发布时间:2024-04-10 14:41:03
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇二氧化碳排放现状,期待它们能激发您的灵感。
中国二氧化碳排放量于2006年超过美国,位居世界第一,而且近几年来中国的二氧化碳排放量持续增加,2012年全年排放量达到8106.43百万吨。中国曾承诺将采取有效措施减少二氧化碳排放,并于2030年前停止增加二氧化碳的排放量。在实施减排任务同时对中国二氧化碳排放现状及影响因素有一个细致的了解是十分有必要的。
一、中国二氧化碳排放来源
化石能源的消耗是造成二氧化碳排放的重要原因,中国经济自改革开放以来迅猛发展,其中第二产业1978年至2015年的平均比重达到45%,第二产业的能源消耗总量占到总能源消耗量的80%以上,由此推断,第二产业,尤其是工业部门是二氧化碳排放的重要来源。
在第二产业内部,不同细分行业的二氧化碳排放量存在差异,排在前五位的分别是电力、热力的生产和供应业,石油加工、炼焦及核燃料加工业,黑色金属冶炼及压延业,非金属矿物制品业和化学原料及化学制品制造业,分别占到40.1%、24.2%、7.3%、6.7%和6%。
农业活动的二氧化碳排放量占全国二氧化碳排放总量比例较低,而且农业生态系统在相当大的程度上能够减少因人类活动造成的二氧化碳排放。但是,中国大规模的砍伐树林、毁坏良田、破坏湿地等活动使农业生态系统的吸碳能力大幅度下降。
二、二氧化碳排放现状
2000年至2012年,中国全国的二氧化碳排放总量从5389百万吨增长至16572百万吨,具体来看,2000年二氧化碳排放量排在前五的省市区分别为辽宁、广东、河北、山东和山西,到2012年二氧化碳排放总量排在前五的则分别为山东、江苏、广东、河北和内蒙古,虽然排序发生了一些变化,但排在前五位的省市占比加总基本保持在35%左右,这说明我国二氧化碳排放的集中度基本保持不变。2000年至2012年中国全国的二氧化碳平均年增长幅度达到为9.81%,其中,海南、宁夏、内蒙古、陕西、青海、山东、广西、新疆、福建、云南、江苏、湖南、浙江和河南大于全国的二氧化碳平均增长速度,因此,这些地区的减排任务严峻。海南、宁夏两地的增长速度大一部分原因在于其基数小,但若不引起重视,这两地的二氧化碳排放量将超过其他地区。此外,值得注意的是内蒙古2012年的二氧化碳排放量已经位居第五,若仍然保持目前的增长速度,势必会成为中国最大的二氧化碳排放地区。
从地区来看,2000年中国东部、中部和西部的二氧化碳排放量分别为2633百万吨、1757百万吨和999百万吨,比重分别为48.87%、32.60%和18.53%;2012年中国东部、中部和西部的二氧化碳排放量分别为7733百万吨、5340百万吨和3500百万吨,比重分别为46.66%、32.22%和21.12%。2000年至2012年,虽然三大地区对二氧化碳排放量的贡献度排序依然为东部、中部和西部,但是东部的贡献度明显下降,中部基本保持不变,而西部的贡献度明显上升。东部、中部、西部和全国的二氧化碳排放量年平均增速为9.39%、9.71%、11.01%、9.81%,西部地区的增速明显高于其他两个地区和全国平均水平。
三、二氧化碳排放因素分析
人口、经济增长、技术水平是影响二氧化碳排放的主要因素。
人口增长会通过两种方式影响二氧化碳的排放:一是人口数量的增加会使得对能源的消费增加,进而导致二氧化碳排放量的增加;二是人口的增加可能会导致森林、湿地、草原等生态系统的破坏,减少其二氧化碳的吸收能力,间接造成二氧化碳排放量的增加。
经济增长影响二氧化碳排放主要通过三种途径:规模效应、结构效应和技术效应。规模效应对二氧化碳排放有促进作用,而结构效应和技术效应对二氧化碳排放有抑制作用。在经济增长初期,经济的增长主要依靠扩大生产规模,即扩要劳动力、资本、自然资源等生产要素投入量来保持经济的快速增长,这会造成二氧化碳排放量的大量增加。随着经济的增长,经济结构发生改变,过去高污染的工业经济开始转向清洁的技术型、服务型经济,结构效应对二氧化碳排放的抑制作用开始显现。另外,经济增长带来的技术进步也进一步抑制了二氧化碳的排放。总结来说,二氧化碳排放与经济增长之间存在一个“倒U”型的关系,即二氧化碳排放量在初期随着经济的增长而增加,当经济发展达到一个临界点后,二氧化碳排放量随经济增长而开始减少,这就是库兹涅茨曲线。
技术水平可以通过三大主要途径影响二氧化碳的排放。第一,技术水平的提高可以实现节能产品的生产和应用,这将减少化石能源的使用量,进而减少二氧化碳的排放量;第二,技术水平的提高可增加对可再生清洁能源的利用,降低对化石能源的依赖程度;第三,随着技术水平的不断提高,人类社会的经济发展模式发生改变,从以能源为要素投入的经济增长方式逐渐过渡到以资本为要素投入的经济发展方式。
四、结语
目前中国二氧化碳排放情况依然严峻,西部地区是未来二氧化碳减排应该着重注意的区域。在实行二氧化碳减排工作时,要充分认识到人口、经济增长以及技术水平对其的影响作用,将他们纳入一个统一的工作框架,制定一系列有效措施,以此实现在2030年前停止增加二氧化碳排放量的目标。
参考文献:
[1] 韩玉军,陆D. 经济增长与环境的关系――基于对CO_2环境库兹涅茨曲线的实证研究[J]. 经济理论与经济管理,2009.
[2]李国志. 基于技术进步的中国低碳经济研究[D]南京:南京航空航天大学,2011.
1.1评价体系构建
由于低碳经济其实质就是以较少的能源消耗获取较大的经济和环境效益,为了剔除规模差异对各地区CO2排放水平的影响和检验经济整体活动对CO2排放的影响,在评价一个地区和省市低碳水平时,必须要兼顾经济效益(GDP)和环境(CO2净排放量)协调发展。为了研究问题方便,本文将29个省市分成华北、东北、华东、中南、西南、西北六大区域。华北包含北京、天津、河北、山西、内蒙古5个省、市、自治区;东北包含辽宁、吉林、黑龙江3个省;华东包含上海、江苏、浙江、安徽、福建、江西、山东7个省、市;中南包含河南、湖北、湖南、广东、广西、海南6个省、自治区;西南包含重庆、四川、贵州、云南4个省、市;西北包含陕西、甘肃、青海、宁夏4个省、自治区。根据美国经济学家巴拉萨(Balassa)于1965年提出的显示性比较优势指数(RevealedComparativeAdvantageIndex,简称RCA指数)的测算原理[14],本文选择人均CO2净排放和单位GDP的CO2净排放等指标构建CO2净排放显示性比较优势指数测算模型,该模型包括2个部分。
1.2数据来源和处理
数据来源本文数据来自《中国统计年鉴》、《中国能源统计年鉴》。按照国家统计局对“能源消费总量(×104t标准煤)”定义的阐述,系指一定时期内,全国各行业和居民生活消费的各种能源的总和。包括原煤和原油及其制品、天然气、电力。因此,本文在计算各省(市、自治区)CO2排放量过程中可以直接将各省(市、自治区)能源消费总量乘以该省(市、自治区)煤转化成CO2的折算系数(指1t标准煤燃烧释放的CO2数量(t),不需要提供石油、电力等折算系系数。而不同年份、不同省份标准煤转化成CO2折算系数的数值是通过中国“十二五”各地区单位国内生产总值CO2排放下降(%)指标和各地区单位国内生产总值能源消耗下降(%)指标两者相除,首先得到“十二五”各地区每年单位能耗CO2下降指标,并由此计算得出“十二五”各地区每年单位能耗CO2下降相对于全国平均指标的水平,将此作为因变量,年份作为自变量,采用外推模型[17]得到2005~2010年各因变量数值,即2005~2010年各地区每年单位能耗CO2下降相对于全国平均指标的相对水平。然后根据《中国统计年鉴》和《中国能源统计年鉴》[16]计算出2005~2010年各年全国平均单位能耗CO2排放量,并将该数值乘以上步骤计算得到的当年各地区单位能耗CO2下降指标相对全国平均指标的相对水平,即可得到2005~2010年各地区标准煤转换成CO2的折算系数。2005~2010年各个区域人均和单位GDPCO2净排放量的RECj,n、AECYj,n、RECi、AECYi等数值分别通过公式(1~6)计算得出。
2CO2净排放空间格局及演变
2.1区域CO2净排放空间格局及演变
区域人均CO2净排放格局及演变图1给出了2005~2010年六大区域人均CO2净排放显示性比较优势指数变化趋势。可以看出:2010年人均CO2净排放量显示性比较优势指数从大到小依次为华北、东北、西北、华东、中南、西南。整体上呈现北高南低,且态势十分明显。其原因是北方地区多为资源型省份和重工业基地,其高耗能产业较多,能源利用效率偏低,技术水平相对落后。还可以看出:华北和东北地区2005~2010年人均CO2净排放一直高于全国平均水平;而中南部地区、西南地区一直低于全国平均水平;华东地区在2007年以前高于全国水平,而2007年后低于全国水平;西北地区2009年以前低于全国水平,2009年开始高于全国水平。此外,还可以看出整个中南部地区人均CO2排放量相对全国维持2.1.2区域单位GDP的CO2净排放格局及演变单位GDP的CO2净排放量是每单位经济产出所释放的CO2量,反映了一个地区经济发展对CO2净排放的贡献程度。图2给出了2005~2010年六大区域单位GDP的CO2净排放显示性比较优势指数变化趋势。从AECYj,n的数值可知:当AECYj,n>1,说明该地区单位GDP的CO2净排放量高于全国平均水平;1>AECYj,n>0则说明低于全国平均水平。中南和华东一直低于全国平均水平,说明2个区域在处理经济增长和环境保护方面做得较好,在同样经济增长情况下,能最大限度降低对环境的污染。而西北、华北、东北、西南地区一直高于全国平均水平,其中西北地区最高,表明该地区碳排放强度(单位GDP的CO2排放量)最大,需采取节能减排措施,在保证经济增长的同时,大力降低CO2排放量。从该图还可以反映:中南地区虽然碳排放强度低于全国平均水平,但是2005~2010年出现增长的势头,如不加强控制,很可能在未来也处于高碳排放的行列。
2.2省域CO2净排放空间格局及演变
2.2.1省域人均CO2净排放格局本文将RECi>2的省(市、自治区)定义为人均CO2净排放强度区。2>RECi>1,为人均CO2净排放中度区。1>RECi>0属于人均CO2净排放低度区。根据计算结果,宁夏、内蒙古属于人均CO2净排放超强区;江西、海南、云南、广西、安徽等省属于人均CO2净排放低度区,其它省(市、自治区)属于中度区。2005~2010年期间,北京、黑龙江、上海3个省市排名分别下降了5位以上,表明3个省市在人均CO2净排放上下降幅度较大,而陕西、重庆2个省市排名上升了5位以上,表明该地区人均CO2净排放加剧,政府应充分重视,及时采取行政等手段进行干预。
2.2.2省份单位GDP的CO2净排放本文将AECYi>2的省(市、自治区)定义为单位GDPCO2净排放强度区。2>AECY>1定义为单位GDP二氧化碳净排放中度区,1>AECY>0定义为单位GDP的CO2净排放低度区。可见,宁夏、贵州、山西等一直属于单位GDP的CO2净排放超强区。北京、天津、黑龙江、上海、江苏、浙江、安徽、福建、江西、广东、广西、云南一直属于单位GDP的CO2净排放低度区。吉林省2010年相对2005年下降了6位,说明该省单位GDP的CO2排放量下降趋势明显。而海南上升了5位,表明该省碳排放强度增高态势明显,在经济增长的同时要大力减少CO2排放。
3结论与展望
第一,本文在充分考虑了各地区森林等对CO2净吸收和不同年份,不同省市由于省市低碳技术等发展不均衡造成单位标准煤排放CO2数量有所差异的基础上,对全国六大区域和全国29个省市对中国2005~2010年各区域和各省人均和单位GDP的CO2净排放量进行了更为精准的计算,更加清楚地分析了中国CO2净排放时空演变特性。
第二,本文将经济学中显示性比较优势理论引进地理学的空间分析中,并与变异系数分析方法相结合,更为直观的分析了各区域和各省市的CO2净排放现状和时空差异性。
第三,2005~2010年,华北和东北地区人均CO2净排放一直较高,而中南、西南地区一直较低,区域差距逐渐缩小;中南和华东单位GDPCO2排放量一直较低,而西北、华北、东北、西南地区一直较高,西北地区最高。2007年以后各区域差异出现明显缩小态势;宁夏、内蒙古属于人均CO2净排放超强区;江西、海南、云南、广西、安徽等省属于低度区。北京、黑龙江、上海3个省市下降幅度较大,而陕西、重庆2省市上升加剧;省际间差异呈现“震荡”,但总体略呈减小态势;宁夏、贵州、山西等省一直属于单位GDP的CO2排放超强区。北京、天津、黑龙江、上海、江苏、浙江、安徽、福建、江西、广东、广西、云南一直属于低度区。吉林下降趋势明显,而海南增高态势明显。2007年以后各省差异缩小。
尽管将显示性比较优势理论和变异系数分析方法的结合能够较好的揭示中国CO2净排放的时空格局演化特征,但是由于文章能够选取的时间序列并不是很长,仅从2005~2010年,还需要进一步研究。
关键词:化工行业;二氧化碳;两阶段核算模型;减排潜力;
作者简介:顾佰和(1987-),男(满族),辽宁丹东市人,中国科学院科技政策与管理科学研究所,博士研究生,研究方向:绿色低碳发展战略与政策分析.
