发布时间:2024-04-09 16:05:02
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇化学工程研究方向,期待它们能激发您的灵感。
1存在的问题
1.1内容广,概念多
材料化学工程是以化学和化工基础,研究、开发、生产和应用金属材料、无机非金属材料、高分子材料和复合材料的工程领域。研修的主要课程包括物理化学、材料科学基础、材料力学、材料工艺、高分子材料、金属材料、无机非金属材料等。在基础课程中概念多、公式多,如在物理化学中的热熔、积分溶解热、积分稀释热等,有些概念相似如果不仔细区分容易混淆。在诸如高分子材料这类介绍性的课程中名称特别多,如聚丙烯、聚氯乙烯、环氧树脂等,这些材料在我们的生活中经常接触。但通过学习很多学生还是不能识别基本的材料,掌握它们的基本制备工艺和用途。
1.2叙述性的内容多
关于三大材料的学习主要是叙述性的内容多,比较抽象。例如,金属加工中热处理的四把火:退火、正火、淬火、回火,退火又分好几个种类,每种钢材根据用途不同,而选择不同的工艺条件。但是只通过课本的叙述,对于很多材料依旧没有直观的认识。虽然很多同学有参加过金工实习课,但是时间不长,很难做到全面深入的了解,对一些材料的性质、加工方法感到陌生,从而逐渐丧失学习兴趣。另外,在材料的合成中,每合成一种材料,需要通过一系列检测看所得物质是否为目标产物。又或者合成一种新的物质,也可以通过检测分析出其结构性能。材料专业的学生都有一门必修课《材料结构表征及应用》详细介绍了材料表征中各种检测手段。但是很多同学拿到检测结果却不会分析。
1.3课程教学与现实联系不够紧密
研究生与本科生最大的不同就在于,在接受系统知识的同时,必须加强研究意识、创新意识和研究能力的培养[1]。材料化学工程是一门应用型学科,与实际应用密不可分。课程安排之前的金工实习,目的是锻炼学生动手能力,对材料的加工有所了解。此外,还有一些实验操作课,但是很多时候由于时间安排不合理又或者设备少学生多,平均几人一台设备,学生动手机会操作不够,有时候老师只能靠演示的方法让学生观摩,学生完全处于一种被动的学习状态。还有部分同学在实习中怕脏、怕累,不愿动手操作。另外,在课程结束后还有参观见习,对材料的加工制作有个直观的认识,但是很多时候由于人员过多,加上工厂环境复杂,很多同学在见习过程中往往走马观花,只停留在看热闹的表面功夫上。
2解决办法
2.1培养学习兴趣
科学家爱因斯坦说过:“兴趣是最好的老师。”老师首先要做的就是激发学生的最大兴趣并使之保持这种热情。材料化学工程与我们的生活密切相关,老师可以在讲授过程中结合我们实际生活中的用途。比如高分子材料中的聚丙烯腈,常与羊毛混纺制成毛织物等,可以制作毛毯、军用帆布、帐篷等。被称为“人造羊毛”。又如我们生活中常见的木制家具,其实很多都是由木塑复合而成:以木材为主要原料,经过处理使其与各种塑料通过不同的工艺复合而成。既保留了木材良好的加工性能,同时具有塑料的耐水、耐腐蚀、使用寿命长等优良性能,还符合环保的大前提。通过这种理论结合实际,能激起学生学习兴趣,鼓励学生自己查阅资料了解更多信息。
2.2疏通知识结构,掌握各学科之间的联系
在材料化学工程形成前,高分子材料、无机非金属材料、金属材料科学都已自成体系,而且他们之间存在着很多相似之处,可以相互借鉴,促进本学科的发展。如马氏体相变本来是金属学提出来的,广泛地用来作为钢材热处理的理论基础。但在氧化锆陶瓷材料中也发现了马氏体相变现象[2],并用来作为陶瓷增韧的有效手段。另外,各类材料的研究设备与生产手段也有很多相似之处。虽然不同类型的材料各有专用测试设备与生产装置,但更多的是相同或相近的,如显微镜、电子显微镜、物理性能测试和力学性能测试设备等。在材料生产中,很多加工装置也是通用的。比如生活中很多塑料用品大多是通过注塑成型加工而成,但其实与粉末冶金工艺中的压坯过程相似。随着科学技术的发展,各学科间已无明显界限,甚至不同材料之间能相互代替。不过凡事都有规律可循,只要掌握规律很多问题便迎刃而解。作为材料的规律就是:组织决定性能,性能决定应用[3]。再根据性质选择材料,依据用途确定工艺路线。抓住这一规律,学习时就不会感到毫无头绪。
2.3传统教学与现代教学方式相结合
