融会贯通。人工智能永远是基于系统的规则和大数据,如果规则发生变化,人工智能将无法起作用。在日常教学中,哪怕我们不能完全让学生掌握编写程序,但是应当教会学生看懂和读懂程序,对机器人“思想”进行修改,也算是人工智能的掌控者,而不是被替代者。
4人工智能背景下中职学校会计电算化专业人才培养应对策略[5]
4.1更新理念与改变教学计划
笔者认为,在人工智能背景下,在中职学校,会计及电算化专业办学理念中应加入人工智能等相关技术,同时其人才培养方案、专业建设、教学计划等方面都需要做出相应的调整,培养适应于人工智能时代复合型人才。例如,中职学校会计或会计电算化专业的教学计划中,计算机方面课程开设仅有计算机应用及会计电算化软件操作课程,数据处理、编程类或人工智能课程几乎没有,这样的教学安排不利于学生对未来人工智能的应对能力培养,应当增加相应的计算机方面课程,财务管理、会计政策、法律法规等人工智能无法替代的课程,减少将来可能被财务机器人替代的会计技能课程。
4.2提高教师人工智能等相关理念和技术
要给学生一碗水,教师必须要有一桶水,虽然人工智能的出现解决了许多教育上的难题,但是教师在人工智能背景下还需要增强自身信息化能力,学习人工智能相关理念,掌握人工智能相关技术。这就需要学校给予老师多点人文关心以及人工智能方面的继续教育。
4.3关注人文综合素质培养,让人工智能为我所用
财务机器人出现,会计人员有更多时间去从事财务机器人无可替代更具有情感类的工作,这些工作需要人与人之间的沟通与交流,因此,笔者认为,中职会计电算化专业教育,不仅需要培养学生人工智能动手能力,还要关注学生思想道德、人文综合素质的培养,提升学生的思想道德水平,教会学生爱岗敬业,诚实守信、乐于助人,激发学生的学习主动性和创造性。如果没有良好职业道德水平,即使掌握了人工智能技术,也将会破坏规则,让会计信息失真。我们不能教出人工智能的“奴才”,应当让人工智能为人类所用,做人工智能的主人。
5结语
总之,人工智能正在快速又深刻地改变我们的生活和工作方式,将人工智能用于会计行业会也将会不断得到规范。对于人工智能这类新兴技术在财务行业的运用初期可能会让学生产生恐慌、彷徨,认为学校教育无用。作为专业教师,要教会学生变革思想,提高其对会计价值的认识,提高其人文综合素养,拥有过硬的专业技术,不断地完善专业胜任能力,把握机会,主动迎接挑战,那么人工智能就只是会计人员的好帮手,而不是掘墓人。
主要参考文献
[1]彭维.浅谈人工智能时代财务的变革与转型[J].中国管理信息化,2018(19):39-41.
[2]巩彦哲.人工智能在会计管理中的应用微探[J].财会学习,2018(20):86-87.
[3]卢映芝,黄静.人工智能与会计课程实操的结合探讨———VR技术的引进[J].现代商贸工业,2018(30):160-162.
[4]王立法.论人工智能环境下会计人才培养所面临的挑战及见解[J].财经界,2018(6).