1引言
化工行业是经济社会发展的支柱产业,同时也是耗能和温室气体排放大户。国际石油和化工联合会的统计数据显示,2005年世界二氧化碳排放量约为460亿吨,其中化学工业的二氧化碳排放为33亿吨,约占7.1%[1]。中国是世界上最大的化工制品国之一。其中合成氨、电石、硫酸、氮肥和磷肥的产量均排名世界第一[2]。2000年到2010年,中国的化工行业工业产值增长迅速,其中几种主要化工制品例如:乙烯、电石、烧碱、硫酸、甲醇、硝酸等产品的产量在此期间增长了50%以上。2000-2010年化学原料及化学制品制造业能源消费量逐年上升,年均增长8.86%[3],占全社会能源消费总量的比重基本保持在10%左右。
我国化工行业产品结构不合理,高消耗、粗加工、低附加值产品的比重偏高,精细化率偏低。美国、西欧和日本等发达国家和地区的化工行业精细化率已经达到60%~70%,而目前我国化工行业的精细化率不到40%。且我国化工行业工艺技术落后,高耗能基础原材料产品的平均能耗比国际先进水平要高20%左右,因此我国化工行业存在较大的节能减排空间[4]。那么我国化工行业到底有多大的减排潜力,如何预测化工行业的温室气体减排潜力成为决策者和研究人员关注的焦点之一。
国内外学者围绕行业温室气体减排潜力评估展开了一系列研究,但研究集中于钢铁行业[5-6]、电力行业[7-8]、交通行业[9-10]、水泥行业[11-12]等产品结构较为单一的行业。而由于化工行业的产品种类繁多,且工艺流程各不相同,目前对于化工行业的温室气体减排潜力研究,从研究对象上主要集中于少数几种产品和部分工艺流程。Zhou[13]等全面细致的核算了中国合成氨生产带来的二氧化碳排放和未来的减排潜力,并据此提出了促进减排的政策措施。Neelis[14]等学者从能量守恒的角度研究了西欧和新西兰化工行业的68种主要工艺流程理论上的节能潜力。IEA[15-16]在八国集团的工作框架下,评估了化学和石油工业中49个工艺流程应用最佳实践技术(BestPracticeTechnology)短期内所带来的能效改善潜力。Patel[17]针对化学中间体和塑料等有机化学品给出了累积能源需求和累积二氧化碳排放量的核算流程和核算结果。
就关注的减排影响要素而言,主要涉及技术和成本两方面。技术层面上,Park[18]等通过调查五种节能减排的新技术,使用混合的SD-LEAP模型评估了韩国石油炼制行业的二氧化碳减排潜力;Zhu[19]从技术进步的视角采用情景分析方法从整个行业的层面研究了中国化工行业的二氧化碳减排潜力,并提出一系列促进化工行业碳减排的措施;卢春喜[20]重点概述了气-固环流技术在石油炼制领域中的研究与应用进展;王文堂[21]分析了目前化工企业节能技术进步所遇到的障碍,并对促进企业采取节能减排技术提出建议。成本方面,Ren[22]等对蒸汽裂解制烯烃和甲烷制烯烃两种方式的节能和碳减排成本进行了对比;戴文智等[23]将环境成本作为石油化工企业蒸汽动力系统运行总成本的一部分,构建了混合整数非线性规划(MINLP)模型,优化了多周期运行的石油化工企业蒸汽动力系统;高重密等[24]从综合效益角度出发提出了化工行业实施碳减排的相关建议以及化工园区实施碳减排的管理模式;何伟等[25]设计了节能绩效-减排绩效关系图及节能绩效、减排绩效与经济效益协调关系三角图。
在研究方法上,通过对以上文献的归纳,不难发现情景分析已成为行业温室气体减排潜力的主流分析框架。已有的国内外大部分相关研究都采用情景分析方法[5-12,13,18,19]。情景分析方法是在对经济、产业或技术的重大演变提出各种关键假设的基础上,通过对未来详细地、严密地推理和描述来构想未来各种可能的方案[26]。相比弹性系数法、趋势外推法、灰色预测法等传统的定量预测方法,情景分析法以多种假定情景为基础,强调定性与定量分析相结合。情景分析法在进行预测时,不仅可根据预测对象的内在产生机理从定量方法上进行推理与归纳,还可对各不确定因素(自变量)的几种典型的可能情况采取人为决策,从而更为合理地模拟现实。因此,情景分析法更加适用于影响因素众多、未来具有高度不确定性的问题的分析。此外,情景分析法与传统预测法还有一点显著不同。传统预测法试图勾绘被预测对象未来的最可能发生状况,以及这种可能程度的大小。而情景分析法采取的是一种多路径式的预测方式,研究各种假设条件下的被预测对象未来可能出现何种情况。在情景分析中,各种假设条件不一定会自然出现,但通过这样的分析,可帮助人们了解若要被研究对象出现某种结果需要采取哪些措施以及需要何种外部环境。
综观国内外学者的研究,有以下特点:从研究对象上来说,更多侧重于化工行业产品层面二氧化碳减排潜力的研究,而鲜有从行业整体层面的研究;从研究要素上来说,一般只考虑单一要素对二氧化碳减排的贡献,鲜有综合考虑化工行业内部结构调整、技术进步、政策变动等多因素的研究。鉴于此,本文结合化工行业的产品结构特点构建了一套化工行业二氧化碳减排潜力综合分析模型:首先结合化工行业产品种类繁多的特点,分别从行业和产品视角构建了一种两阶段二氧化碳排放核算模型;在此基础上,综合考虑化工行业的发展规模、结构调整、技术进步等因素,建立了化工行业二氧化碳减排潜力的情景分析方法,探索不同情景下化工行业的减排潜力和路径。最后运用该方法以中国西部唯一的直辖市、国家首批低碳试点城市———重庆市的化工行业为例进行应用分析。最后提出了我国化工行业低碳转型的对策建议。
2模型与分析方法
2.1核算边界
化工行业的二氧化碳排放包括两部分:一部分是由燃料燃烧产生的排放,另外一部分是工业过程和产品使用产生的排放。其中燃料燃烧产生的排放又分为化石燃料产生的直接排放以及电力、热力消耗产生的间接排放,为了体现化工行业对区域二氧化碳减排的贡献,本文将电力和热力消耗产生的间接排放也计算在内。此外,一些化工产品在生产活动中是吸碳的,例如尿素的生产,这部分被吸收的二氧化碳需要在计算中扣除。
2.2化工行业二氧化碳排放两阶段核算模型
为了能够得到化工行业全行业的二氧化碳排放量,同时能够综合考虑多种因素探索其二氧化碳减排潜力,本文针对化工行业特点构建了一种两阶段二氧化碳排放核算模型。模型中的主要参数名称及其含义见表1。
2.2.1基于全行业视角的核算方法
行业视角核算方法主要针对化工行业二氧化碳排放的历史和现状。本文所研究的化工行业包括国民经济行业分类中的化学原料及化学制品制造业、化学纤维制造业和橡胶制品业。化工行业是终端能源消费部门,通过能源平衡表,可以得到化工行业分能源品种的能源消耗量,根据2006年IPCC国家温室气体清单指南推荐的方法二,化工行业由燃料燃烧引起的二氧化碳排放量为:
部分产品在工业过程和产品使用中会产生二氧化碳排放,这部分排放量为:
此外,一些产品在生产过程中会吸收二氧化碳,被吸收的二氧化碳量为:
因此,基于行业视角核算的化工行业温室气体排放量为:
表1主要参数名称及其含义下载原表
表1主要参数名称及其含义
2.2.2基于产品视角的核算方法
化工行业产品种类虽多,但能耗相对集中在少数几种高耗能产品上,2007年,合成氨、乙烯、烧碱、纯碱、电石、甲醇这6种高耗能产品的能源消耗量占中国化工行业的54%[19]。现有的化工行业节能减排政策大部分集中在几种主要的高耗能产品上,因此从产品层面探讨化工行业的二氧化碳排放核算更具有现实意义。本文建立一种基于产品视角的核算方法来预测化工行业未来的二氧化碳排放。首先将化工行业由燃料燃烧引起的二氧化碳排放分为高耗能产品和其他产品两部分。某种高耗能产品的二氧化碳排放量为:
其中EMi为第i种高耗能产品单位产品的二氧化碳排放量,计算方法见式(6):
由于除主要耗能产品外的其他产品种类多,单个产品的能源消耗量不大,能源利用效率数据难以获得,所以难以从单位产品能耗的角度对这部分产品的二氧化碳排放进行核算,本文将这部分产品作为一个整体来考虑,引入单位产值的二氧化碳排放来解决这一问题。其他产品合计的二氧化碳排放量为:
工业过程和产品使用排放以及产品对二氧化碳的吸收同基于行业视角的核算方法。
因此,基于产品视角核算的化工行业温室气体排放量为:
2.3减排潜力情景分析模型
2.3.1减排潜力的定义
潜力就是存在于事物内部尚未显露出来的能力和力量。而减排潜力即存在于某一温室气体排放主体内尚未发掘的减排能力。为了能够量化表达,本文将减排潜力进一步定义为某一温室气体排放主体通过努力可以实现的减排量。
本文所关注的是化工行业未来的二氧化碳减排潜力,这里为化工行业设置多种不同的发展情景。不同情景下的行业内部结构、技术水平、所面临的宏观和微观政策各不相同,相应的会得到不同的二氧化碳排放路径。其中一种情景称之为BAU(BusinessAsUsual)情景,也叫照常发展情景,该情景下化工行业现有的能源消费和经济发展趋势与当前的发展趋势基本保持一致,沿用既有的节能减排政策和措施,不特别采取针对气候变化的对策。其他情景中化工行业分别针对气候变化做不同程度的努力。所谓化工行业的二氧化碳减排潜力,针对关注的指标不同,有两类不同的含义。一是绝对二氧化碳减排潜力,即目标年份中其他各情景的二氧化碳排放量相比BAU情景的减少量;二是相对二氧化碳减排潜力,即目标年份的二氧化碳排放强度相比基准年份降低的百分比。
通过同一年份各情景与BAU情景二氧化碳排放总量的横向比较,以及同一情景不同年份间二氧化碳排放强度的纵向比较,便可分别得到化工行业的绝对和相对二氧化碳减排潜力。
2.3.2情景分析模型
根据减排潜力的定义,y年份化工行业的绝对二氧化碳减排潜力为:
其中CEyBAU为y年份化工行业BAU情景的二氧化碳排放总量,CEly为y年份化工行业情景l下的二氧化碳排放总量。
相对二氧化碳减排潜力是针对二氧化碳排放强度设置的指标,化工行业的二氧化碳排放强度为:
,其中V为化工行业的工业增加值。由此可以得到,y年份化工行业的相对二氧化碳减排潜力为:
其中,为基准年化工行业的二氧化碳排放强度,CEIly为y年份化工行业在情景l下的二氧化碳排放强度。
3案例分析
3.1对象描述
本文应用上述模型方法以重庆市化工行业为例展开分析。化工行业是重庆市重要的支柱产业之一。2011年重庆市化工行业实现工业总产值902亿元,占重庆市工业总产值的比重达到7.6%。重庆市缺煤少油,但天然气资源丰富,重庆市是国内门类最齐全、产品最多,综合技术水平最高的天然气化工生产基地。但重庆市化工行业部分产品的工艺技术路线落后,产品结构有待调整优化。2009年重庆市化工行业的精细化率仅约20%,低于全国的30%-40%的平均水平,更低于发达国家的60%-70%的水平。
根据重庆市化工行业发展现状和趋势,本文选取了合成氨、烧碱、纯碱、甲醇、石油加工、乙烯和钛白粉这七种产品作为重庆市化工行业的主要耗能产品。其中,2005年合成氨、烧碱、纯碱、甲醇和钛白粉这五种产品合计的二氧化碳排放占化工行业总体排放的46.5%,而石油加工、乙烯将是重庆市化工行业“十二五”期间重点发展的石油化工产业链中的上游产品。本文利用前文所述的化工行业二氧化碳减排潜力分析模型,分析了重庆市化工行业分别到2015年和2020年的二氧化碳排放变化情况,并通过不同情景间的比较得到其减排潜力。
3.2情景设置
化工行业的能源消耗和二氧化碳排放主要由以下几方面因素决定:产业发展规模,产业内部结构,高耗能产品的产量,技术结构的调整,产品的技术进步率等。本文根据以上这些因素为重庆市化工行业设计了三个发展情景。
在这三种情景中,重庆化工行业未来经济发展变化的基本趋势保持一致。2005—2011年重庆市化学工业总产值年均增长29.5%,未来重庆化工行业将继续保持比较高的经济增长速度。根据《重庆市化工行业三年振兴规划》,到2015年重庆市化工行业总产值将达到2000亿元。由此本文设定2011-2015年重庆市化学工业总产值的年均增长率为23.0%,2015-2020年年均增长率降低到20.0%。与此不同的是,为了支持这种经济的发展需求,三种情景分别设定了不同的能源消费增长和利用模式,具体描述如下。
表2情景定性描述表下载原表
表2情景定性描述表
3.3数据来源及处理过程
重庆市化工行业总产值和增加值现状数据来自《重庆市统计年鉴》(2005-2012),化工行业未来总产值数据来自《重庆市化工行业三年振兴规划》;行业内部结构现状数据来自《重庆市化工行业统计公报》(2005-2010);化工行业分能源品种能源消耗量数据来自《中国能源统计年鉴》(2005-2012);各主要耗能产品产量数据来自《重庆市统计年鉴》(2005-2012);各主要高耗能产品综合能耗参照《中国化学工业年鉴》、《中国低碳发展报告2011~2012》、高耗能产品能耗限额标准(由国家标准化管理委员会制定和颁布)和《能效及可再生能源项目融资指导手册(2008)》,各主要高耗能产品未来所采用的工艺比例和能源消耗参考《2050中国能源和碳排放报告》中的设置,不同的情景将设置不同的技术参数;各种一次能源的二氧化碳排放因子以及各主要耗能产品工业过程与产品使用的排放因子均来自《省级温室气体清单编制指南》,电力的二氧化碳排放因子参考中国国家发改委每年公布的“中国区域电网基准线排放因子的公告”,蒸汽的二氧化碳排放因子通过重庆市的能源平衡表间接计算得到,单位尿素吸收的二氧化碳量用尿素的碳含量(12/60)乘以二氧化碳与碳的转换因子(44/12)得到。主要耗能产品的单价参照中国化工产品网的报价。
3.4结果分析
3.4.1绝对减排潜力
(1)行业总体排放情况
通过模拟计算,重庆市化工行业未来的二氧化碳排放量如下图1所示。
图1重庆化工行业各情景二氧化碳排放总量
图1重庆化工行业各情景二氧化碳排放总量下载原图
随着石油化工的引进,未来重庆化工行业将进入一个飞速发展的阶段。三个情景的二氧化碳排放总量都呈明显的上升趋势,但由于所采取的结构调整和技术改进措施不同,二氧化碳排放总量上升的幅度有所不同。
BAU情景中,由于精细化工比例不高,到2020年只为45%,技术进步率有限,二氧化碳排放上升幅度最大。2015年和2020年的二氧化碳排放量分别为2005年的7.5和13.3倍。
节能情景中,化工行业的精细化工比例相比BAU情景有所提高,到2020年达到50%,工艺设备的技术进步也更显著。2015和2020年二氧化碳排放总量比BAU情景分别低492万吨和1338万吨。
低碳情景中,化工行业的精细化比例进一步提高,到2020年达到55%左右,主要耗能产品的技术水平达到或接近国际先进水平。2015年和2020年二氧化碳排放总量比BAU情景分别低985万吨和2644万吨。
(2)主要耗能产品排放情况
2005年,合成氨、烧碱、纯碱、甲醇和钛白粉这五种主要耗能产品合计的二氧化碳排放量占重庆市化工行业总体二氧化碳排放的46.5%。未来由于化工行业产品结构的调整,高能耗产品产出占化工行业的比例越来越低,加上化工行业工艺技术的改善,尤其对主要耗能产品进行的技术改造,使得主要耗能产品的二氧化碳排放量在重庆化工行业二氧化碳排放总量中所占的比重越来越低,见下图2:
图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重
图2八种主要耗能产品合计二氧化碳排放占化工行业总体比重下载原图
BAU情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重为29.7%,到2020年降低到18.4%。
节能情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重降至26.2%,到2020年进一步降低到16.7%。
低碳情景中,2015年八种主要耗能产品占化工行业总体二氧化碳排放的比重为22.0%,到2020年进一步降低到15.2%。
虽然未来各情景主要耗能产品的二氧化碳排放占化工行业总体的比重有所下降,但仍在化工行业中占有重要的地位,未来在进行产品结构调整的同时,主要耗能产品的节能减排仍将是化工行业实现二氧化碳减排的重要方面。
3.4.2相对减排潜力
(1)行业总体相对减排潜力
重庆市化工行业未来的二氧化碳排放强度(万元GDP二氧化碳排放量)如下图3所示。
图3重庆化工行业各情景二氧化碳排放强度
图3重庆化工行业各情景二氧化碳排放强度下载原图
与排放总量显著上升形成鲜明对比的是,重庆化工行业的二氧化碳排放强度下降明显。原因在于重庆化工行业在未来十年将进入一个飞速发展的阶段,2020年重庆化工行业的增加值相比2005年将增加30倍。而由于对高耗能产品规模的控制,精细化工比例的大幅提高,化工行业内部结构得到不断优化;同时由于化工行业的能效水平不断提高,到2020年逐步接近或达到国际先进水平,使得三个情景中,2020年重庆化工行业的二氧化碳排放总量相比2005年分别只增加了13.3、11.6和9.9倍。从而导致三个情景化工行业的二氧化碳排放强度均有较大幅度的下降。各情景二氧化碳排放强度相比2005年降低幅度见下表3。
表3重庆化工行业各情景二氧化碳排放强度相比2005年降低百分比下载原表
表3重庆化工行业各情景二氧化碳排放强度相比2005年降低百分比
(2)主要耗能产品相对减排潜力
随着节能减排技术的不断改进和推广,未来重庆市化工行业各主要耗能产品的单位二氧化碳排放量将不断降低,由于篇幅有限,本文仅以合成氨为例进行分析。
重庆市合成氨均以天然气为原料,2005年重庆市大型天然气制合成氨的比重仅为3.8%。单位合成氨二氧化碳排放量为3.0吨。若扣除末端尿素固碳量,则2005年单位合成氨二氧化碳排放量为2.7吨。未来由于大型天然气制合成氨所占比重越来越高,使得重庆市未来单位合成氨二氧化碳排放显著降低,见下图4和图5。
图4单位合成氨二氧化碳排放量
图4单位合成氨二氧化碳排放量下载原图
图5单位合成氨二氧化碳净排放量(去除尿素固碳)
图5单位合成氨二氧化碳净排放量(去除尿素固碳)下载原图
BAU情景中,2015年大型天然气制合成氨的比重达到50%,合成氨二氧化碳排放总量占化工行业总排放的6.7%,单位合成氨二氧化碳排放降低到2.2吨;2020年大型天然气制合成氨的比重达到80%,合成氨二氧化碳排放只占化工行业总排放量的3.8%,单位合成氨二氧化碳排放进一步降低到1.8吨。
节能情景中,2015年大型天然气制合成氨的比重达到60%,合成氨二氧化碳排放总量占化工行业总排放的5.3%,单位合成氨二氧化碳排放降低到2.0吨;2020年大型天然气制合成氨的比重达到90%,合成氨二氧化碳排放总量占化工行业总排放的2.9%,单位合成氨二氧化碳排放进一步降低到1.6吨。若扣除末端尿素固碳量,2015年和2020年重庆市合成氨的二氧化碳排放量分别可减少117.3万吨和146.7万吨,单位合成氨二氧化碳排放分别降低到1.1吨和0.7吨。
低碳情景中,2015年大型天然气制合成氨的比重达到70%,合成氨二氧化碳排放总量占化工行业总排放的3.8%,单位合成氨二氧化碳排放降低到1.8吨;2020年大型天然气制合成氨的比重将达到100%,合成氨二氧化碳排放总量仅占化工行业总排放的2.3%,吨合成氨二氧化碳排放进一步降低到1.5吨。
4结语
[关键词]旅游业;能源需求;二氧化碳排放;研究进展
[中图分类号]F59
[文献标识码]A
[文章编号]1002-5006(2013)07-0064-09
引言
旅游业作为世界第一大经济产业,每年国际旅游的人数约占全球总人口的1/6,如此庞大规模的人口“迁徙”对气候、环境造成了实质性的影响,引起相关国际机构和学界的广泛关注。第一届全球气候变化与旅游国际会议后,联合国政府间气候变化委员会(IPcc)、世界气象组织(uNwM0)、世界旅游组织(uNwTO)等国际组织及其他研究机构达成共识:旅游业是能源消费的主要领域之一和温室气体排放的主要来源之一。旅游业能源需求和二氧化碳排放成为近5年来旅游研究的热点。我国该方面研究起步较晚,2008年“旅游业节能减排”字样首次出现在政府文件中,目前仍处于探索性研究阶段。本文系统地对国内外旅游业能源需求和二氧化碳排放研究进行了回顾,以期通过国内外研究进展的对比分析,为下一阶段我国旅游业能源需求和二氧化碳排放研究提供思路,为我国旅游业节能减排工作提供科学借鉴与参考。