传统教学大都采用“填鸭式”方式,学生听课主动性、积极性不高。新的教学改革中应采用启发式、互动式和讨论式等新的教学方式。老师在课前布置问题,分小组完成不同的部分,让学生带着问题去学习,查找资料,每组选择代表在课堂进行发言,然后再各组进行讨论。这样不但发挥了学生的主观能动性,活跃课堂气氛,减轻了老师的授课负担,还锻炼了学生自己分析问题、解决问题的能力,达到事半功倍的效果。相比传统教学,计算机汇集了图像、文字、声音等元素,极大的丰富了教学色彩,调动学生学习积极性,具有直观、生动、形象的元素,可以将抽象的理论知识和工艺方法生动的展现在学生眼前,增加课堂趣味性,提高学生的感性认识,有利于知识点的理解和掌握。同时可以结合一些相关视频比如:注塑成型、挤出成型、模压成型以及金属材料的冷加工热加工等。这些视频网络上都可以找到,如HOWITISMADE、TEDSHOW等。通过相关的视频,既可以活跃课堂气氛,也能调动学生学习积极性,甚至激励学生自己在课外继续学习观看。这种多媒体教学与视频教学相结合的方法,既减轻了老师的负担,同时激发学生学习兴趣,调动积极性,促进教学任务顺利完成。
2.4开设软件分析课程
作为材料化学工程研究生,材料检测分析应该成为一种必备的基础技能。但是很多时候拿到检测结果却不会分析。软件分析课程可以很好的解决这个问题。所有的检测结果都有软件可以分析,比如FTIR、XRD、NMR等,借助这些软件,可以快速地分析所得结果。比如JADE,作为一款分析XRD数据的软件,它可以对物相进行定性定量分析。虽然软件分析不一定完全正确,更多的时候还是根据理论基础来判断,但软件分析可以作为一个辅助手段。这样学生既掌握了一门技能,而且大大提高了学习效率。
2.5课堂教学与实践相结合
俗话说“纸上得来终觉浅,绝知此事要躬行”。作为一门应用型学科,课堂所学的最终都是要能应用到实际生产中去。在涉及如注塑成型、挤出成型等高分子材料成型工艺时,可以穿插一些参观实习课。通过参观实习,直观地了解材料加工制备过程,将自己所学知识配合生产。理论上可行的事情,在实际应用中还需要考虑到原材料、工艺条件的控制、销售渠道、成本控制等。如果有可能,可以尽量选择一些大型的工厂基地,接触现代化的机器设备,体会先进生产力的发展,感受到世界一流水平的实力。为学生丰富见闻开阔视野提供机会,这将对培养学生的自信很有帮助,尤其是对于一些非重点名校的学生。另外,通过与企业或者研究单位联合培养,即“产学研结合”。“产学研结合”一般指企业、学校、研究单位之间的相互合作和优势互补。李元元等认为产学研结合是培养工科硕士的最佳途径,学位论文的选题和相关实践应当与工矿企业的工程实际相结合,密切结合其技术改造、革新、引进等技术难题或科研攻关项目。这将有利于从根本上解决学校教育与社会需求脱节的问题。缩小学校人才培养与社会需求脱节之间的差距,增强学生就业竞争力。
3结语
关键词:化学交换饱和转移;磁共振成像;量化 CEST;数学模型
1 化学交换饱和转移磁共振成像(Chemi- calExchangeSaturationTransfer,CEST- MRI)量化的意义
CEST-MRI成像是目前备受关注的一种分子影像技术,其使用特定频率的饱和脉冲来标记待检测的溶质分子,该分子上可交换质子与水发生多次化学交换引起水信号的降低从而被检测[1].尽管生物组织中这些小溶质池的浓度通常仅在毫摩尔浓度范围内,只要选择合适的实验参数,可交换质子与水的化学交换的累积效应就能实现信号放大, 因此 CEST- MRI具有较高的灵敏度(与传统的MRI相比,可达到102~106)[2].自从 Ward和 Bal-aba 等人 2000 年提出 CEST - MRI 的 概 念 以来[1],由于其具有可灵敏检测特定(类型)分子的独特优势,且对温度和 pH 值[3]等微环境的变化敏感,被认为有临床转换潜能的可包含生化信息的对比机制,迅速引起广泛的兴趣[4].与正常组织相比,肿瘤本身显示共振频率距离水~3.5 的高信号,被认为主要是来自多肽和蛋白质的酰胺质子,称之为酰胺质子转移 (amideprotontransfer,APT)成像[5-6].CEST- MRI 技术也可检测蛋白质和多 肽[7-8]、肌酸[9]、葡萄糖[10]、谷氨酸[11]、糖原[12]和糖胺聚糖[13]等,有潜力在临床中用于各种疾病和代谢性紊乱,包括:乳腺癌[14-15]、前列腺癌[16]和中风[17]等的检测.该领域已经从最初简单的 CEST加权图像转变为更量化的 CEST-MRI分析.为了进一步揭示与疾病相关的病理生理特征,并对同一 组织不同时间点进行监测,需要更加精准的量化. 因此,笔者简要地概述 CEST- MRI的不同方法和最新进展,供对该领域有兴趣的人员参考.