【关键词】大规模开放在线课程;人工智能课程;翻转教学法
0 引言
近年社会对计算机专业人才能力的要求越来越高,而学生所学与实际需求存在不少差距,高校计算机专业课程教学因而遭遇诟病。依托信息与网络技术支撑的大规模网络开放课程(massive online open course,MOOC)较好贯彻了以学为中心的理念,其翻转教学模式与灵活有效的交互极大提升了学习兴趣[1]。搭建MOOC平台的计算机技术既是技术基础,也是热门MOOC课程。在此浪潮下传统高校计算机专业的教学首当其冲受到冲击,遇到前所未有的挑战。纵观国际三大MOOC巨头的课程建设均始于计算机类专业课程,同时也是所占比例较大的课程系列,其中人工智能(Artificial Intelligence,AI)课程在Coursera、Udacity[1]两个平台上均是最早开设的课程之一。采用何种教学模式更适应社会对人才的需求呢?这是应对挑战的关键问题。
1 人工智能课程的课堂教学困境
人工智能是研究模拟、延伸和扩展人类智能的理论、方法、技术及应用的前沿交叉学科,涉及面广、研究性强,还不断产生新的理论和方法。课程难度大理论强实践难,也是公认难讲的课程之一,该课程具有如下特点:
1.1 先导课多,知识抽象,涉及面广,更新快
前期知识包括:数据结构、离散数学、程序设计、图像处理等。如果前期知识不扎实,很难理解内容并融会贯通。传统内容包括:知识表示和推理、搜索策略、模糊理论、神经网络、机器学习、专家系统、遗传算法等,涉及大量抽象理论和复杂算法。教材普遍特点是:内容滞后,枯燥深奥的理论和解决现实问题的实践联系不紧密。
1.2 研究性强
该领域很多内容仍是科研热点,并不断涌现出新的研究方向、新内容、新方法、新技术和新应用。
1.3 教学方式单调
技术和管理的局限也制约了教学方式,教学方式基本以教为中心,停留在讲授、问答等简单互动上,教学方法单一。很少能提供学生自学、讨论、合作和实践的一整套互动实践机会,难以真正体现以学为中心的理念。
1.4 学生缺乏兴趣
一方面,课程本身特点使得课程容易陷入枯燥的纸上谈兵的尴尬。另一方面,即将毕业的高年级本科生对未来规划明确,抽象的人工智能课程无论从职业发展还是继续深造对学生并没有立竿见影的效果,进一步拉低兴趣。此外,教材滞后,教学方法单一等也会影响兴趣。
如火如荼发展的MOOC的课程,尤其Udacity的课程设计之初就立足于解决实际问题的导向,做法上的独特之处成功吸引了大批学生。课堂教学中借鉴在MOOC上被证明有效的教学模式和方法,不啻为一种尝试,以期摆脱教学困境,提高学习兴趣,最终提升教学质量。
2 MOOC的教学模式
MOOC的教学模式分为三种:cMOOC、xMOOC 和 tMOOC[2]。早期的cMOOC的教学模式特点是学习者完全做主,但复杂的网络互动产生庞大而混杂的知识网,缺乏识别主次和归纳总结能力学生常因信息过载陷入茫然无措的境地。2011年Udacity 创始人之一在网上开设的“人工智能导论”课程改变了表现风格,把互联网作为教学媒体的呈现潜力发挥到极致,按知识点分割内容成短小视频,其间插入现场对问题的解决,突出了Udacity有别于传统教育机构及其先行者的地方:注重发现并解决问题。这就是xMOOC的教学模式,沿袭并创新了熟悉的学习风格,使得MOOC如鱼得水渐渐发展壮大。随着MOOC逐步成熟,为了适合具有专业基础的职业技能培训,发展培养针对具体任务的探究学习教学模式,即tMOOC模式,这是Udacity网站课程的另一个设计目标。表1显示了MOOC的三种模式的对比。
以Udacity的人工智能导论课程为例,只要高中毕业具有概率论和数理统计基础的学生就可以学习,该课程适合入门,但难度较低,内容较少。清华大学的马少平编写的人工智能教材是很多大学,包括我院人工智能课程的教材,清华大学的人工智能课程经过多年发展已经形成了一个系列教学资源库,包括教材、课程视频、教学课件、作业及答案和实验设计等。根据Udacity网站的人工智能导论课程的展示,表2从几方面对比了Udacity人工智能课程与清华大学马少平版的人工智能课程情况:
从表2可以发现Udacity的人工智能视频采用了按知识块分割成短小视频,在期间和完毕之后都准备了测试,细节上体现了以学为主的理念。纵观类似人工智能的国家精品课程[3],学习资源多为文本类,重用难,对教学重难点没有拓展和转化。这种以内容共享为中心的呈现模式,缺乏与学习者充分交互,难以体现以学为中心的教学理念。
在MOOC的教学设计中,调动学习者极大热情的是翻转课堂,在学习环境中引入了自主协作[4-5],在交流机制中融入了多元互动,给学习者带来积极、主动、高效的学习,翻转课堂和传统课堂的区别如表3所示:
3 MOOC的教学模式对人工智能课堂教学的启示
3.1 教学内容的优化与调整
MOOC的教学通过把理论抽象的知识点分割成小段录制的微课视频,时长不超过15分钟,内容衔接处具有一定交互性,讲解形象化,提供给学生反复观看,这种用技术处理分解知识点和把难点从抽象变成具象的过程降低了理解难度。
课堂教学也可以通过分而治之的方式对教学内容优化调整。人工智能涉及内容与范围多而杂,作为入门课程并不要面面俱到,根据学生层次,可以区分重点掌握和一般介绍的内容,以点带面铺开,因此,根据学生特点,把成熟的基础理论和这些理论的实际应用整合,辅以其他新技术的穿插介绍,主要分三块:
①人工智能的概念和发展,熟悉人工智能的研究和应用领域;
②人工智能的基本技术,包括知识表示,逻辑推理、搜索策略、模糊理论等;
③涉及现实应用,如:机器学习,模式识别,自然语言理解,智能控制等。
为了反映人工智能领域最新进展,教师还可以收集学生感兴趣的最新成果专题信息,及时更新、调整教学内容,通过与实际更紧密的融合接轨,对课堂上没时间介绍而又较热点的新知识,通过提供方向和资料解决,注重提高兴趣的同时,也展示出课程学科特点、主流技术及发展趋势。
3.2 紧密结合实际
Udacity的开设之初的目的就是学习为了解决现实问题,其人工智能课程设计也不例外,包含有实际遇到问题的解决,这种立竿见影的好处就是极大激发了兴趣。
考虑到高年级学生对解决实际问题技术的兴趣远远大于技术理论等细节,不想花太多时间去理解复杂而难以看到实践效果的理论上,更想通过实际体验解决问题增强成就感。教学内容的设计尤其紧密结合实际运用。
传统人工智能讲授通过实例解答或推证式讲述理论,如知识表示和搜索推理技术,该部分理论强,应用实例少,往往学生感觉枯燥乏味,教师也感觉晦涩抽象,学生对所讲内容基本靠死记方法和步骤,这种僵化的教与学影响了教学效果。
因此,设计教学时尤其注重内容的实用性。除了讲授至今仍沿用和有效的基本原理和方法外,引入近年发展起来的方法和技术,如智能算法等,对这些内容重点在技术的具体实现上,强调与实际的融合贯通。教学过程中加入与课程内容对应又可以用计算机实现的试用内容。如模式识别应用于手写数字识别,通过仿真软件模拟实现算法,获得立竿见影的效果体验,加深对算法的认识,引起学生浓厚的兴趣。同时也对某些很有发展前景的技术兴趣导入,如目前人工智能研究侧重人类理性逻辑功能的模拟,而如果把情感智能考虑进去,才更有人性化的智能决策。这就是经过了将近20年发展的情感计算,随着可穿戴技术渐渐渗透进生活,引起更多关注,这些接地气的内容提升了兴趣。
3.3 实践能力的培养
Udacity 创始人史蒂芬斯博士的说过,“即使是最好的大学,其计算机课程所传授的技能也是浮于理论的”。学习的目的是为了解决实际问题,带着问题学习和思考,有利于主动学习的激发。这些方面,可以参考Udacity人工智能课程的实验内容修正。强调学习是为了解决实际问题服务的目标。
3.4 教学模式及教学方法的变化
3.4.1 实例教学法