1、国外旅游业能源需求与二氧化碳排放研究进展
旅游业能源需求与二氧化碳排放问题的实质是旅游环境影响以及气候变化与旅游相互影响问题的延伸,国外该方面研究开展得很早,可追溯到20世纪中叶。通过对国外相关研究文献的整理与分析,国外研究主要集中在旅游业能源需求与二氧化碳排放的结构与途径,旅游业能源需求与二氧化碳排放量的定量测算、预测及旅游业节能减排措施等4个方面。其中,旅游业能源需求与二氧化碳排放量的测算是研究的重点。
1.1 旅游业能源需求与二氧化碳排放的途径与结构
厘清旅游业能源需求与二氧化碳排放途径是旅游业减缓温室气体排放工作的首要前提。由于旅游业产业关联性高、产业链长,旅游活动灵活多样,旅游业能源需求与二氧化碳排放途径复杂且多元。尽管如此,国外相关研究较为一致地认为旅游业能源需求与二氧化碳排放主要集中在旅游交通(特别是国际长途旅游飞行)和在目的地为游客提供舒适的设施等。由于国家发展水平和旅游业发展阶段不同,各国旅游业能耗需求与二氧化碳排放的途径和比例结构有所差异,但旅游交通始终是各国旅游业能源需求与排放的重头(表1)。旅游业所需的能源主要来自化石燃料中的石油。2006年,石油提供了全球40%的能源需求和90%的交通需求;未来15年,因交通和旅游业发展,石油占全球能源的比例将达60%。约曼等(Yeoman,et al.)在分析了全球经济、石油替代能源生产及全球可持续发展需求等形势后,认为随着石油供应量的衰减及价格上涨,长期来看,将对苏格兰旅游业产生颠覆式的影响。而在发展中国家的乡村地区,生物质特别是木材是主要的能源来源。尼泊尔安那波那保护区的住宿业每年要消耗掉3600吨薪材和近47.5万升煤油。联合国环境署和经合组织共同推出的一份最新报告显示,在旅游业导致的二氧化碳排放中,航空占40%,汽车占32%,住宿占21%,剩下的7%分别被旅游活动(4%)和其他交通方式(3%)所排放。世界旅游组织研究报告显示,2005年全球旅游交通和住宿业的二氧化碳排放总量分别为1192百万吨和284百万吨,占旅游业二氧化碳排放总量的比重分别约为63%和15%;其中,航空二氧化碳排放量为640百万吨,占旅游交通排放的53.69%。高斯林(Gtissling)从能源需求、土地利用与覆被变化、物种多样性等5个方面研究了全球旅游业的环境影响,结果表明,2001年全球旅游业因交通产生的耗能约为13223皮焦,占总能耗的94%;排放二氧化碳当量为1263百万吨,占总排放的90.28%。住宿业能耗为508皮焦,占总能耗的3.5%;排放二氧化碳当量80.5百万吨,占总排放的5.75%。剩下的为旅游活动所消耗和排放。贝肯等(Becken,et al.)用实证研究法对新西兰旅游吸引物和旅游活动的能源消耗模式进行研究,发现旅游交通能耗占总能耗的65%~73%。
1.2 旅游业能源需求与二氧化碳排放的定量测算
旅游业能源需求与二氧化碳排放量的定量测算是最基础但又最核心的研究内容,是旅游业应对气候变化、制定节能减排措施的科学基础与前提。旅游业的能源需求与排放涉及众多行业和部门,包含直接和间接的能耗与排放,加上旅游业统计数据缺乏这一现实,旅游业能源需求与二氧化碳排放的定量测算是一个世界性的难题,是该领域研究的重点。
1.2.1 测算方法
从全球来看,目前尚没有系统的关于旅游业能源消耗和二氧化碳排放量估算的方法。文献研究显示,目前最常用测算方法主要有两种(表2),一种是借用全球气候变化和可持续发展研究领域常用的碳足迹法(carbonfootprint approach)和生态足迹法(ecological footprint approach);另一种是“自下而上法(bottom-up approach)”,即直接计算旅游业各环节的能耗与排放,最终求得整个产业的能耗与排放数据。
(1)碳足迹是指企业机构、活动、产品或个人通过交通运输、食品生产和消费以及各类生产过程等引起的温室气体排放的集合。从其定义不难看出,碳足迹法是对生产和消费全过程、直接和间接排放碳当量的追踪,甚至不考虑碳发生的区域。澳大利亚资源能源旅游部从生产和消费两个方面,运用碳足迹法估算了澳大利亚旅游业的温室气体排放。结果表明,2003~2004年间,澳大利亚旅游业碳足迹为1.15亿吨。洛克等(Loke,et al.)利用碳足迹法研究了夏威夷能源需求与旅客数量急剧增加以及旅游者国别多样化的关系,发现旅游者能耗占夏威夷总能耗的比重平均为60%;且国外游客比例越大,能耗需求也越大。
(2)生态足迹是指维持一个人、地区、国家或者全球的生存所需要的以及能够吸纳人类所排放的废物、具有生态生产力的地域面积。旅游生态足迹即指维持旅游活动所需要的以及能够吸纳因旅游而排放的废物、具有生态生产力的地域面积,其实质是一定区域内旅游活动对生态影响的一种定量测度。亨特(Hunter)认为,生态足迹法对理解旅游的环境影响具有实际意义,并且将被作为一项重要的旅游可持续发展的环境指标广泛采用。罗伯特等(Roberto,et al.)采用生态足迹法,结合兰萨罗特岛旅行推断模型,计算兰萨罗特岛公路旅游交通使用量及其对未来旅游业发展的影响。研究结果表明,兰萨罗特岛上的旅游交通主要是依赖于私家车,在接下来的10年里,公路旅游交通量还将持续增长,并达到饱和,兰萨罗特岛旅游交通在旅游生态足迹中所占的比重将会增大。
(3)“自下而上”法是从到达目的地游客的数据分析人手,向上逐级统计能耗与排放量。这种方法有两个特点,一是逻辑算法简单,但实际操作难度很大,既要求研究区域旅游业统计资料完备,同时还需要海量的实地调研数据;二是遗漏大部分旅游业间接的能耗与排放,导致估算结果总体偏小。但尽管如此,在实际研究工作中,自下而上法被采用得最多。前述的几项关于全球旅游业能耗与排放的估算研究,其思路都暗含着自下而上法的运算逻辑。贝肯等采用“自下而上”法分析新西兰南岛西部海岸旅游者不同行为引致的能源消耗。研究结果表明,国际游客的能源消费总量是新西兰国内游客的4倍。霍伊特等(Howitt,et al.)采用“自下而上”法发现2007年单次往返于新西兰的国际邮轮游客碳排放量范围为250~2200克/人·公里,每位旅客在邮轮上的住宿所需的平均能耗约为1600百万焦/晚,比陆地上的一般酒店能耗要高出12倍。
1.2.2 测算内容
据文献整理研究,当前国外旅游业能源需求与二氧化碳排放的定量测算主要包含两方面内容。一是对总量的定量测算。高斯林估算2001年全球旅游业共消耗能源14080皮焦,排放二氧化碳当量1399百万吨。皮特尔斯等(Peeters,et al.)的测算表明旅游业导致了全球4.4%的二氧化碳排放。世界旅游组织和其他相关机构的一份联合报告指出,2005年全球旅游业排放的二氧化碳约占全球二氧化碳排放总量的5%,该排放量所造成的影响,大约可以达到全球温室效应的14%。江南等(Konan,et al.)的测算显示,夏威夷旅游业的能源消耗占全州总能耗的60%。澳大利亚资源能源旅游部估算2004年澳大利亚旅游温室气体直接排放为470万吨,间接排放为2810万吨。尼泊尔(Nepal)测算了尼泊尔安那波那保护区乡村旅游的能源消耗,结果表明住宿业每年约消耗3600吨薪材和47.5万升煤油。二是对一些关键参数的定量测算,如交通工具、住宿方式、旅游活动的单位旅游能耗和排放强度。相关研究较多,并注意到了国别之间的差异。比如乘飞机旅行单位能耗为2.0百万焦/人·公里,排放二氧化碳396克/人·公里;乘汽车旅行单位能耗为1.8百万焦/人·公里,排放二氧化碳132克/人·公里;新西兰酒店单位能耗为155百万焦/床·晚,马略卡岛为51百万焦/床·晚,桑给巴尔为256百万焦/床·晚;新西兰直升机滑雪单位能耗1300百万焦/游客,潜水800百万焦/游客,博物馆参观10百万焦/游客;往返于新西兰国际邮轮旅游者平均碳排放为390克/人·公里等。
1.3 旅游业能源需求与二氧化碳排放的预测及情景分析
研究旅游业能源需求与二氧化碳排放是为了把握未来的趋势与动态,因此,许多专家学者对其预测及情景分析作了研究,以期能够为有针对性的节能减排措施提供具体可靠的科学依据。世界旅游组织研究报告预测,以2005年为基准,在2035年以前,来自旅游业的二氧化碳排放将以2.5%的年均速度增长;其中住宿业二氧化碳排放的年均增速为3.2%。而皮特尔斯等的预计比世界旅游组织的预计高0.7个百分点,即2035年之前全球旅游业二氧化碳排放将以每年3.2%的增长率增加。杜波依斯等(Dubois,et al.)用敏感度分析法,以2000年为基准,预计按照当前旅游业增长趋势,到2050年法国旅游休闲业温室气体排放将增加90%。
1.4 旅游业节能减排的措施研究
节能减排措施是旅游业能源需求与二氧化碳排放的最终落脚点。从国外研究进展看,目前已基本形成体系化的节能减排措施。世界旅游组织从旅游行业角度分别就政府、旅游企业及旅游者提出了比较系统的节能减排政策措施,同时还对交通、建筑、装备制造等相关领域的节能减排提出了具体对策及技术途径。理查德(Richard)利用仿真模型分析碳税对国际旅游的影响,指出如果全球按1000美元/吨征收碳税,则乘飞机的国际旅游将减少0.8%,相对应可减排二氧化碳0.9%。贝肯等研究表明,坐落在世界遗产拉明顿国家公园的生态客栈采取绿色全球21环境认证计划,成功认证后,每年能耗大幅减低,二氧化碳排放每年减少189吨,节约15000澳元。除了政策或有关技术手段外,旅游者行为方式的选择也是旅游业节能减排的重要方面。贝肯等研究发现,无论在国际旅游者还是国内旅游者能耗账单中,交通始终占据主导地位,因此改变旅行方式能够有效影响旅游者的能源需求。巴克利(Buckley)认为,“慢旅游”是一种有效的降低碳排放的旅游方式,它是指反对乘坐飞机等快速交通工具的旅游,更重视游的过程,强调旅游的过程和目的地同样重要。“慢旅游”必将发展成为一种未来旅游的流行方式。
2、我国旅游业能源需求与二氧化碳排放研究进展
我国旅游业能源需求与二氧化碳排放研究起步较晚,目前仍处于探索性研究阶段。文献资料研究表明,国内研究主要集中在旅游业能源需求与二氧化碳排放量的测算和旅游业节能减排的对策措施方面。
2.1 旅游业能源需求与二氧化碳排放的测算研究
我国旅游业能源需求与二氧化碳排放的测算研究涉及全国、省域/地区及产品层面。全国层面,石培华等首次系统地估算了全国旅游业的能耗与排放,结果表明,2008年我国旅游业消耗能源为428.3皮焦,排放二氧化碳51.34百万吨L25 2。省域/地区层面,陶玉国等估算了2009年江苏省旅游业直接的能耗和二氧化碳排放量,分别为32.56皮焦和3.7百万吨,占江苏能源总消耗量和碳排放总量的比例分别为0.53%和0.56%,旅游交通、住宿业和旅游活动占旅游能耗的比例分别为70.91%、17.32%和11.76%。章锦河等分别对四川省九寨沟、鄂西、湖南和江西等地旅游生态足迹、碳足迹进行了测算。另外,郭等(Kuo,et al.)对我国台湾地区澎湖列岛旅游业能耗与二氧化碳排放进行了测算,结果表明,每年澎湖列岛旅游业消耗能源795.96百万焦,排放二氧化碳5.05千克;其中,旅游交通能耗4.95×108百万焦,排放二氧化碳3.38×108克,住宿业能耗为1.17×108百万焦,排放二氧化碳8.56×108克,旅游活动耗能1.24×108百万焦,排放二氧化碳7.71×108克。林(Lin)对台湾地区垦丁等5个国家公园旅游交通的二氧化碳排放进行了研究,结果表明,近8年旅游交通的二氧化碳排放量在增加,5个国家公园平均每年排放二氧化碳16.1万吨。产品层面,等以云南旅游市场最具代表性的香格里拉“八日游”系列产品为例,从生态足迹角度对该线路产品的生态效率进行了计算和分析。
2.2 旅游业节能减排的对策与措施
国内旅游业节能减排工作实践最早从要素部门开始,从生态景区、循环景区到绿色饭店、绿色交通。对策与措施的研究紧跟实践步伐,并最终拓展至旅游城市(圈)、全行业。章锦河以九寨沟和黄山两个国内知名的生态型景区为例,以旅游废弃物为手段定量测度旅游业能源需求与排放对生态的影响,认为合理控制游客规模、缩短旅行距离、减少乘飞机出游等是旅游业节能减排和建设生态型景区的有效举措。王辉等提出要借鉴台湾坪林地区的措施,给每个海岛型景区设置一个“碳减量计数器”,以此增强游客节能降耗意识并约束自身的旅游行为方式,从而有效降低旅游活动的能耗与排放。李萍就酒店行业的节能减排,从发展理念、能源管理、引导消费观到政策和制度保障提出了一系列具体的对策与建议。林研究了1999~2006年台湾地区5个国家公园旅游交通的二氧化碳排放,提出政府可以通过提升管理效率,运用价格杠杆等降低碳排放,同时通过就近旅游、提高交通荷载、使用清洁能源及其他技术措施来降低旅游二氧化碳排放。蔡萌等从低碳旅游发展导则、低碳旅游设施、低碳旅游吸引物、低碳旅游体验环境和低碳旅游消费方式等5个方面构建了低碳旅游城市模型,提出规范发展、互动发展、示范发展等城市旅游低碳发展的战略举措。万幼清认为武汉城市圈旅游业节能减排需要提升绿化措施、优化绿地布局、加强水域生态保护。石培华等系统整理了旅游业各要素、各领域节能减排的技术手段、运行模式和制度安排。
近3年来,作为旅游业节能减排实现方式的低碳旅游,成为旅游学术界的研究热点。在中国知网,以“低碳旅游”为主题或关键词检索,共得到有效文献297篇。文献数量统计表明,2011年共发表137篇,占全部文献的46.13%;2010年和2012年各79篇,各占26.60%;2009年仅有2篇,占0.67%。而近300篇文献中,仅有17篇(5.72%)发表在核心期刊,一定程度上表明研究的深度有限。研究内容主要集中在概念、内涵及特征研究,低碳旅游发展案例介绍,发展模式及实现的路径、建议等。
3、国内外研究总结与对比
3.1 总结
整体而言,国外旅游业能源需求与二氧化碳排放研究主要在3个方面取得了进展:1)识别了旅游业能耗、排放的重点领域及结构;在旅游业能源消耗与二氧化碳排放的定量估算研究与情景分析方面形成初步结论。2)对各类型交通方式、住宿方式及旅游活动的单位能耗和二氧化碳排放等关键性参数有了一般性的认识,并识别了明显的国别、地区及不同部门之间的差异。3)基本形成体系化的节能减排政策措施。但是,国外研究同时存在3个方面不足之处:1)虽然形成一些标志性成果,但总量不多,还没有系统化和规模化的研究积淀;对旅游交通、住宿及旅游活动方式等单个领域和环节的实证研究多,地区性、全行业的系统研究较少。2)多是基于部分国家/地区的调查数据和经验数据进行估算,尚没有系统的估算方法和情景分析法。3)多以旅游发达国家或经济发达国家为对象,针对发展中国家研究较少。
而从国内研究进展来看,主要有4个特征:1)起步晚,绝大多数研究是2009年之后开展的,且研究总量有限。2)现有的旅游业能耗及二氧化碳排放量的现状估算研究更多地是参照国外已有研究的架构及经验数据进行的,其中涉及的关键性数据如不同交通方式的能耗及排放参数等都是通过文献研究得到的经验数据,对我国的针对性和有效性不足。3)旅游业能源需求与二氧化碳排放的预测和情景分析至今仍是空白。4)旅游业节能减排对策与措施研究的科学支撑不足,宏观对策多,具体的、有针对性的举措少。
3.2 对比分析
主要从旅游业能源需求与二氧化碳排放的结构与途径,旅游业能源需求与二氧化碳排放量的定量测算、预测及旅游业节能减排措施等4个方面进行对比分析(见表3)。
在旅游业能源需求与二氧化碳排放的结构与途径研究上,国内外总体上是一致的,即重点都在旅游交通和住宿两方面,但总量和结构有区别。总量上,从全球来看,旅游业能耗及排放占全球的比重在5%左右,而我国则不到1%,无论是全国层面还是省域层面。结构上,国外旅游交通能耗及排放明显高于国内,旅游活动则相反,国内要高于国外,住宿业能耗及排放水平比较接近,可能和我国住宿业从学习国外而开端有关。定量测算方法上,国内几乎完全借鉴国外研究方法,没有开发出适合我国旅游业特色的方法;定量测算的广度国内外比较接近,但深度上国外明显深于国内。预测方面国内目前仍是空白。对策与措施方面,国外已基本形成体系化、宏观与微观相结合的对策措施,国内对策体系尚未形成,以宏观对策居多。
4、研究启示与展望
结合国外研究进展,针对国内研究现状,未来国内旅游业能源需求与二氧化碳排放研究应重点关注以下3个方面内容:
4.1 加强旅游交通和住宿等重点领域能源需求与排放的定量实证研究
总体来看,我国旅游业能源需求与排放的研究存在现状不清、总量不明的问题;旅游交通能耗与排放情况完全空白,住宿业仅粗线条掌握全国四星级以上酒店的水电气等能源消耗数据。因此,要加强旅游业特别是交通和住宿重点领域能耗与排放的定量测算;根据我国旅游业实际,对不同类型旅游交通方式、住宿业态、旅游活动单位能耗/排放强度等关键参数开展针对性定量实证研究;开展各种工程技术手段方面的节能降耗效率与能力的实证研究。
4.2 加强旅游业能源需求与排放的预测分析和情景研究
旅游业能耗与排放的科学实质是人类活动对全球环境变化的影响,也是国际全球环境变化人文因素计划(IHDP)的重点研究内容之一。旅游业能耗/排放的预测与情景研究是衡量旅游活动对全球环境变化影响的重要前提,同时也是旅游业减缓和响应全球环境变化的科学依据。因此,必须强化对未来旅游业能源与排放不同情景的模拟研究与分析,为科学应对和减缓气候变化对旅游业的影响、制定适应措施提供科学依据。
作为世界上最大的发展中国家,我国政府在2009年12月的哥本哈根国际气候会议上对全世界作出郑重承诺:到2020年我国单位国内生产总值的二氧化碳排放量比2005年下降40%~50%.而作为世界上最大的碳排放国家,我国的碳减排目标任重而道远.当前,全球都在积极推行“低碳经济”,各国都在努力实现“绿色生产”,力求减少碳排放量.我国政府在“十二五”规划中提出节能减排的约束性目标,即单位国内生产总值能耗要降低16%,而二氧化碳排放要降低17%,主要污染物的排放总量要求减少8%到10%,同时把该目标进一步分解到全国各地区,要求各地区务必坚持绿色、低碳的新型发展理念,把节能减排作为贯彻落实科学发展观、加快经济发展方式转变的一个重要出发点,发展资源节约型、环境友好型的生产消费模式,进而增强自身的可持续发展能力.一直以来,二氧化碳排放问题作为全球变暖背景下的一个新标识,是国内外众多学者密切关注的重点.由于我国存在严重的区域经济发展不平衡和地区资源禀赋差异,中国各省市地区的碳排放也存在显著差异.要想制定出科学合理且有针对性的节能减排政策,就必须很好地把握中国各省市的碳排放情况,因此有必要对各省市碳排放量进行全面系统的测算.然而,截止目前,我国无论是国家层面的还是省级层面都没有直接公布二氧化碳排放量的官方统计数据,国内外学者的测算研究都是基于对能源消费量的测算.那么,我国各省份二氧化碳排放量到底有多少,哪些因素对二氧化碳的排放产生影响?这些相关影响因素对二氧化碳排放的影响程度又是如何呢?这些问题的解决与否关系到我国节能减排政策制定的科学与否,也关系到低碳战略实施成效的显著与否.节能减排工作的顺利开展,是我国经济社会保持可持续发展的关键.本文参照IPCC(2006)以及国家气候变化对策协调小组办公室[3]和国家发改委能源研究所(2007)[4]的方法,运用相关方法对各省市地区的碳排放量数据进行估算,比较详细估算了我国30个省市(直辖市、自治区)1997—2011年的二氧化碳排放量.