CEST-MRI的基本原理是通过水信号的减少来间接实现对特定分子的检测.然而,对于活体CEST-MRI成像,水信号的降低不光来自 CEST效应,还来自直接水饱和度(directwatersatura- tion,DS),半 固体磁化转移效应 (magnetization transfercontrast,MTC)和 核奥氏效应 (nuclear overhauserenhancement,NOE)等 竞争效应[18].同时,由于这些竞争效应受到静磁场 B0、饱和功率(saturationpower,B 1-sat)和其他实验参数的 影响,致使 CEST- MRI成为一个复杂的技术.如 何从水信号中提取出 CEST 效应,尽量减弱饱和脉冲对其他效应的影响,实现对特定分子的精确量化,进 而更加准确地 对疾病进行诊 断,一 直 是CEST-MRI研究的热点.为了证明特定的 CEST效应,通常通过获取大量的水信号强度作为射频(RF)饱和频率偏移的函数来产生Z 谱.Z 谱是通过施加脉冲后水信号的强度Ssat 与施加脉冲前水信号的强度S0 的比值得到 .理论上,Z 谱中显示的CEST 增强取决于池的大小、交换率和可交换质子的弛豫时间.这个简单的概念与其他相互竞争的影响导致对 CEST 量化变得复杂.因此,笔者拟定从量化的角度对 CEST-MRI作一个回顾.
2 CEST-MRI理论模型
CEST- MRI 成 像 机 制 复 杂,不 仅 取 决 于CEST-MRI试剂的浓度、交换和弛豫性质,而且随B0 和B 1-sat等实验条件的变化而变化.因此,对于研究这些最优条件,数值模拟是有用和有效的. CEST 效应的量化是一个复杂的过程,除了与质子浓度和交换率有关之外,还受到如 RF 辐射强度、持续时间、化学位移、主磁场强度以及纯水的横向、纵向弛豫时间等因素的影响[20].为了更精确地描述 CEST 成像机制,通常使用包含可交换质子池的布洛赫方程(Bloch- McConnellequation).2004年Zhou等人将包含可交换质子池的最简化的 2池模型的Bloch方程引入到 CEST-MRI中,并推导出解析解[21].常见的Bloch方程描述的模型包括 2池模型[20](水池和可交换质子池)和3 池模式[22](水池、可交换质子池和大分子固体池).下面以2池模型为例来介绍 Bloch 方程的量化方法,同时,给出3池模型的框图和仿真结果,并说明磁化转移(magnetizationtransfer,MT)对 CEST 量化的影响.2池模型和3 池模型的 CEST 交换示意图如图1所示.
在2 池模型中,描述2 池交换过程用12 个参数描述.其中:T1i(i=a,b)表示i 池的纵向弛豫时间;T2i(i=a,b)表示i 池的横向弛豫时间;Ma 表示水池核自旋的化学位移;Mb 表示可交换质子池核自旋的化学位移;Moa 表示水池的可交换氢原子核在初始条件下的平衡浓度;γM0b 表示可交换质子池的可交换氢原子核在初始条件下的平衡浓度与水池之比;kba 表示可交换质子池核自旋交换到水池的速率;kab 表示水池的核自旋交换到可交换质子池的速率;ω1 表示描述预饱和射频脉冲的强度;t 表示脉冲施加时间(下面公式中kab和kba 的意义相同).