人工智能内容的抽象性决定了知识点的难度,Udacity人工智能课程教学中尽量把难懂的知识点结合现实中有趣实例,通过感性体验提高理性理解,让学生容易接受。笔者进行了一些化难为易的尝试:如利用汉诺塔问题讲解状态空间的知识表示,通过野人过河的游戏程序步步领会理论精髓;结合下棋软件体验模拟人脑思考的计算机博弈的极大极小搜索思路,这些实例教学激起了兴趣,扩展了学生思路,拓宽了视野。
3.4.2 翻转教学法
整门课程录制课程小视频还有一定难度,作为尝试,选择少量知识点录制视频进行翻转教学。如抽象的理论部分,借鉴网上已有视频资源融入教学过程,分解知识点破解难点,形象化与短时间的重复讲解,增加学生对抽象内容的理解,期间穿插核查对理解内容的核查,并留出思考时间,强化学习效果。
3.4.3 交互环境的营造,辅助教学过程完善
1)基于联通主义的学习交互[6-7]
在MOOC课程中,提供在线交流论坛,学习者建立课程组,学习组等方式交流,这种教与学、学与学的交互不但是网状进行的,而且是即时的。学生将互动产生的内容作为学习的中心,通过学习者不同认识的交互,建立新的认知结构,拓宽了视野,更有利于问题的有效解决。这种互动交流分成三种形式:
①教师对统一回答提问集中且意义较大的疑难问题;
②学习者分享学习感悟;
③学生间交流带来不同认知的碰撞。
以上三种情况的互动在课堂教学中也可以运用于课堂教学:及时分析整理共同问题,集中回复;课堂教学的互动除了课堂上及时了解学生反馈的互动,还有对解决问题的互动。课下互动可以利用学者网建立课程组,提供了较好的师生交流形式与效果,同时利用学习组在小组中分享互助,小组成员的交流引起认知碰撞,这种实际参与的体验加深了理解,并巩固学到内容,这些资料的逐渐积累还可以复用。
2)基于行为主义的学习反馈[8]
MOOC 遵循了程序教学的一般原则,尤其注重学生反馈,像游戏一样关卡设置让整个过程充满挑战性,一些机器评分实现了及时学习反馈,摆脱了单向提供课程资源的弊端。课堂教学可以借鉴这种借助技术手段互动了解学生学习的情况,促使有意义学习的发生。
4 教学改革的实施
利用以上措施在《人工智能》课程的教学中实践,通过在xMOOC教学模式中部分适当内容引入翻转教学法与利用学者网的课程交互,探索提高兴趣,促进理论与实践的融合,促进有意义学习的发生,提高学生实践能力的途径。通过观察,调查与访谈等方式,了解学生在该教学模式中兴趣与能力改善状况,同时研究教师教学法转变与教学水平变化的关系,根据追踪研究效果,发现这种改善调动了学习兴趣,促进了教学效果。实践中通过建立实验组(班)与对照组(班)、评价教学模式和教学效果等因素,不断总结、修正和完善,期望建立适应当前形势与环境的有效的该课程的教学模式与教学方法。
5 结束语
笔者结合人工智能课程的教学实践,针对本科高年级的教学特点和人工智能课程学科特点,提出在设计人工智能教学时,通过MOOC的教学模式和教学方法完善课堂教学,注重内容的实用性和新颖性,适当穿插新方向的内容,目标是将难学、枯燥、难理解的问题,变得易学、有趣、易理解。从学生反馈来看,这些方法起到了积极的实际效果,有效地提高了学习积极性。
【参考文献】
[1]udacity的人工智能导论课程网[EB/OL].https:///course/cs271.
[2]王萍.大规模在线开放课程的新发展与应用:从cMOOC 到xMOOC[J].现代远程教育研究,2013(03):13-19.
[3]国家精品课程资源网[DB/OL].[2013-04-22].http://.
[4]徐明,龙军.基于 MOOC 理念的网络信息安全系列课程教学改革[J].高等教育研究学报,2013,36(03).
[5]王文礼.MOOC 的发展及其对高等教育的影响[J].江苏高教,2013(2):53-57.
[6]李青,王涛.MOOC:一种基于连通主义的巨型开放课程模式[J].中国远程教育,2012(3):30-36.