2各地区碳排放量的测算
考虑到二氧化碳排放的来源比较广泛,除了化石能源燃烧外,在水泥、石灰、电石、钢铁等工业生产过程中,由于物理和化学反应的发生,也会有二氧化碳的排放,而在所有工业生产过程排放的二氧化碳中,水泥大约占56.8%,石灰大约占33.7%,而电石、钢铁生产所占不足10%.为了进一步增强估算的全面性和准确性,本文不仅估算了化石能源燃烧所产生的二氧化碳排放量,同时也估算了水泥生产过程产生的二氧化碳排放量.另外,为精确起见,本文进一步将化石能源消费细分为煤炭消费、焦炭消费、石油消费、天然气消费,其中石油消费则更进一步细分为汽油、煤油、柴油、燃料油四类.所有化石能源消费数据都来自于历年《中国能源统计年鉴》.水泥生产数据来自于国泰安金融数据库.水泥生产过程产生的二氧化碳排放量具体计算公式如下:CC=Q×EFcement.(2)其中CC表示水泥生产过程中二氧化碳排放总量,Q表示水泥生产总量,而EFcement则是水泥生产的二氧化碳排放系数.本文估算水泥生产的二氧化碳排放量时,仅仅计算了化学反应产生的二氧化碳排放量,而没有包含水泥生产过程中燃烧化石燃料而造成的二氧化碳排放量.表1列出了各类排放源的CO2排放系数.经过一系列准确计算,可以得到我国30个省市地区1997—2011年二氧化碳排放量的估计值.由表2的二氧化碳排放量估算值可以看出我国各省市地区碳排放量基本都呈现上升趋势,地区差异比较明显.为了更好的体现我国二氧化碳排放的地区差异性,将我国30个省(市、区)按照经济发展水平和其地理位置划分为三大区域,包括东部地区、中部地区以及西部地区.具体来讲,东部地区包括北京、河北、天津、辽宁、山东、江苏、上海、浙江、福建、广东和海南这11个省(市);中部地区主要包括黑龙江、吉林、山西、湖北、河南、湖南、安徽和江西这8个省份;西部地区则包括内蒙古、广西、云南、贵州、四川、陕西、重庆、青海、宁夏、新疆、甘肃、(由于缺乏数据较多,未估算其二氧化碳排放量)这12个省(市、区).表3显示我国三大区域的碳排放量.表3的数据反映了我国及东中西部三大区域碳排放量情况.从总体上来看,1997—2011年我国的二氧化碳排放量呈现持续增长的趋势,从1997年的336565.69万吨增长至2011年的1066359.01万吨,增长幅度达到729793.32万吨,短短15年间排放量大约增长了2.17倍.由图1可以明显看出,在1997—2002年我国二氧化碳排放量处于缓慢增长的阶段,这个阶段我国的二氧化碳排放量年均增长为3.48%.这个阶段产生的原因主要是受亚洲金融危机影响,我国出口贸易缩减,这在一定程度上减少了二氧化碳的排放.从2003年起,亚洲各国陆续走出金融危机的泥潭,我国经济发展加速,但由于我国高投入、高消耗、高污染的粗放型经济增长方式,使得我国这一阶段的二氧化碳排放量处于快速增长期,2003—2007年我国二氧化碳排放量增速达到13.70%.之后我国二氧化碳排放量增速有所下降,2008—2011年增速为9.37%.虽然增长率依旧不低,但是相比于2003—2007年还是呈现下降趋势.这说明我国意识到能源环境的重要性,开始探寻低碳经济路径,为实现绿色生产付出努力.特别是在2008年10月29日我国公布的《中国应对气候变化的政策行动》白皮书,郑重声明了我国应对气候变化问题的积极态度和相关行动,更是明晰了我国未来低碳发展路径.从表3东中西部三大区域碳排放量情况可以明显看出,我国的碳排放区域差异性是比较显著的.总体来讲,我国二氧化碳排放量呈现由东到西依次递减的规律,东部地区碳排放量最多,中部地区次之,西部地区碳排放量最少.东部地区的二氧化碳排放在绝对量上大大超过中西两大区域.从图2可以看到,这三大区域二氧化碳排放均呈现逐年增长的趋势,且其增长规律均与全国二氧化碳排放量一样,可以分为三个阶段:从1997—2002年三大区域的二氧化碳排放量有升有降,总体来说处于缓慢增长阶段;从2003—2007年,三大区域的二氧化碳排放量均呈现不同程度的增长,整体处于快速增长阶段;从2008—2011年,三大区域的二氧化碳排放量处于增速下降阶段.图2是我国1997—2011年30个省市地区二氧化碳排放量均值的降序排列图.其中,二氧化碳排放量均值位于全国二氧化碳排放均值的省市地区有:山东、河北、江西、江苏、河南、广东、辽宁、内蒙古、浙江、四川和湖北.排名靠前的前五个省份是山东、河北、江西、江苏和河南,分别占我国二氧化碳排放总量均值的8.71%、8.00%、7.68%、6.21%和5.95%.我国的主要二氧化碳排放大省均为传统工业,能源消费以煤炭为主.二氧化碳排放量排名靠后的五个省份分别是天津、甘肃、宁夏、青海和海南,分别占我国二氧化碳排放总量均值的1.46%、1.44%、0.98%、0.40%和0.30%.图3是我国1997—2011年各省碳排放年均增长率的降序排列图.可以看到,二氧化碳排放年均增长率排名前五的省份是宁夏、内蒙古、海南、福建和山东,其中宁夏二氧化碳排放的年均增长率达到15.36%.宁夏出现较高二氧化碳排放速度的原因与其快速的经济增长密切相关,1997年宁夏的国内生产总值为210.92亿元,2011年为2102.21亿元,增幅达到1891.29,增长了8.97倍.第二产业的产值占国内生产总值的比重由1997年的41.6%增长到了2011年的50.2%,增长了8.6个百分点.快速的经济发展及不合理的产业结构刺激了二氧化碳的高速排放.除了以上二氧化碳排放年均增长率排名靠前的省份外,青海、陕西、广西和新疆的年均增长率也均超过了10%,高于全国8.59%的平均增长水平.排名靠后的五个省份为辽宁、山西、黑龙江、上海和北京,其二氧化碳排放的年均增长率分别为6.47%、6.16%、5.41%、4.32%和1.95%,其中北京二氧化碳排放年均增长率以1.95%位居全国最低.
3我国各省区二氧化碳排放影响因素的实证研究
影响二氧化碳排放的相关因素很多,比如地理因素、经济发展水平、产业结构、产权结构、能源消费结构、对外开放程度、投资水平、制度环境、城市化水平、能源价格等[5-8].考虑到客观条件的限制,在考虑数据可得性基础上,本文构建面板数据模型研究产业结构、出口贸易、能源消费结构、城市化水平、国内生产总值对二氧化碳排放的影响.本文选择的面板数据模型如下:yit=α+Zitβ+ηi+εit.(3)其中,yit是第i个省份第t年人均二氧化碳排放量;α是常数项,β是回归系数;ηi是个体效应,主要用来控制各省份自有的特殊性质,εit是外生解释变量,主要包含国内生产总值(用gdp表示)、能源消费结构、城市化水平、产业结构及出口贸易等因素.其中,能源消费结构以煤炭消费量占能源消费量的比重度量(用energe表示),城市化水平以非农人口占总人口比重度量(用city表示),出口贸易以出口额占GDP的比重度量(用export表示),产业结构以第二产业占GDP的比重度量(用industry表示),同时对所有变量进行了取对数处理.结果显示,该面板回归模型拟合地较好,回归系数具有较高的显著性,其符号方向与现实情况较为符合.产业结构及国内生产总值对二氧化碳排放量的弹性系数较高,说明二氧化碳对产业结构及国内生产总值的变动比较敏感.第二产业占GDP的比重每增加1%,会使二氧化碳排放量增加0.9744%,这说明第二产业与碳排放呈现明显的正相关关系,第二产业是二氧化碳排放的主要驱动因素.经济每增长1%,二氧化碳排放量则会增加0.5812%,这说明经济增长也是碳排放量增多的一个重要因素,二者呈现正相关关系.能源消费结构与出口贸易与碳排放量的弹性系数在1%水平上不显著.
4结论与政策建议
碳排放是环境问题的核心,与经济发展和人口变动密切相关。四川省人口变动(包括人口总量、人口城镇化、人口老龄化、家庭规模小型化和人口消费)与碳排放关系密切。
四川省碳排放现状趋势:增长较快,人均大大低于全国平均水平
随着我国社会经济的快速发展及其对能源需求的不断增长,我国碳排放量也呈快速增长态势。2010年,我国能源消费中的二氧化碳排放量已达到了20.75亿吨,人均碳排放为1.55吨。与全国一样,四川二氧化碳排放量也增长较快。2010年二氧化碳排放量达到了9248万吨,人均碳排放量为1.15吨。虽然四川的人均碳排放量大大低于全国的平均水平,但随着四川城市化工业化的加速推进,未来四川省二氧化碳排放量还会快速上升。
四川人口变动与碳排放的关系:人口消费关联度最大,人口总量最小
灰色斜率关联度是根据曲线的接近程度来计算关联度。对于离散变量,如果各时段上曲线斜率相等或相差较小,那么两序列之间的斜率关联度就大;如果各时段上曲线斜率相差较大,那么两序列间的斜率关联度就小。通过对四川省1997~2010年各指标(见下表)进行无量纲化处理,然后通过公式计算各因素关联系数序列。为了反映两序列间的关联程度,需要进一步计算灰色斜率关联度,即是求各年份关联系数的平均值。
人口消费与碳排放
1997年,四川省居民人均消费支出为5533.48元,到2010年时,四川省居民人均消费支出达到每年16001元,年均增长达到747.7元。根据前文测算得出,四川省居民人均消费支出与二氧化碳排放量灰色斜率关联度最大,为0.9445,经统计分析两者的相关系数为0.9703,相关性高,说明居民的消费观念与消费行为依然是影响四川省二氧化碳排放的重要因素。随着居民收入的增加,人们的消费水平会不断提高,消费类型也会发生改变。
居民消费对二氧化碳的排放的影响主要有两种方式:一种方式是通过增加对能源的直接消费来增大二氧化碳的排放,如汽车消费的日益普及,暖气和电器设备的广泛使用会带来能源消费的大量增加;另一种方式是通过对能源的间接消费导致二氧化碳排放的增加,如住房消费、家居装饰、服装购买支出的增加会加大这些产品在生产过程中对能源的消耗。
人口城镇化率与碳排放
改革开放以来,中国城镇化水平从最初的20%左右提高到2010年的49.68%。与全国一样,四川省城镇化水平也从最初的14.27%提高到2010年的40.18%。根据计算,四川省二氧化碳排放量与城镇化水平的灰色斜率关联度为0.9153,呈显著正相关,随着四川省城市化的发展,二氧化碳排放量将继续增加。首先,伴随着人口城镇化进程的加快,居民消费水平不断提高,生活方式也发生了改变,这使得居民对生活性能源消耗的直接与间接需求增长。在目前以化石能源为主的能源结构条件下,城镇化水平加快将会大大促进二氧化碳排放的增长。其次,伴随城镇的建设与快速发展,城镇建筑物建设必然加大对能源的消耗,特别是对水泥、钢铁等原材料需求的增加,这无疑会增加在生产原材料过程对能源的消耗。
家庭规模与碳排放
人口的消费常常以家庭消费的方式展开。家庭规模对于人口的消费具有重要影响。对中国1988~1990年国家统计局城镇住户抽样统计年报数据的研究显示,家庭规模越小,人均消费倾向越大。1997年到2010年短短的14年中,四川省家庭规模缩小了18.31%,这势必会带来人均消费的增加。根据计算,四川省家庭规模与二氧化碳排放量之间的灰色斜率关联度为-0.8929,呈显著负相关,说明家庭规模对二氧化碳排放有显著的影响作用。随着家庭规模的日益缩小,人均居住面积会不断增大。四川省2007年与2000年相比,城市居民人均住房面积就增加了近2倍。随着家庭规模的缩小,人均对水、电、气等资源的消费会增加,人均二氧化碳排放量无疑会增多。
人口老龄化率与碳排放
1997年,四川省老龄化率(60岁及以上老年人口)为10.20%,到2010年时,老年人口比重上升到了16.30%,表明四川省老龄化的压力和挑战越来越大,老龄人口比重的日益上升也将产生更多的老龄人口消费问题。根据计算,四川省老龄化率与二氧化碳排放量的灰色斜率关联度为0.8435,呈显著正相关,说明四川人口老龄化问题正影响着二氧化碳的排放量。
老龄人口是一个特殊的人口群体,他们的消费观念和消费行为与劳动年龄人群和少儿人群有着较大的差异。当人口老龄化程度不太严重时,人们在进入老年人的行业后,会减少在交通、饮食和服装方面的支出,这在一定程度上会减少碳的排放,但当高龄老人不断增多,人口老化日趋严重时,大量高龄老人会增加对取暖和医疗服务的需求,同时,更多的人会加入老龄服务业,这会间接增加对能源的消费和对碳的排放。目前,四川正处于日趋严重的老龄化阶段,人口的进一步老龄化无疑会加剧碳的排放。
人口总量与碳排放
从计算结果看,人口总量与二氧化碳排放量的灰色斜率关联度为0.7064,低于其它因素的灰色斜率关联度,这说明,人口总量变化对二氧化碳排放有一定的影响,但其影响不如其它因素产生的影响明显。事实上,由于我国计划生育政策的实施,我国人口出生率在不断下降,人口虽然在增加,但增长的速度已大大下降。不仅如此,自2005年后,四川常住人口不仅没有增加,反而呈现下降的趋势,这与大量农村人口外出务工不无关系。四川常住人口的下降标志着四川人口总量对碳排放的影响将逐渐减小。
(一)我国经济增长的现状
现阶段,我国经济水平呈现出快速持续增长的趋势,进而我国国民经济水平有所提高。但我国地区经济发展存在较大的差异,各地区间的经济水平极其不平衡,从整体分布情况来看,我国东部地区的经济发展水平和经济增长速度较快,中部次之,而西部的发展水平较低和经济增长速度较为缓慢。
(二)我国能源消耗的现状