在核磁矩和磁化强度矢量的概念基础上,通过在旋转坐标系下,MRI系统中B1-sat 是从x 方向上加入的和2池模型的交换,得到描述图1A 所示2池模型的Bloch方程如公式1所示.
其中,描述b和a 分别表示可交换质子池和水池.例如,Mb (t)表示在时间t 时,可交换质子池的磁化在x 轴上的分量;Mb 和 Ma 分别表示在可交换质子池和水池在z 轴上的热平衡磁化;ω 表示 RF 照射的频率;ωb 和ωa 分别表示可交换质子池和水池的拉莫尔频率;Δωb 和Δωa 分别表示ωb -ω 和ωa-ω .
图1模型示意图中,仿真的各参数如表1所示.序列的参数设置如下:Z 的初始值为1;B0 =7 T;2池模型的饱和时间tp =5s,3池模型的饱和时间tp =80s;B1-sat 分别为:1μT,2μT,3μT,4 μT,5μT 和6μT.模型的仿真结果如图2 所示.其中,上面大的光滑的曲线为饱和交换后水的 Z 谱, 左下方比较矮的曲线为 Diff_Z 谱,即饱和交换之前水的Z谱和饱和交换之后水的Z谱的差.
由2池和3池的对比结果可以看出:在 CEST发生化学交换(~2ppm)的地方,2 池模型在仿真 B1_sat 范围内,Z 谱的下降都比较明显,而3 池模型在B 1_sat4μT 时Z 谱的下降已经看不到.因此, MT 成分大大降低了 CEST 的特异性,尤其是在B1_sat 大的时候.但是 B1_sat 小的时候,病变部位和正常组织的差异较小,即:区别病变部位和正常组织需要较大的 B1_sat.因 此,对 于量化 CEST -MRI,如何降低 MT 成分的影响是需要考虑的很重要的一个因素.
Bloch 方程不仅可以对 CEST 实验进行模拟仿 真,而 且 可 以 对 CEST 测 量 值 进 行 数 值 拟合[19,23].此外,用扩展的 Bloch 方程描述的多池模型,考虑到 RF 照射 CEST 的 MT 和 NOE[24]伴随效应.Bloch方程的一个最大的不足就是计算复杂.因此,有各种假设对 Bloch 方程进行简化,如强饱和脉冲的假设和弱饱和脉冲的假设[25].将 CEST数据与用非线性最小二乘法优化的 Bloch 方程拟合可以提供相关 MRI参数的值,这有助于设计特定应用的最优 PARACEST 试剂[19].但是,在实际应用中,由于 Bloch 方程可变参数繁多,直接拟合难以标准化,因此研究者们提出了其他较为简化的量化方法.
3 CEST-MRI量化方法介绍
3.1 简 单 磁 化 转 移 不 对 称 性 (magnetization transfer ratio based on asymmetry analysis, MTRasym )分析及其改进
由于Bloch方程比较复杂,以水频率为中心将Z 谱 两 侧 相 减 的 磁 化 转 移 率 不 对 称 分 析 法(MTRasym )成为一种常用的 CEST- MRI量化方法[21,26],MTR 的定义如下:
其中,S0 是 RF 照射前的水信号的强度,Ssat(Δω)和Ssat(-Δω)分别是经过 RF 照射后在标记频率和参考频率处的信号(后面公式 S0、Ssat(Δω)和 Ssat(-Δω)表示的意义相同).
该量化方法有以下缺点:(1)容易受到 B0 场不均匀性的影响[27].(2)MTR
方法容易受到各种混淆参数的影响.包括组织松弛、MT、MTC[28].
更重要的是 MTRasym 不能从 CEST 对比中区别上场的 NOE 效应.(3)MTRasym 方法没有校正水的纵向弛豫效应,这是影响 CEST 信号幅度的主要因素[29].尽管如此,MTR 仍是目前 CEST- MRI领域一 种 简 单 有 效 的 量 化 CEST - MRI 的 方法[30].