首先,我国能源消耗的整体情况呈现出逐年上升的趋势,尤其在我国加入WTO以后,我国能源消耗速度更快,然而我国一次能源数量有限,随着我国经济的不断发展,其能源消耗会越来越多,不利于我国实现可持续发展。其次,我国地区的能源分布不均衡,致使各个地区间的能源消耗水平有所差异,为此,我国应该根据地区能源消耗程度的不同而制定能源消费结构优化的措施。最后,我国地域辽阔,能源较为丰富,但我国人口众多,致使人均能源量较少,因而我国亟需对能源消耗进行合理分配。
(三)我国二氧化碳排放的现状
现阶段,我国二氧化碳排放主要源于煤炭、石油、天然气等一些一次能源,从而导致我国二氧化碳排放量较大,这对生态环境有着较大的影响,更不符合我国低碳经济的实施和发展。目前,我国二氧化碳排放的总量和人均量都相对较大,并且呈现出逐年上升的趋势,甚至增长速度超出预料。我国各地区的经济发展状况不同,能源储存量也存在较大的差异,所以各地区的二氧化碳排放量也有所不同。但从总体来看,我国东部地区各城市的二氧化碳排放量明显比西部地区城市的二氧化碳排放量要高出许多。
二、我国一次能源消费结构的优化原则和目标
(一)优化原则
我国一次能源消费结构进行优化时主要遵循五个原则。第一,节能减排原则,减少我国一次能源的消耗程度和控制二氧化碳的排放量。第二,维护能源安全的原则,能源的供求和需求相协调,以满足人们正常使用和合理使用能源的需要。第三,能源低碳多元化的原则,目前,我国经济发展中对煤炭、石油等一次能源的依赖程度较大,这些一次能源的二氧化碳排放量较大,不利于低碳经济发展。第四,注重宏观调控与市场调节相结合的原则。第五,因需制宜原则,根据能源需求而积极开发新能源。
(二)优化目标
在低碳经济视角下,我国一次能源消费结构优化的目标主要体现在三个方面:首先,关于经济的发展目标。目前,我国经济水平呈现出不断增长的趋势,其发展速度有明显的加快,进一步缩小了与发达国家间的差距,但是我国仍然需要制定合理的经济发展目标,以实现我国经济的可持续稳定增长。其次,关于能源消费的目标。随着我国经济的不断发展,能源消费越来越多。因而在低碳经济视角下,我国应该制定有效的能源消费战略,以优化能源消费结构。最后,关于二氧化碳排放的目标,目前,我国二氧化碳的排放量呈现出不断上升的趋势,并且在逐年增长,因而我国应该以减少二氧化碳排放量为发展目标。
三、我国一次能源消费结构优化的建议
(一)管理制度方面的建议
在低碳经济视角下,优化我国一次能源消费结构需要加强管理制度建设。首先,加强我国能源管理体制改革,以加强我国的能源管理水平;其次,完善我国能源储备制度,加强我国能源的储备量,为我国实现可持续发展提供有利支持;最后,改进我国的能源投资方式和加强对其管理力度。
(二)技术方面的建议
对于优化我国一次能源消费结构,一定要加强技术支持,进而为促进能源消费结构更加优化提供重要作用。首先,加强能源的勘探和开采技术,促进我国发掘新能源和提高有效开采能力。其次,加强对新能源技术的研发能力。目前,我国经济发展对一次能源的依赖程度较大,而一次能源的过度消耗不利于我国低碳经济的可持续发展。
(三)政策方面的建议
我国相关部门完善关于一次能源方面的法律法规,既有利于加强我国一次能源消费结构的优化,又有利于加强对我国一次能源开发和利用的管理。
四、结语
【关键词】碳捕集和封存 二氧化碳 温室效应 发展现状
随着工业化进程的加快,各种因素导致大气中的二氧化碳含量大幅度增加,引起温室效应。如何减少碳排放量成为当今科学研究的一个重要课题。碳捕集和封存(Carbon Capture and Storage,以下简称CCS)就是基于目前的时代背景产生的,用来解决碳排放量问题的一项技术。尽管CCS技术能有效地封存过多的二氧化碳,对于缓解温室效应具有很好的前景,但是由于各种经济、政策以及其他的一些原因,CCS技术目前乃至将来几十年都面临着巨大的挑战。
1 推广CCS技术的必要性
二氧化碳对于人类的生活和生产至关重要。它能够阻挡太阳的热量逸散进太空,使地球温度基本恒定,让动植物得以生存。然而近几年来,人类的工业化进程显著地提高了大气中二氧化碳中的含量。从碳排放的角度来看,工业生产如炼油、制钢、发电等,每天都向大气层释放出大量的二氧化碳。人们在日常生活中的碳排量也是罪魁祸首之一。小汽车、船舶、航天飞机以及家用设备等排放出的二氧化碳也显著增加。从碳吸收的角度来看,全球植被面积有减无增,地球吸收和调节大气中二氧化碳含量的能力也有所下降。种种因素都导致全球大气层中二氧化碳含量持续攀升,从而引发温室效应。温室效应将使大气升温,大气和海洋循环发生改变,影响人们的正常生活[1]。
据统计,在2010年碳排放量达到了历史性的最高值。国际能源机构IEA(International Energy Agency)最近报告说按照这种趋势下去,到2100年的时候全球温度将升高超过3.5℃[2]。解决或者说缓和这个问题的方法大概可以分为两种:一是找到清洁的能源,二是让生产出的二氧化碳更少地进入大气层中。
对于前者,相比于目前大量、廉价而且易于获得的化石燃料,清洁能源的市场占有率仍旧十分有限,化石燃料的主导地位在未来几十年不会有太大的变化。按照全球碳捕集与封存研究所(Global CCS Institute)提供的数据,全球能源需求在未来20年将增长40%,石油、天然气等化石燃料的燃烧将继续向大气排放出大量的二氧化碳,温室效应将愈发严重。
对于后者,许多地区和国家已经采取了一些地方政策来减少工业中的碳排放,有的是自愿性、义务性的,也有的是通过商业贸易的形式来执行。近年来人们推出了新的思路,那就是CCS技术。它是一种将工业生产中的二氧化碳捕获、集中起来,再通过管道或者其他设备运移到一个适合封存的地质场所,把二氧化碳长期储存起来的一项新技术。尽管二氧化碳早在几十年前就因为各种原因被注入地下(如石油工业中通过向储层注入二氧化碳来提高原油的采收率等),长期地将二氧化碳封存起来还是一个新概念。据估计,到2050年,在工业生产中CCS每年可以减少40亿吨的二氧化碳,约为2050年所需减少的二氧化碳的9%,数量相当可观。但是为实现这个目标,20%到40%的生产设备需要配有CCS技术[3]。由此我们可以预见CCS技术必须得到充分的重视和推广。
2 CCS技术的基本原理
一般来说,CCS技术主要包括三个环节:捕集,运输和储存。具体来说,首先是将动力工厂或者各种来源的二氧化碳通过某种方法捕获起来,然后将其压缩、运输到某个地点,注入地下,利于该处的上覆岩层来封隔二氧化碳,阻止二氧化碳向上逸散。随后,再利用一些监测设备以确保二氧化碳被安全、永久地封存起来。在一个适宜的地质场所,如较深的咸水层、报废的油气藏或者是不再开采的煤层等,二氧化碳可以被安全封存达百万年之久[4]。据美国能源部估计,大概有36000亿吨的二氧化碳可以被储存在地下(指美国和加拿大境内)。相比于世界上每年排放大约130亿吨的二氧化碳,CCS技术对于减少二氧化碳具有很广阔的应用前景。
在捕集二氧化碳的环节中,常用的三种方式有燃烧后捕集、燃烧前捕集和富氧燃烧捕集。捕集方式的选择按照不同的生产过程而定。例如对于水泥厂排放的二氧化碳常采用燃烧后捕集,而对于钢铁生产过程排放的二氧化碳则采用富氧燃烧捕集。由于实际操作中捕集到的二氧化碳往往不纯,其中或多或少地含有其他气体,所以捕集二氧化碳之后还需要对它进行进一步的分离处理。可采用某些溶剂来吸收杂质或者是用半透膜等方法进行气体的分离。
在二氧化碳运输环节,首先将二氧化碳压缩成液态,然后通过卡车或者火车来将其运输到目的地。由于二氧化碳的运输量巨大,考虑到运输的安全性和经济性,现在普遍采用管道来运输。
最后一个环节是将二氧化碳注入到一个多孔的地下岩层中,深度往往在800米甚至更深。在这个深度,二氧化碳受到高温高压的作用以浓稠状的液态形式存在,密度相当于水的50%到80%之间。在这种较低的密度条件下,由于浮力的作用二氧化碳将向上运移,驱替地层原始孔隙中的液体。这也就是注入二氧化碳以提高石油采收率的基本原理。
3 推广CCS技术的挑战
CCS技术能否实施很大程度上基于整个项目周期的风险评估,包括从选址、设计、建造,到监测、报告、报废等。风险评估时一个很重要的因素就是解决法律和经济上的责任,解决这些责任如何被合理地分配给各个群体。这种风险性和不确定性包括商业层面、法律层面、以及技术层面等。理解这些风险是制定决策的前提条件。
商业层面上,一个企业或者说国家在推广CCS技术时,如果能有效地发挥市场运行的机制,把二氧化碳作为一种商品来进行销售和购买,吸引投资和回馈收益,则可以激活和调动人们科学研发的积极性,提高CCS技术在人们心中的认可程度等。如果一种商品只有买进,而不见具体的产出,或者产出极小,那么它也就失去了作为一种商品对于投资者的吸引力,勉强推广CCS技术的企业也会面临很大的风险。
法律层面上,合理和具体的法律法规是规避高风险(如推广CCS技术)的基础。模棱两可的建议和号召无法吸引投资者真正行动起来自主研发CCS技术,而只有明文条款如国家支持、政府补贴等,才能给有心运行CCS技术的企业以物质和精神上的保障。
技术层面上,由于二氧化碳大部分是从工厂的废气中收集来的,各种杂质掺混,使得分离和捕集二氧化碳的成本十分高昂。而且由于捕集来的二氧化碳需要长期地封存在地下,它的安全性也需要技术上的保障。
所以现有的挑战是严峻的。我国CCS科技研发方面,“十一五”期间在973、863、支撑计划的部署以及相关国际科技合作项目的支持下,国内有关高校、研究院所、企业围绕CCUS开展了基础理论研究、技术研发和一些中小规模工程示范[5]。但在目前的条件下,较高的成本使其在国内外的应用受到了限制[6]。就现有碳捕获技术而言,捕获一吨二氧化碳最高成本400英镑(642.4美元),成本过高,不适用于大规模商业生产。据路透社报道,全球碳捕集与封存研究所在其本年度关于全球碳捕集与封存部署情况的报告中警告说,根据目前的投资水平和监管不确定性来看,从现有的16个项目激增至130个项目的目标是不可能实现的。该研究所预计,其年度报告中确定的59个项目中,届时可能只有51个能投入运行,而有些项目则不太可能实施[7]。推广CCS技术还有很长的路要走。
4 推广CCS技术的一些建议
如果没有行之有效的措施,到2050年二氧化碳的排放总量将翻倍甚至更多。即使CCS技术对于减少碳排放具有极大的潜力,但如果没有政府和相关机构对CCS技术的认可和支持,CCS技术也不可能得到充分发展[8]。目前我国科技部了CCS发展技术路线图,但主要还是从技术研发角度,还没有考虑到政策支持、资金支持、公众参与等措施。
所以针对目前存在的问题,现有以下几点建议:
其一,政府可以通过减免税收等手段确保应用CCS的工程项目有足够的资金。许多生产单元如生物工程、炼油厂、水泥厂等在采用CCS 技术之前,往往综合考虑各种经济因素,如果资金不足,就算这种技术如何减排、如何保护环境,也不可能付诸于生产实践中。
其二,政府应鼓励科研人员更加重视CCS技术的研发,使这项技术更加成熟可行。技术的成熟一方面可以捕获更多的二氧化碳,另一方面还可以节约成本,是CCS长足发展的基础。同时,如果将天然气加工厂、煤气厂等捕获的二氧化碳用于油藏之中的话,还可以作为提高原油采收率的原料之一,实现废物的二次利用。
其三,政府对于CCS技术的宣传还应加大。目前CCS的应用所引起的重视还不够,尽管CCS的应用前景已经得到了广泛认证,人们对CCS技术的研究仍集中于动力单元。如果人们想达到预期的减排目标,CCS应当被用于更多的领域、更多的国家和地区;应当让更多的人意识到CCS技术的广阔前景,使得有关企业更快地掌握和实施CCS技术,推动CCS的广泛发展。许多示范工程已经具备一定的竞争力,并开始执行HSE标准(Health, Safety and Environment)。这些示范工程可能对建立合理的节能标准以及增加社会的认可度有一定的帮助。
5 结语
总的来说,CCS技术的发展有赖于各项技术的协同进步,有赖于企业和政府对其的肯定和支持。在技术方面,通过改进技术从而降低捕集、运输和封存的费用,例如深入研究各种物理、化学的吸附效率,减少捕集成本。在政策和环境方面,用支持性的法律法规吸引更多的企业来研发和运用CCS技术。只有这样,已推行CCS技术的企业才能获得充足的资金来长期投资、不断研究,未推行的企业也会逐渐投身于CCS技术的推广中来,从而有效地降低大气中二氧化碳含量,遏制温室效应的加剧。
参考文献
[1] IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L. A. Meyer (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp
[2] Carbon Capture and Storage: Bring Carbon Capture and Storage to Market. SBC Energy Institute, 2012: http:/// sbcinstitute.aspx
[3] Technology roadmap-Carbon capture and storage in industrial applications. OECD/ International Energy Agency and United Nations Industrial Development Organization, 2011.
[4] Global CCS Institute website: http://
[5] 彭斯震. 国内外碳捕集、利用与封存(CCUS)项目开展及相关政策发展[J]. 低碳世界,2013,(1)
根据配第—克拉克定律,随着一国经济发展水平的提高,第三产业占比也会逐渐提高。因而,服务贸易占GDP比重也随之增加。表1显示了不同收入水平国家服务贸易进出口额占GDP的比重。可以看出,高收入国家服务贸易进出口额占比明显高于其他收入水平国家,且显著高于世界平均水平。这与高收入国家服务业相对发达、第三产业占GDP比重较高有关。其他收入水平国家的服务贸易进出口额占GDP比重均未达到世界平均水平,且中低收入水平国家的占比高于中等收入国家占比,而中等收入国家占比又高于中高收入国家占比。这说明,除高收入国家外,服务贸易进出口占比并未呈现出随着收入水平的减少而降低的现象。图2显示了世界不同收入水平国家的二氧化碳排放量(人均公吨数)。从图中可知,高收入国家二氧化碳排放量人均公吨数约为12吨,远高于世界平均水平及其他不同收入水平国家。值得注意的是,二氧化碳排放量与收入水平之间表现出较强的规律性,即随着收入水平的提高,二氧化碳排放量也随之升高。从趋势上看,中高收入水平、中等收入水平和中低收入水平国家的二氧化碳排放量均呈逐年递增的态势,特别是在2002年以后,表现得更为明显。从表1和图2的结果可知,高收入国家服务贸易进出口额占比相对较高,但是其二氧化碳排放量也相应较高。中高收入水平、中等收入水平和中低收入水平国家二氧化碳排放量与其服务贸易进出口额占比没有表现出与高收入水平国家类似的规律。本文接下来提出预期假设,然后利用实证检验服务贸易进出口额与二氧化碳排放之间的关系。
二、模型构建和实证检验
(一)计量模型设定本文的计量模型首先将碳排放作为因变量,服务贸易开放度(服务贸易进出口额占GDP比重)作为自变量。为检验二者的非线性关系,加入服务贸易开放度的平方项作为自变量。其中,poll为环境污染,用二氧化碳排放量(人均公吨数)代替,X为影响碳排放的其他控制变量,为误差项。根据已有研究,影响一国环境的因素包括经济规模、技术进步、产业结构等。因此,添加外商直接投资占GDP比重(fdi)、技术水平(tech)、工业规模(scale)、收入水平(lngdp)作为控制变量。为减小异方差,对人均GDP取自然对数,其余指标为百分比,不做对数处理。因此,模型(1)扩展如下。
二)数据和变量解释本文的计量分析数据使用的是1995~2009年50个国家的面板数据,其中包括高收入国家20个,中等收入国家30个,样本总容量为750。选择1995~2009年这个区间是因为1995年《服务贸易总协定》正式生效,服务贸易开始进入大发展时期。碳排放包括二氧化碳、一氧化碳等碳氧化物,本文选择二氧化碳作为因变量(人均公吨),基于两方面考虑:一是二氧化碳是最常见和最主要的温室气体,具有代表性;二是根据数据可获得性原则。服务贸易开放度(open)用各国服务贸易进出口额占GDP比重代替。一般而言,一国服务贸易开放度指数越高,其第三产业在三次产业中的占比会越高,从而对环境的影响会越小。但是,服务贸易中的运输服务所需的交通工具以及旅游服务等劳动密集型行业均会产生二氧化碳等气体,对环境构成影响。fdi表示外商直接投资占GDP比重。国内外学者如郭沛等(2013)、Acharyya(2009)、Hajkova和Nicoletti(2006)、Grosse和Trevino(2005)等研究发现,FDI对环境具有影响,且以间接影响为主。如一国或地区所吸引的外资投向化工等易产生污染的行业,对环境造成影响;再比如,一国或地区吸引外资投向清洁行业,由于该行业的发展,带动下游原材料或中间产品的发展,但其原材料或中间产品却易对环境造成污染。因此,本文将FDI占GDP比重纳入模型。技术水平tech用GDP单位能源消耗代替,指平均每千克石油当量的能源消耗所产生的按购买力平价计算的GDP。一般而言,技术水平的提高能够有效地减少环境污染(曾波等,2006;李从欣,2009;李国璋等,2010)。收入水平用人均GDP代替,是国内生产总值除以年中人口数。现有研究结果趋于一致,即收入水平的提高能有效改善环境(陈红蕾等,2007),但是在不同收入水平国家其作用并不一致(黄顺武,2010)。经济规模scale用工业增加值(占GDP比重代替),因为此处考虑的是经济规模对环境的影响,因而工业增加值能很好地满足模型的要求。此处的工业与《国际标准行业分类》(ISIC)第10~45项相对应,增加值为所有产出相加再减去中间投入得出的部门的净产出。这种计算方法未扣除装配式资产的折旧或自然资源的损耗和退化,增加值来源是根据ISIC修订本第3版确定的。本文所有数据均来自世界银行网站()和世界贸易组织统计数据库(),数据的统计描述如表2。
(三)实证检验首先利用stata软件对二氧化碳排放量(CO2)与服务贸易开放度(trade)、外商直接投资占GDP比重(fdi)、工业增加值占GDP比重(scale)、收入水平(gdp)、GDP单位能源消耗水平(tech)之间的关系进行了线性拟合。发现二氧化碳排放量与trade、scale、gdp呈显著的正向线性关系,而与fdi的线性斜率则较小,与scale则呈负向的线性关系。由此形成如下预期:第一,服务贸易开放度与二氧化碳排放量呈正向线性关系。当加入服务贸易开放度的二次项时,预期呈倒U形,即服务贸易开放度与二氧化碳排放量之间符合环境库兹涅茨曲线的关系。第二,GDP单位能源消耗水平、收入水平和外商直接投资占GDP比重对二氧化碳排放量具有正向影响,即tech、gdp、fdi的增加会引起二氧化碳排放量的增加。第三,工业增加值占GDP比重对二氧化碳排放量具有负向影响,即scale的增加会减少二氧化碳的排放。接下来,本文分别从全样本、依收入水平分组的样本对各变量之间的关系进行回归分析,以检验是否与预期一致。1.全样本面板数据的实证检验本部分利用软件stata11.0对服务贸易开放度与碳排放之间的关系进行实证检验。依据前面设定的模型(2),对1995~2009年的跨国面板数据进行计量分析。我们在服务贸易开放度和服务贸易开放度平方项的基础上逐步加入控制变量进行回归。在计量方法上,经Hausman检验,拒绝采用随机效应模型的原假设,因而采用固定效应模型。同时,我们还依次检验了模型的异方差、序列相关性和截面相关性,发现方程(1)~(5)均存在异方差、序列相关和截面相关。为消除上述影响,最终统一使用D-K①校正的固定效应模型对方程进行估计(易行健等,2013)。估计结果如表3所示。由表3可知,尽管不断加入控制变量,但服务贸易开放度系数一直为正,并且在10%水平下均显著,表明服务贸易开放度的提高对二氧化碳排放量的影响为正。这一结果与刘华军和闫庆悦(2011)利用我国1995~2007年省级面板数据对贸易开放与二氧化碳排放的协整检验结果一致。可见,服务贸易并非传统观念中所认为的“清洁行业”,它与货物贸易一样会对环境造成污染。服务贸易开放度平方项的系数在5个方程中均为负数,且都在1%水平下显著,说明服务贸易开放度与二氧化碳排放量之间是倒U型的非线性关系。即在服务贸易开放度较低时,随着服务贸易开放度的提高,二氧化碳的排放量也会随之上升;当达到一定临界点时,服务贸易开放度的提高会减少二氧化碳的排放量。技术水平的系数为负,均在1%水平下显著,这与我们线性拟合结果预期相左,但是与现实更趋一致,因为一国技术水平的提高会有效地降低碳排放。收入水平和经济规模的系数均在1%水平下显著为正,前者与我们的线性拟合预期一致,而经济规模与预期相反。事实上,本文选取的衡量经济规模的指标是工业增加值占GDP比重,因而占比越高,二氧化碳排放量也随之增加,这是符合现实的。外商直接投资的系数为正,但是不显著。2.依收入水平分组的实证检验本部分在计量方法上首先直接采用固定效应模型①进行实证检验,分高收入国家、中高收入国家和中低收入国家3组。此外,为检验模型的稳健性,本文在固定效应模型回归的基础上,还加入了OLS回归。由表4可知,高收入国家服务贸易开放度对二氧化碳排放量有正向影响,但是不显著,而服务贸易开放度的平方项却与其呈显著的负相关。可见,高收入国家的服务贸易与碳排放是非线性关系,且服务贸易能显著地改善这些国家的碳排放。原因可能是高收入国家一般而言都是服务贸易进出口的大国,而且一般处于服务贸易的上游,即提供资本、技术密集型的服务,而传统服务贸易占比较低。对中高收入国家而言,服务贸易开放度与二氧化碳排放量呈显著的倒U型关系,即随着中高收入国家服务贸易开放度的提高,其二氧化碳排放量呈先增后减的趋势。对中低收入国家而言,服务贸易开放度对二氧化碳排放量的影响不显著,但是经济规模、收入水平和技术水平均在1%水平下显著影响。这一结果与我们的预期是一致的,因为中低收入国家一般还处于工业化时期,与高收入国家相比,无论是在服务贸易的规模还是技术水平上均存在较大差距,影响其二氧化碳排放量的主要是工业,因而服务贸易开放度对其影响尚不显著。此外,从稳健性检验可知,OLS回归的结果与固定效应模型回归的结果基本一致,表明本文回归结果是稳健的,偏差较小。
三、结论
关键词:碳排放;LMDI;产业结构
中图分类号:F205 文献标识码:A 文章编号:1008-2670(2011)05-0090-06
收稿日期:2011-06-28
作者简介:王宜虎(1973-),男,山东滕州人,山东财经大学经济学院副教授,博士,研究方向:环境经济学和区域经济学。
一、 引言
近200年来,随着人口持续增加以及工业化、城市化进程的不断加速,世界能源消费剧增,生态环境不断恶化,特别是气候变暖已严重威胁到人类的可持续发展,而温室气体排放则是全球气候变暖的元凶,温室气体中二氧化碳又是最主要的一种,因此实现二氧化碳的减排是应对气候变化的重中之重。目前,我国的二氧化碳排放量仅次于美国,居世界第二位,虽然按照《京都议定书》的规定,在2012年之前发展中国家没有减排二氧化碳的指标,但是可以预料到,随着中国经济的发展和工业化进程的加快,中国面临的二氧化碳减排义务将是十分艰巨的。山东省作为我国的人口和经济大省,一直是我国的高碳排放区,中国能源报告(2008)的数据显示,2005年山东省二氧化碳排放量居全国第一位。近年来,山东的碳排放量仍在持续增长,持续稳居全国首位。因此如何控制和减少碳排放已成为一项日益紧迫的重大课题。
目前,国内外均有学者对二氧化碳排放进行研究。York利用STIRPAT模型研究了二氧化碳排放量与人口之间的关系[1];Cole发现二氧化碳排放量与人均收入之间符合库兹涅茨曲线[2],而Friedl与杜婷婷分别应用奥地利和中国的数据发现二者之间是“N”形曲线关系[3,4];徐国泉等采用对数平均权重分解法,定量分析能源结构、能源效率和经济发展等因素变化对中国人均碳排放的影响[5];张雷通过对发达国家和发展中国家的对比研究发现,经济结构多元化导致了能源需求降低,从而降低了碳排放[6]。这些研究着重从碳排放与人口及经济发展的关系角度进行分析,探讨的是整个国家的碳排放问题。也有一些研究从区域角度探讨碳排放问题,邹秀萍、王伟林、李国志等分别对我国省级区域碳排放、江苏省的碳排放、我国碳排放的区域差异等进行了研究[7-9]。本文根据山东省1995-2009年的产业发展和碳排放数据,分析山东省产业发展碳排放的影响因素,并提出相应的碳减排措施。
二、 模型构建
(一) 数据来源与处理
经济数据来源于《山东统计年鉴》,为剔除经济发展中的价格变化因素,所有经济数据均已换算为1995年可比价格。按照山东统计年鉴对GDP的划分原则,将经济系统的二氧化碳排放量(生活用能源排放除外)分解为:第一产业、工业、建筑业、交通运输仓储邮政业、批发零售住宿餐饮业和其他第三产业。由于生活消费能源没有相对应的GDP值,为了更好地说明GDP和二氧化碳排放的关系,在本文的研究中不涉及生活消费能源,即总二氧化碳排放量不包括生活消费能源排放,仅指生产部门的二氧化碳排放。
能源数据采用1995-2009年《中国能源统计年鉴》上的数据,在计算碳排放量时,只计算能源的终端消费量,而不计算加工转换过程以及运输和分配、储存过程中的损失量,另外,电力和热力的碳排放按火力发电和供热投入的能源计算,也不再计算能源终端消费部门电力和热力的碳排放。
能源消费碳排放量使用各种能源的消费量乘以各自的碳排放系数,其计算公式为:
Cit=∑(Eijt×ηj)(1)
山东财政学院学报2011年第5期王宜虎:山东省碳排放的因素分解实证分析其中,Cit为行业i第t年的二氧化碳排放总量;Eijt为行业i第t年第j种能源的消费量;ηj为第j种能源的碳排放系数。由于原始统计时各种能源的消费量均为实物统计量,测算时必须转换为标准统计量,具体的换算方法根据2009年《中国能源统计年鉴》提供的各种能源折合标准煤的参考系数计算(表1)。能源碳排放系数根据2006 年IPCC国家温室气体清单指南的缺省值,并将能量单位由J转化为标准煤,具体转化系数为1×104t标准煤等于2.93×105GJ。各种能源的碳排放系数见表2。
(二) 模型选择
对二氧化碳排放进行分解的主要目的就是为了获得在一定时期内不同因素对碳排放的影响程度。常用的方法有Laspeyres指数分解法、Paasche分解法以及Sun的完全结构分解法,这些方法的主要缺陷是不能同时对多个因素进行分解,或者分解后的残差比较大。由于迪氏对数指标分解法(LMDI)不仅可以对所有因素进行无残差分解,还可以运用到部分残缺数据集的分解上,因此,国际上许多学者广泛采用迪氏对数指标分解法(LMDI)对能源环境进行分解研究。本文也运用迪氏对数指标分解法(LMDI)研究山东省六大分类部门对二氧化碳排放总量的生产效应、结构效应以及规模效应,从总体上把握各部门对二氧化碳排放的贡献强度。
根据LMDI,从0年到t年的总二氧化碳排放差值称为总效应ΔEtot。ΔEtot由三部分组成:由生产规模扩大或者缩小产生的生产效应(ΔEpdn),由经济结构调整导致二氧化碳排放变化的结构效应(ΔEstr),由二氧化碳排放强度改变而引起的强度效应(ΔEint)。因此:
ΔEtot=Et-E0=ΔEpdn+ΔEstr+ΔEint(2)
根据Ang提出的LMDI分解方法[10],(2)式右边的每一项可以表示为:
ΔEqdn=∑iEi,t-Ei,0ln(Ei,tEi,0)ln(-YtY0)(3)
ΔEstr=∑i=Ei,t-Ei,0ln(Ei,tEi,0)ln(Si,tSi,0)(4)
ΔEint=∑iEi,t-Ei,0ln(Ei,tEi,0)ln(Ii,tIi,0)(5)
式中,Y代表年度GDP值;Ei,t是第t年行业i的总二氧化碳排放;Si,t是第t年行业i的GDP占总GDP的份额(Yi,t/Yt);Ii,t是第t年行业的二氧化碳排放强度(Ei,t/Yi,t)。
计算某一行业的三种效应按下列三式进行:
ΔEi,pdn=Ei,t-Ei,0ln(Ei,tEi,0)ln(YtY0)(6)
ΔEi,str=Ei,t-Ei,0ln(Ei,tEi,0)ln(Si,tSi,0)(7)
ΔEi,int=Ei,t-Ei,0ln(Ei,tEi,0)ln(Ii,tIi,0)(8)
三、研究结果分析
运用LMDI对山东省1995-2009年六类行业的二氧化碳排放和GDP数据进行分解,得到如下结果:
(一)总效应
山东省在1995-2009年间经济飞速发展,按可比价计算,GDP年均增长率高达12.37%。经济的强劲增长带来了能源消耗的快速上升以及二氧化碳排放量的迅速增加,15年间二氧化碳排放量增长了3.57倍,二氧化碳排放总量净增长8425.75万吨。
图1是山东省总二氧化碳排放分解效应图。从图中可以看出,造成山东省二氧化碳排放增长的主要原因是生产规模的扩大,2008-2009年为11960.45万吨,是1995-1996年的30.43倍;而GDP的结构调整对碳排放的增加也起了一定的作用,但是相较于生产规模的扩大,其程度很小。所以从总体上看,山东省经济结构调整并没有减少二氧化碳的排放,反而由于工业规模的迅速增加,而在一定程度上增加了二氧化碳的排放。最后二氧化碳排放强度效应一直是负效应,对山东省二氧化碳排放的增加起到了较大的节制作用,并且这种节制作用不断增强,2008-2009年的强度效应为-3534.71万吨,是1995-1996年的6倍多。
(二)生产效应
图2是各行业二氧化碳排放的生产效应图示。从图中可以看出,工业部门二氧化碳的生产效应最大,从1995-1996年的326.65万吨增加到2008-2009年的9796.51万吨,这主要是由山东省国民经济中工业所占的比重最大,生产规模不断扩大的结果。在工业部门中高能耗的重化工工业所占比重较大,并且近几年生产规模不断扩大,导致了山东省工业二氧化碳排放的迅速增加。
其他行业中,二氧化碳排放的生产效应较大的是交通运输仓储邮政业。2008-2009年由其生产导致的二氧化碳排放增加值为950.49万吨。据统计,在很多国家中,交通运输的能源消耗量都约占全部终端能源消费的1/4到1/3,占全部石油制品消耗量的90%左右[11]。因此,交通运输业也是一个值得关注的须减排行业。而像批发零售住宿餐饮业、第一产业、其他第三产业,它们二氧化碳排放的生产效应相对而言较小。
图11996-2009年二氧化碳排放的总效应图21996-2009年各部门二氧化碳排放的生产效应图31996-2009年各部门二氧化碳排放的结构效应图41996-2009年各部门二氧化碳排放的强度效应注:图2-4中A-第一产业、B-工业、C-建筑业、D-交通运输仓储邮政业、E-批发零售住宿餐饮业、F-其他第三产业。
(三)结构效应
图3是各行业二氧化碳排放的结构效应图示。从图中可以看出,1995-2009年山东省工业内部的结构调整并没有对工业节能减排起到积极的正面作用,工业二氧化碳排放的结构效应仍然持续增加,仍在推动二氧化碳排放总量的增加。其他行业中,交通运输仓储邮政业的结构效应也在持续增加,表明其结构调整对二氧化碳的减排也没有起到积极作用;批发零售住宿餐饮业的结构效应也表现为持续小幅增加,但不很明显。第一产业的二氧化碳排放结构效应呈明显下降趋势,表明近年来对于结构调整降低二氧化碳排放最显著的是第一产业,其次是其他第三产业和建筑业。
(四) 强度效应
图4是各行业二氧化碳排放的强度效应图示。从图中可以看出,就整个国民经济而言,工业二氧化碳排放强度效应下降的幅度最为明显,其次为其他第三产业,其他行业的二氧化碳排放强度效应变化不大,有的偶有反复,只有交通运输仓储邮政业的强度效应在2005年以后表现出一定程度的正效应。由此可以推断,强度效应主要是由工业部门二氧化碳排放强度的降低引起的,工业部门的强度效应很好地制约了工业二氧化碳排放的增长速度和总量增长。具体来看,从1995-2009年间,工业部门的二氧化碳排放强度整体上保持递减的态势,只在1998年、2003年、2005年有小幅反弹。到2009年,工业部门二氧化碳排放的强度效应达到-3419.43万吨,是1996年-397.68万吨的8.6倍。由此也可以看出,山东省工业部门节能减排工作取得了一定的成就。
四、 结论与建议
(一)结论
通过以上对山东省产业碳排放总量进行指数分解的实证研究,可以得出以下结论:
(1)山东省碳排放总量的上升主要是由于生产规模扩大造成的结果,经济结构的调整也对碳排放总量的上升起到一定的促进作用。
(2)由于山东省碳排放强度的降低,碳排放的强度效应大大减小,有力地遏制了能源消费总量的上升。
(3)从生产效应、结构效应和强度效应来分析,工业是碳排放的主体,不论是其生产规模的扩大还是其结构的变化都极大地导致了碳排放量的增加,虽然工业碳排放强度的不断减小也对碳排放量产生较大的遏制作用,但是仍不及生产效应和结构效应对碳排放量的促进作用。
(二)建议
实证分析显示,经济产出的持续增长是山东省碳排放增长的主导因素。然而经济产出的增长是满足人民生存与发展基本需求的必要条件,因此目前节能减排政策的制定不能寄希望于控制经济产出规模,而应着眼于优化结构与提高效率,具体建议如下:
(1)调整产业结构。产业结构的变化对山东省现阶段碳排放表现出正效应,这与以调整产业结构推动节能减排的初衷有较大差距。其原因与山东省一度强调重化工业的发展战略不无关系。山东省在经济发展过程中曾大力发展石化、钢铁、纺织等高能耗行业,消耗了大量能源,严重减缓了碳排放强度的下降。因此,应进一步优化产业结构,减少对第二产业(工业)的过分依赖。一方面努力在重化工业领域进行资源整合,加快产品升级换代步伐,适当发展低能耗产业,逐步减小高能耗行业产值占整个工业产出的比例;另一方面,要大力发展高新技术产业和现代服务业,不断提高第三产业在国民经济中的比重,尽快使山东经济完成从外延粗放型向内涵集约型的转变。
(2)提高能源利用效率。尽管山东省碳排放强度总体处于下降趋势,但是同发达国家和地区相比,仍然有很大差距。企业生产应加大对先进节能技术的倾斜性投资,推动能源利用环节创新技术的研发与推广,逐步淘汰高能耗的设备,改进生产工艺,提高能源利用效率。同时,应尽快促成各行业制定《节能法》实施细则,加大《节能法》贯彻力度,从法律层面保障能源效率的持续提高。
(3)改善能源结构。考虑到山东以煤炭为主的能源资源禀赋的制约,要保持能源结构对碳排放的负效应并加以增强,主要出路应该在于发展非化石能源。应有计划地扶持核电、风电、水电、太阳能及生物质能项目,努力保持非化石能源比重的持续增长态势。在化石能源中,相对低碳的天然气在一次能源消费中长期呈现过低比例,应通过调整产业政策及国际贸易政策促进天然气产业的发展。
(4)推进碳减排政策创新。将碳排放作为区域经济发展绩效的考核指标,提出单位GDP的碳减排比例,不断推进政府进行碳减排的政策创新,如开展碳排放权交易、实施碳减排补贴政策等,从而不断推进碳减排。
参考文献:
[1]YORK R, ROSA E A, DIETA T, STRPAT.IPAT and IMPACT: Analytic Tools for Unpacking the Driving Forces of Environmental Impacts[J].Ecological Economics, 2003(3): 351-365.
[2]COLE M A. Development, Trade and the Environment: How Robust is the Environmental Kunzets Cuvre[J]. Environment and Development Economics, 2003(8): 557-580.
[3]FRIEDL B, GETZNER M. Determinates of CO2 Emissions in A Small Open Economy[J]. Ecological Economics, 2003(1):133-148.
[4]杜婷婷,毛锋,罗锐.中国经济增长与CO2排放演化探析[J].中国人口•资源与环境,2007,17(2):94-99.
[5]徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口•资源与环境,2006,16(6):158-161.
[6]张雷.中国一次能源消费的碳排放区域格局变化[J].地理研究,2006,25(1):1-7.
[7]邹秀萍,陈劭锋,宁淼,刘扬.中国省级区域碳排放影响因素的实证分析[J].生态经济,2009(3):34-37.
[8]王伟林,黄贤金.区域碳排放强度变化的因素分解模型及实证分析―以江苏省为例[J].生态经济,2008(12):32-35.
[9]李国志,李宗植.中国二氧化碳排放的区域差异和影响因素研究.中国人口•资源与环境,2010,20(5):22-27.
[10]ANG B W. Decomposition Analysis for Policy Making Inevergy: Which is the Preferred Method[J]. Energy Policy, 2004, 32 (9):1131-1139.
[11]齐玉春,董云社.中国能源领域温室气体排放现状及减排对策研究[J].地理科学,2004(5):528-534.
An Empirical Analysis of the Factor Decomposition of Carbon Emission
in Shandong Province
WANG Yihu
(School of Economy, Shandong University of Finance and Economics, Jinan 250014, China)
【关键词】碳排放;水泥;工艺;影响因素;数学建模
引言
众所周知,大气环境的污染主要是由于工业废气的排放造成的。水泥工业中碳排放又是其中的重点。本文从水泥工业的生产工艺、燃烧的原材料、碳排放的源头和影响因素等方向来研究影响碳排放的因素,并介绍相应的一些处理措施,希望能为水泥工业的科学技术水平提高和减少碳排放,治理综合环境,提供一些建设性的帮助。
1 水泥工业二氧化碳排放现状与分析
随着中国城市建设的高速发展,对于水泥工业的需求量越来越大,研究表明我国水泥生产量年平均增长0.25亿吨,年平均增长率为8%以上。而水泥工业中排放的废气大多为二氧化碳,据统计,水泥工业中二氧化碳的排放比重从1992年的5.68%上升为2010年的12.54%,因此对水泥工业碳排放量的控制迫在眉睫。
下面我们分析一下,水泥工业中二氧化碳的生成形式。可以分为两大类:一是水泥熟料燃烧,化学式为C + O2CO2 ;二是燃料燃烧的过冲中碳酸盐的分解,主要为碳酸钙,其化学式为CaCO3CaO+CO2 。
计算表明:每生产1 吨水泥成品,原材料的燃烧过程,再加上运输用电力、燃料等方面的二氧化碳排放,约1 吨左右。所以这个量是相当庞大的。
2 影响 CO2排放的因素
研究表明,二氧化碳的排放量大小依次顺序为:工艺排放,燃烧排放,电力消耗。依次介绍如下:
(1)水泥从生产窑上分为立窑(包括机立)和旋窑(回转窑),从生产进料的方式上讲分为干法、湿法。水泥由石灰石、粘土、铁矿粉磨碎后按一定比例进行混合,这时候的混合物叫生料。 然后将这些混合物投入容器内进行高温煅烧,一般温度在1500 度左右,煅烧后剩下的物质叫熟料。最后将这些熟料与石膏混合后磨细,按设计比例混合,就是成品的水泥,也就是我们常说的普通硅酸盐水泥。 如果是用其它可燃物质或者以废弃物作为替代燃料来进行辅助燃烧,可以使含钙质含量少的原材料与空气充分接触,燃烧的过程中减少了钙质的化学反应,随之也减少了二氧化碳及一氧化碳废气的排放。
(2)不同品种的水泥由于其组成原料不同、掺合料的比例不一样,排放的二氧化碳含量也会有很大的差别。通用硅酸盐水泥中中加入其他掺和料和可燃物、助燃物的比例, 可以加强原料的燃烧程度,因而有效地降低了废气排放。如果采用低能耗、含碳化合物含量少的原料,(如硫酸盐水泥)由于其主导矿物质碳含量低,所以在燃烧过程中,碳排放量会相应减少。
(3)水泥熟料热耗,企业水泥熟料的燃烧程度是影响二氧化碳排放的直接影响因素。而企业的管理水平、采用的生产工艺、技术力量、人员素质等都直接影响着水泥窑的熟料热耗。 因此采用先进的生产工艺, 降低水泥熟料热耗,将原材料充分进行煅烧是控制和减少水泥工业中二氧化碳排放的重要途径。
3 减少水泥工业碳排放的措施研究
3.1 减少碳酸质原料的用量
根据水泥的生产原理和工艺,我们知道,生产水泥的原材料主要是石灰石及碳酸钙,因此减少碳酸质原料在水泥生产中的用量,或用其它物质来替代是减少二氧化碳排放最直接有效的措施。或者直接使用非碳酸质原料,因为从生产原理上讲,燃烧碳酸盐物质所吸收的热量是整个原材料煅烧的40%左右。使用非碳酸钙物质进行燃烧,可以节约能耗同时提高原料的利用效率。并有效减少二氧化碳的产生和排放。
3.2 提高生料易烧性
水泥生产的原材料,如果在煅烧的过冲中不能充分进行燃烧,就会产生大量的二氧化碳甚至是一氧化碳废气。因此原材料的燃烧性能和易燃率是减少碳废气的直接因素。在煅烧之前,加入矿化剂或其他化学物质来加强燃烧性能,将原材料进行充分的磨细和颗粒化,在燃烧的过程中均能加速其充分燃烧,减少热能好,同时二氧化碳的产生也会随之减少。
3.3 利用可燃性废弃物
从生产工艺讲,可以用很多不含碳酸钙的物质来作为水泥生产的代用燃料。利用这些可燃性废弃物代替部分或大部分燃煤和燃油,既处置了废料,又节约了能源,同时也减少了二氧化碳等有害气体排放量。
3.4 提高燃烧器效率
燃烧器的主要功能就是将燃料和空气导入炉膛和回转窑中,在高温作用下将其进行煅烧。目前,水泥窑燃烧器效率偏低,随着新型高效低污染燃烧器的研制开发和投入使用,燃烧器效率在不断提高,煤耗也相应降低,二氧化碳等有害气体排放量也随之减少。计算表明,如果燃烧器能减少煤耗10%,二氧化碳废气体排放量至少减少2.0%。
提高燃烧器效率. 燃烧器的作用主要是将燃料和空气进行充分接触, 来提高燃烧的充分程度,达到提高燃烧器效率的目的,。随着燃料的充分燃烧,产生的废气就会相应减少。
3.5 提高熟料质量以便增加各种工业废渣的掺入量
水泥的质保期通常只有三个月,如果遇到雨水,保质期就会更短。这主要原因就是水泥生产的原材料质量达不到设计要求。熟料的质量越好,在燃烧器中的燃烧程度越充分,可以参入的各种工业废弃物品就更多,一方面可以节约材料,还可以加强炉体内的燃烧。这样生产出来的水泥质量可以得到更大的提升,排出的废气也可以得到大幅度的降低。
3.6 调整水泥制造业的产业结构
传统的生产工艺中由于设备限制的因素,很多材料无法进行充分的燃烧。为了解决这一问题,新型干法技术在市场中得到大力的推广。新型干法主要是增设了窑尾预热器和分解炉, 并将回转窑燃料由分解炉加入, 使燃料燃烧的放热过程与熟料煅烧中耗热最大的碳酸盐分解的吸热过程迅速地进行, 具有生产过程效率高、能耗小、质量高、产生废气量小的多种优点。
4 结语
现代建筑工程越来越多但是钢筋混凝土结构,而作为混凝土和抹灰用的主材-水泥,其市场必然越来越广阔,需求量会越来越大。随之而来的就是在水泥生产过程中的废气排放量也会加多,对环境产生较大的影响。因此我们必须要优化水泥的生产工艺、调整生产结构、加强人员素质,严格控制并采用各种技术来减少二氧化碳等废气的排放,才能使人类发展与环境友好相协调。
参考文献:
关键词:二氧化碳排放 能源强度 产业结构 节能减排
一、绪论
近年来,全球气候变暖引起的“气候危机”成为国际社会广泛关注的话题,与此同时,
我国经济“高消耗、高排放、低产出”的粗放型经济增长方式和“能源效率低、环境污染严重”的局面未有根本改善。这不仅给环境带来了消极的影响,更是制约了国内经济长期的发展,不符合“可持续发展”的内涵。《2010年中国低碳发展报告》提出2015年中国二氧化碳排放量将达100亿吨,相当于美国和欧盟的总和。中国已经超越美国成为二氧化碳排放总量的第一大国,与此相关的能源消费也急剧增长,并显现出对经济发展的制约作用。目前,二氧化碳的减排已经不仅仅是一个环境技术问题,从根本上讲,是经济发展产生的问题,必须在“经济——能源——环境”(3E)框架下研究和解决。
以煤炭为主的能源消费模式是导致我国二氧化碳高排放的重要原因,本文将探索能源消费模式对二氧化碳排放的影响,以及节能减排的有效途径,为实现节能减排的低碳经济增加内在动力,并对促进我国经济增长方式转变,构建两型社会,实现低碳经济与可持续发展的均衡经济增长提出积极的政策建议。
二、我国碳排放以及能源消耗现状
(一)我国碳排放现状
根据统计,1960年到2009年间,中国年均能源消耗的增长率为7.2%,温室气体CO2的排放量从1960年的1.72亿公吨增长到了2009年的65.3亿公吨,增长近40倍,有学者预测,2020年我国的CO2排放量将达到峰值约120亿吨,在此之前,很难降低中国人均CO2排放量。在中长期内,中国CO2排放量有显著增长的趋势,甚至可能超过京都议定书中的规定量。这证明了经济快速增长的发展中国家正在对全球“温室效应”产生越来越大的影响,二氧化碳排放量随着经济飞速发展而快速上升。
(二)我国能消费现状
1、能源消费总量和能源消费结构
从经济总量上看,1979—2009年,我国国内生产总值年均增长约为9%,期间消费总量的增长速度约为5.4%。这说明经济的迅猛发展产生了我国对能源消费的巨大需求。1980—2009年我国能源消费总量及构成如表1所示。不难看出,虽然水电、核电和风电所占比例逐年增加,但我国的能源消费结构仍然以煤炭和石油为主(基本保持在90%)。这不仅仅制约了我国能源效率的提高,而且高碳的能源消费模式导致了我国环境质量的不断恶化。
2、能源消费效率
能源效率是指能源投入与产出之比,通常以能源强度(单位GDP耗能)来衡量。我国2000年单位GDP耗能为1.46吨标准煤/万元,2009年为0.89吨标准煤/万元,9年间下降幅度达到64%。然而,从国际水平来看,我国的能源强度仍有比较大的下降空间,中国的能源综合利用效率有待进一步提高。同时,与美国相比,2010年我国第三产业产值比重为42.6%,相当于美国的53.7%,第二产业产值比重为46.8%,相当于美国的2.5倍, 工业能耗占总能耗的比重高达66%。可以看出,我国能耗低的第三产业所占比重较低,能耗高的第二产业所占比重高,直接导致了我国单位GDP能耗较高。
三、我国碳排放多因素分析的实证检验
本文采用计量经济学的方法,建立多因素线性对数模型,探究能源结构效应和能源效率效应对碳排放量长期变动的边际贡献程度。
(一)碳排放模型
碳排放量的基本公式为:
C=(C/E)(E/Y)(Y/P)P (1)
C表示碳排放总量,E代表能源消费总量(万t标准煤),Y代表国内生产总值(亿元),P代表人口总数(亿人)。将方程两边分别取自然对数可得到:
lnC=ln(C/E)+ln(E/Y)+
ln(Y/P)+lnP (2)
其中,ln(C/E)代表能源碳排放强度效应(单位能耗释放的碳),每万吨标准煤燃烧的碳释放量为0.748吨,为等量石油的1.28倍,等量天然气的1.69倍,这说明各种一次能源的相互替代可以降低二氧化碳的排放量。ln(E/Y)代表能源强度效应,反映出提高能源效率对节能减排的影响。ln(Y/P)代表经济增长效应(人均GDP),说明经济增长对碳排放变动的影响。 代表人口总量效应,即人口增长对碳排放量的影响。
将上式改写为:
lnCt=β0+β1lnC1t+β2lnC2t+
β3lnC3t+β4lnC4t+ut (3)
Ct为第t期的碳排放量,C1t为t期的煤炭消费比重,C2t为t期能源强度,C3t为t期人均 GDP ,C4t为t期人口总量,β1、β2、β3、β4为待估计的参数,代表各因素对碳排放量的单位弹性。ut表示模型的随机误差项。
(二)数据说明
二氧化碳排放量:数据来自二氧化碳信息分析中心(CDIAC),包含石油燃烧、水泥生产、天然气燃烧等所产生的CO2排放总量。
煤炭消费比重:由于各种能源单位消耗释放的二氧化碳是固定的,因此,可以用煤炭在化石燃料类能源消费中的比重代替能源碳排放强度效应。
能源强度:代表单位GDP耗能,测算式为能源消费总量除以国内生产总值(GDP)。
人均GDP:采用了人均GDP的对数形式测量经济增长。
(三)多因素计量回归
关键词:SML指数;CO2排放绩效;技术进步;技术效率
中图分类号:F205 文献标识码:A 文章编号:1003-5192(2012)02-0057-05
Spatial Difference and Causes Research on Continuous Total FactorCO2 Emission Performance in China――Based on Sequential Malmquist-Luenberger Index Analysis
YOU Jian-xin1, CHEN Zhen1, ZHANG Ling-hong1, MA Jun-jie2
(1.School of Economics and Management, Tongji University, Shanghai 200092, China; 2.School of Law, Tongji University, Shanghai 200092, China)
Abstract:Based on the literature, SML(Sequential Malmquist-Luenberger)Index is adopted to estimate the continuous CO2 emission performance of provinces in China from 1998 to 2009. And, the regional difference of this performance and the influential factors are analyzed. As the research results, we found that: The increase of CO2 emission performance of provinces in China are all contributed by technical change; Regarding the influential factors to the CO2 emission performance, R&D professionals, regional economic development, industrial structure all offers a significant positive effect, while energy intensity, energy structure both presents a significant negative effect, and the intensity of R&D plays an insignificant influence as indirect moderating effect.
Key words:SML index; CO2 emission performance; technical change; technical efficiency
1 引言
全球气候变化是当今社会最严峻的问题之一。随着世界经济社会的不断发展,温室气体(以CO2为主)排放持续上升,环境气候问题凸现,从科学角度出发,必须大幅度减少全球二氧化碳排放。经济增长与碳减排之间的矛盾日趋尖锐。但是,中国目前仍是一个发展中的国家,在确保经济稳步发展的同时如何实现2020年碳排放强度相比2005年减少40%~45%的减排目标是摆在面前的又一难题,根本出路只有大力发展低碳经济,有效提高能源使用效率和二氧化碳排放绩效。因此,科学精确地评估我国二氧化碳排放绩效现状,深入分析我国二氧化碳排放的历史、空间差异,是挖掘其主要影响因素的首要条件,是进一步开展各类减排活动和制定各种政策的基础。
迄今为止,国内外对碳排放绩效的研究尚仍处于起步阶段,从要素投入角度可以将现有研究划分为单要素碳排放绩效研究和全要素碳排放绩效研究。Ramanathan认为应该从整体的角度,将所有相关的变量,如经济活动、能源消耗和CO2排放放在一起构建绩效评价指数更为合适[1],即“全要素”的思想。环境DEA技术即Malmquist-Luenberger指数被广泛应用于评价的全要素环境绩效和二氧化碳绩效。Chung et al.首次将 Malmquist-Luenberger 技术应用到宏观层面[2],随后, Kortelainen运用ML技术估算了欧盟20个国家的动态环境绩效(CO2)[3];Zhou et al.首次将CO2排放绩效作为一个独立于环境绩效的概念进行研究,通过运用ML指数估算了1997~2004年期间18个国家动态的CO2排放绩效[4];陈诗一通过构建动态(节能减排) 行为分析模型对我国工业节能减排损失和收益进行了预测[5];王群伟等应用Zhou et al.的环境DEA方法对中国二氧化碳排放绩效进行评估并分析了区域差异和其影响因素[6];王兵等运用SBM方向性距离函数和ML指数测度了考虑资源环境因素下中国1998~2007年30个省份的环境效率、环境全要素生产率及其成分[7];刘明磊等运用非参数距离函数方法对能源消费结构约束下的我国省级地区碳排放绩效水平和二氧化碳边际减排成本进行了研究[8]。
综上文献,在测度全要素环境绩效和二氧化碳排放绩效时都是运用了基于方向性距离函数的Malmquist指数或ML指数,在计算距离函数时均以当期观测值来构造生产边界,每一年的投入和产出是被割裂开的,是一种割裂的非连续的绩效测算方法。一般来说,在宏观经济视角下技术总是进步的,至少维持在原有水平不会倒退,传统的ML指数计算方法通常会得出长期的技术退步[9]。为了防止出现技术退步这一缺陷,本文通过借鉴Donghyun and Almas[10]序列DEA的思想,基于省际面板数据,运用SML指数方法对我国1999~2009年各省市二氧化碳排放绩效指数进行估算,同时降解为技术进步指数和技术效率指数进行深入分析,根据结果讨论其空间差异并通过运用面板数据模型探索其差异形成的主要成因。
2 变量、数据及方法
2.1 变量选取与数据处理
假设投入指标为资本(K)、劳动力(L)和能源(E),产出指标为期望产出地区生产总值(y)和非期望产出二氧化碳(b),则生产过程可描述为
P(K,L,E)={(y,b)∶(K,L,E;y,b)∈T}(1)
样本及数据选取考虑实证的需要和数据的可得性,观测区间为1999~2009年面板数据,由于和海南数据缺失过多将其剔出,而计算资本存量时重庆与四川一起方便统计,故样本为中国28个省市自治区。资本存量计算是在单豪杰[11]基础上根据其资本存量计算方法测算补充了2008~2009年数据。劳动力是各地区年初、年末就业人数的算术平均值。能源投入是分别将各地区消耗的煤炭、石油、天然气根据各自能源标准煤折算系数统一换算为标准煤加总。各省市GDP是根据各省区市GDP平减指数将名义GDP转化为以1952=100 的价格。CO2分别将煤炭、石油、天然气换算成标准煤,借鉴徐国泉[12]碳排放折算系数再分别将其转换为后加总。相关数据来源于《中国统计年鉴》和《中国能源统计年鉴》。投入产出数据描述性统计见表1。
在具体测算过程中,已有研究均是通过运用方向距离函数对期望产出和非期望产出进行主观处理,如Zhou et al.[4]和王群伟[6]采用了基于二氧化碳为导向的方向距离函数,而刘明磊等是通过将方向向量定义为g(gy,gb)=(0,-b),表示假设在保持经济产量不变的前提下,通过减少碳排放总量的增长率使评价达到有效,然而,我国目前的状况是经济在增长的同时碳排放量在增加,但是,主观上我们希望的是不断提高期望产出GDP增长率,同时尽可能减少非期望产出CO2排放量的增长率,因此,本文采用直接产出距离函数,即将DDF定义为D(x,y,b)=max{(1+β)y,(1-β)b∈P(x)},表示寻求经济产值增长率最大化的同时使得二氧化碳排放量增长率尽可能减少。旧经济模式是高增长、高消耗、高排放的模式,低碳经济是追求保证经济增长过程中尽可能地减少碳排放量的低碳、高增长的发展模式。而基于直接方向距离函数的SML指数正是主观上反映了经济增长的质量,期望实现真正的高效、环保的低碳经济发展模式。Zhou et al.认为这种方法可以用来估算某一个特定时期的各区域二氧化碳排放绩效[4],即为全要素生产率框架下的二氧化碳排放绩效。
3 中国省际全要素碳排放绩效测算及结果分析
SML计算方法与传统的ML测算方法相同,可以测算出我国各省市碳排放绩效指数(SMLCPI)并分解为技术进步指数(STE)和效率变化指数(SEF),由于篇幅所限,详细技术可参见Chung et al.[2]和Donghyun and Almas[10]的文章。
3.1 我国CO2排放绩效总体趋势分析
从全国平均来看,SML指数估算CO2排放绩效指数、技术进步指数、效率变化指数总体平均值为1.00732、1.008874、0.998511,表明1999~2009年中国二氧化碳排放绩效增长率为0.732%,技术进步率为0.8874%,效率变化率为-0.149%;总体碳绩效平均值大于1,说明近10年来,我国碳排放绩效总体上是不断提高的;效率变化指数平均值小于1,说明随时间推移各省市之间追赶效应在弱化,经济差距在拉大;技术进步指数平均值大于1,显示技术进步是我国各地区碳排放绩效增长的主要动力。计算结果总体变化趋势如图1所示。
从图1可见,绩效降低的年份只有2004、2005年,与王群伟等[6]估算结果2003~2005碳排放绩效都有所下降不同,此处2003年技术进步规避了效率降低带来的负面效应,碳排放绩效总体有所提高,2004、2005年二氧化碳排放绩效总体下降的主要原因是技术效率的降低。究其原因可能是因为“十一五规划”中后期显示出过度重工业化特征,特别是2003 年后,我国的重化工业化趋势再度显现,中国的能耗和排放再次大幅增长[13]。
3.2 我国各省市碳排放绩效空间差异分析
根据估算结果,为了方便分析,将我国各省市大致分成三类。
第一类,碳排放绩效大于1,且主要是由于技术进步和效率提高的共同作用,如北京、天津、山西、黑龙江、上海、安徽、湖北、湖南、广西、包含重庆在内的四川、贵州;第二类,碳排放绩效大于1,但主要原因是技术进步的作用抵消掉了效率降低的影响而使得碳排放绩效提升,如河北、内蒙古、吉林、江苏、浙江、山东、广东、陕西和甘肃;第三类,碳排放绩效小于1,如辽宁、河南、云南,但是三者成因各不相同,辽宁主要是技术进步指数降低导致,河南绩效降低是效率降低的影响大于技术进步的作用,而云南则是由于技术退步和效率降低共同导致。
从各省市变化情况来看,多数省份效率较低,可能存在只重视技术进步这一硬性因素而忽视了影响效率变化的管理机制等软性因素所造成的,因此,接下来将以SML指数运算结果对各省份碳排放差异进行分析。
4 中国省际全要素碳排放绩效空间差异成因分析
通过运用SML指数方法估算了我国各省市二氧化碳排放绩效(SMLCPI),从时间和空间两个纬度对其进行了深入分析,但是,我们更想知道导致其差异的主要原因有哪些。如上所述,省际间的技术进步对碳排放绩效贡献影响很大,众所周知,R&D投入是衡量技术进步水平的关键指标,而本国的R&D投入是一种受商业或国家利益驱使的广义上的人力资本投资[14],在本文特指R&D人员RD和R&D强度RG。除此之外,综合考虑前人的研究,考虑二氧化碳排放的主要影响因素,选取经济发展、能源强度、产业结构和能源结构四个指标,因此,分别从技术进步水平、经济发展水平、能源强度和结构因素四个方面六个指标对我国省际二氧化碳排放绩效差异的成因进行考察诠释。在此基础上选取我国各省市1999~2009数据构建了我国二氧化碳排放绩效影响因素研究的面板模型(3),表3给出了计量模型相关变量的数据来源与处理方法。
此处,对回归模型(3)采用固定效应模型运用一般最小二乘法进行估计,结果显示,调整后R2为0.74816, 拟合度较高。R&D强度对二氧化碳排放绩效影响不显著,表明近阶段研发投入没有显著向能源环境研究领域侧重;R&D人员对二氧化碳排放绩效有很大促进作用,系数为0.190109,且在5%显著水平下显著,表明在很大程度上R&D人员对降低碳排放绩效作用很大,主要原因可能在于R&D人员可以促进技术进步,通过知识溢出提高当地技术水平,从而促进碳排放绩效的提高;经济发展水平对二氧化碳排放绩效亦有正效应,系数为0.020228,且在1%显著水平下显著,即表明经济发展水平越高,相应的碳排放绩效越高;能源强度和能源结构对碳排放绩效呈现负效应,系数分别为-0.024007和-0.052750,且分别在1%和10%显著水平下显著,即表明能源强度越高、煤炭消耗占能源消耗比重越高,相应的二氧化碳排放绩效越低;产业结构对二氧化碳排放绩效影响也是正向效应,系数为0.295127,在1%显著水平下显著,表明产业结构调整对碳排放绩效提高也有显著影响。此外,笔者将R&D强度与其它解释变量做了面板回归检验,R&D强度分别对经济发展水平、能源强度和能源结构影响显著,表明现阶段我国R&D投入是通过不断提高经济发展水平、降低能源强度、优化能源结构来间接促进二氧化碳绩效的提高,呈现间接调节作用。
5 结论及政策建议
通过运用基于直接距离函数的SML指数对1999~2009年我国各省市碳排放绩效进行估算,并将其降解为技术进步指数和效率变化指数,从时间和空间两个纬度对运算结果进行深入分析,进而通过运用面板数据构建了我国碳排放绩效影响因素计量模型挖掘其差异形成的主要原因。
研究结果表明:第一,从总体发展趋势上看,我国1999~2009年二氧化碳排放绩效指数SML平均值大于1,效率变化指数SEF平均值小于1,技术进步指数STE平均值大于1,表明过去10年我国碳排放绩效呈改善趋势,技术进步是我国各省市碳排放绩效增长的主要动力;第二,根据各省市碳排放绩效、技术进步指数和效率变化指数的空间差异将我国各省市大致分成三类进行研究,可以看出我国各省市需要继续强化技术进步外更应该重视软实力研究;第三,我国二氧化碳排放绩效主要影响因素中,R&D人员、经济发展水平、产业结构显示显著正的效应,每增加一个单位将导致二氧化碳的排放绩效分别提高0.190109、0.020228、0.295127个单位;而能源强度、能源结构对碳排放绩效影响呈现逐负效应,每增加一个单位将导致二氧化碳的排放绩效分别降低0.024007和0.052750个单位;此外,R&D强度对二氧化碳影响不显著,但是R&D强度分别对经济发展水平、能源强度和能源结构影响显著,存在间接调节作用。
上述结论对于政策的制定有一定的启示:针对第二类地区,存在效率降低的问题,需要不断提高自身“软”性因素,在未来的发展中应该更加重视鼓励技术效率的提高,不断提高人员素质和管理水平,重视“软”实力的提升;针对第三类地区,仍然要下大力气在技术进步上,技术进步是提高碳排放绩效的关键,此外,也要注重“软”实力的提升。另外,各省市都应该持续加大研发资源投入,在R&D投入方面,将R&D人才的引进作为发展的前提,做好相关配套,要做到引得进、留得住;应该持续不断提高R&D强度,同时在未来的工作中对能源环境领域的R&D投入要有所侧重,不断创新改善能源环境技术,从正面促进二氧化碳排放绩效的提高;应该保证经济稳步增长,迅速转变经济增长方式,注重技术投资,尤其是能源环境技术。不断优化产业结构,提高第三产业的比重,鼓励发展服务业。但是,我们在扩大第三产业比重的同时需要注意提高服务人员的素质,普及低碳理念、增强低碳意识。加快能源结构调整,尽可能降低一次能源的使用率。
参 考 文 献:
[1]Ramanathan R. Combining indicators of energy consumption and CO2 emissions: a cross-country comparison[J]. International Journal of Global Energy Issues, 2002, 17(3): 214-227.
[2]Chung Y H, Fre R, Grosskopf S. Productivity and undesirable outputs: a directional distance function approach[J]. Journal of Environmental Management, 1997, 51(3): 229-240.
[3]Kortelainen M. Dynamic environmental performance analysis: a malmquist index approach[J]. Ecological Economics, 2008, 64(4): 701-715.
[4]Zhou P, Ang B W, Han J Y. Total factor carbon emission performance: a malmquist index analysis[J]. Energy Economics,
2010, 32(1): 194-201.
[5]陈诗一.节能减排与中国工业的双赢发展:2009-2049[J].经济研究,2010,(3):129-143.
[6]王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010,(1):45-54.
[7]王兵,吴延瑞,颜鹏飞.中国区域环境效率与环境全要素生产率增长[J].经济研究,2010,(5):95-109.
[8]刘明磊,朱磊,范英.我国省级碳排放绩效评价及边际减排成本估计:基于非参数距离函数方法[J].中国软科学,2011,(3):106-114.
[9]Shestalova V. Sequential malmquist indices of productivity growth: an application to OECD industrial activities[J]. Journal of Productivity Analysis, 2003,19(2): 211-226.
[10]Donghyun O, Almas H. A sequential malmquist-luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology[J]. Energy Economics, 2010, 32(9): 1345-1355.
[11]单豪杰.中国资本存量K的再估算:1952-2006年[J].数量经济技术经济研究,2008,(10):17-31.
[12]徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口资源与环境,2006,16(6):158-161.
关键词:气候变化 碳税 立法理念
一、碳税的定义
英国经济学家阿瑟・庇古首先在《福利经济学》中提出碳税这一名词。在现代社会,征收碳税的首要目的是通过提高化石燃料以及其他高耗能产品的价格,来降低大众对化石燃料的需求与消耗,以减少二氧化碳的排放,最终实现改善全球气候以及减缓气候变化。由于化石燃料中所含碳的比例与数量直接关系着二氧化碳的排放量,因此,人们将此类税种称之为“碳税”。
碳税这一专有名词该如何定义,现今国内国外学者意见颇多,争论不休。比较统一的意见是将碳税定义为针对二氧化碳的排放而征收的税种。具体来说,可将其定义为以减少二氧化碳的排放为目的,以煤炭等化石燃料为征收对象并且按照其含有二氧化碳比重或者排放二氧化碳数量来征税。其他意见中,有的学者认为二氧化碳是一种环境税,是对化石燃料这种商品征收的产品消费税,有的学者则认为碳税是以化石燃料的含碳量为标准的一种消费税。
笔者所持观点为,碳税是以减少二氧化碳的排放为目的,以化石燃料燃烧时排放的二氧化碳为标准,根据其燃烧时所产生的二氧化碳排放量,对化石燃料的生产者或者使用者征收的一种税种。从现实角度看,面临全球气候变暖这一严峻问题,碳税顺应时代趋势,以减轻气候恶化,改善全球气候为目的,向排放二氧化碳的企业或个人征收税收,降低二氧化碳的排放,减轻企业或个人对化石燃料的以来,从而保护全球气候。从社会角度来看,人作为社会人,与气候变化紧密相关。气候变化导致海平面上升、气候变暖等一系列问题,严重威胁着人类的生存与发展。为了减少气候变化对人类的影响,有必要采取一系列措施降低人类对化石燃料的依赖,而碳税正是以环境保护为目的,对影响气候变化的二氧化碳征收的一种税。
二、碳税政策的实施背景
随着全球气候变化日益加重,与气候变化相关问题层出不穷,国际社会愈来愈认识到保护与改善全球气候的重要性。1992年5月22日,以气候变化为重要议题,联合国政府间谈判委员会达成一致意见并订立公约;1992年6月4日,各成员国齐聚巴西重要城市里约热内卢,并在那里召开的联合国大会上通过该公约,即《联合国气候变化框架公约》。1994年3月21日,该公约生效。
《联合国气候变化框架公约》生效后,自1995年开始,该公约的缔约方每年都会召开缔约方会议(Conferences of the Parties,COP),致力于评估各缔约方应对气候变化的进展。1997年,各缔约方在回忆中达成一致意见,对《联合国气候变化框架公约》的有关内容作出调整与修改,并着重强调二氧化碳减排这一议题,最终达成《京都议定书》,使温室气体减排成为各发达国家的法律义务。
2009年12月7日至12月18日,公约各缔约方于丹麦的哥本哈根召开第十五次会议,西方发达国家提出发展中国家的二氧化碳排放量巨大,亦是导致气候变化的重要因素,要求发展中国家也为减排承担相应的义务。发达国家与发展中国家围绕该问题争论不休,休会时只达成了不具备法律效力的《哥本哈根协议》。
2012年11月26日,《联合国气候变化框架公约》第18次缔约方会议在卡塔尔多哈拉开帷幕。由于2012年是《京都议定书》第一承诺期的结束时间,也是11年启动的德班平台的运行的关键年份,各方均希望多哈气候变化会议能发挥承前启后的关键性作用。2012年12月8日,《联合国气候变化框架公约》第18次缔约方会议于多哈当地时间12月8日19点通过一份“多哈系列协议”(Doha Package)。作为承上启下的关键性会议,多哈会议并未取得令人欣慰的成果。加拿大、俄罗斯等发达国家纷纷加入美国的行列,先后从脱离京都议定书第二承诺期,而日本、澳大利亚等发达国家也降低了其温室气体减排目标。
三、结语
气候变化的严峻现状与趋势已经不容我们有多余的时间去思考。我们应当立即采取强有力的行动减缓与改善气候变化。然而,在我国,构建碳税法律制度几乎是一片空白,长期以来,我国学者等对碳税的研究往往局限于概念层面的简单认知,忽视了从理念层面的深入研究。众所周知,构建一项新的法律制度往往涉及社会的各方面,涉及社会的整体。因此,我国应当基于本国国情,借鉴西方先进经验,制定适合本国的法律制度。
参考文献:
[1]吕忠梅.环境资源法.中国政法大学出版社,1999
[2]李慧玲.环境税费法律制度研究.中国法制出版社,2007