针对 MTRasym 量化 CEST-MRI存在的不足,提出了一系列的改进措施.例如:针对 MTRasym 容易受B0 场不均匀性影响,提出了水饱和移位参考(watersaturationshiftreference,WASSR)[31]和同时校正B0 场和B1 场的不均匀性(Simultaneous mappingofwatershiftandB ,WASABI)[32]两种方法.针对减弱 CEST 的竞争效应,提出了三频偏方法[2,33]和洛伦兹拟合[34-37]等量化方法.针对没有校正水的纵向弛豫效应的问题,提出了表观交换依赖弛豫(apparentexchange-dependentrelaxa- tion,AREX)[22,29,38-39]的量化方法.
3.2 三频偏的方法
三频偏的方法通过用特定共振频率照射如酰胺、胺基质子等,用和共振频率两个相近频率的平均值作为参考信号,用特定频率处的信号作为标记信号的一种量化方法[2,33].三频偏方法被证明可以有效减弱 MT 不对称性和 NOE 效应[29].三频偏及其量化 APT 和 NOE 的定义如下[33]:
其中,APT* 表示使用三频偏方法得到的酰胺质子转移.NOE* 表示使用三频偏方法得到的 NOE效应.
三频偏方法可以减弱 CEST 的一些竞争效应,例如:MT 不对称性和 NOEs.该量化方法已经成功的用于肿瘤[2]和中风[33]的检测.但是三频偏量化的方法存在如下的缺点:(1)三频偏方法线性假设过于简单,明显低估了 APT 和rNOE 在~3.5(NOE(~3.5))的 饱和转移[35,40].B _较大时,APT 和 NOE 的峰值变宽,导 致低估 APT* 和NOE* [33];同时,随着B _增大,饱和效率达到最大值,饱和溢出和 MT 效应一直增加[25,41],从而导致 APT* 和 NOE* 对比度的下降;(2)APT* 使用三频偏的方法量化时,会受到相邻共振质子的干扰,如胺基质子在2ppm 到3ppm[29].
3.3 洛伦兹拟合
洛伦兹拟合是一个较为简单的最小二乘法Z 谱拟合的量化方法[36].洛伦兹拟合的定义如下[40]:
其中,Ai 、ωi 和δi 分别表示第i个池的幅度、频偏和线宽,N 表示拟合池的个数,一般的洛伦兹拟合是指N =1的情况,如果N 大于1就是多池洛伦兹拟合.
洛伦兹差(Lorentziandifference,LD)是洛伦兹拟合的曲线与Z 谱数据的差[35,42].在该方法中,用洛伦兹函数去拟合Z谱中的-10ppm 到-6.25 ppm、-0.5ppm 到 0.5ppm 和 6.25ppm 到 10 ppm,接着用样条插值完成整个拟合过程,并用拟合的频谱结果作为代表 DS和 MT 效应参考信号;最后,用拟合的结果和 Z 谱数据的差作为 CEST信号进行量化[35,43].
3.4 倒Z谱分析法
最近的一项研究表明 CEST 信号、DS 信号和MT 信号并不是线性叠加在一起,而是反向加在一起的[38].AREX 和 MTR 是两种常见的倒Z谱分析法.其中,AREX 是一种从稳态下得到的标记信号的倒数减去参考信号的倒数的一种量化方 法[29].AREX
可以校正CEST竞争效应中半固体MT 效应、T1、DS效应和水的弛豫效应.AREX 和MTRRex的定义分别为[44]:
图3是不同 B1_sat 时Z 谱和 AREX 的仿真结果,仿真Z 谱的参数设置和图2一样.其中,上面光滑的为Z 谱,左下方为 AREX 的图.由图2 和图3的结果可以看出:相 同功率下,AREX 的峰值比Diff_Z 谱的峰值大(尤其是3池模型),说明 AREX
量化方法中 CEST 的特异性更强.同时也说明:相比饱和交换之前水的Z 谱和饱和交换之后水的Z 谱的差值,AREX 可以降低 MT 效应对 CEST 效应的影响.其中,在0ppm 附近,由于分母为0,所以 AREX 非常的大,这和文献[45]的研究结果一致.
3.5 CEST 比率的方法(CESTratio,CESTR)和参考值归一化后的 CESTR 的方法(CESTRnr)
MRI信号的强度取决于多种参数,包括质子浓度、交换质子的数目、质子交换率、T1、T2、饱和时间和饱和效率.最常用的 CEST 图像的量化是磁化转移率 (magnetizationtransferratio,MTR), MTR 的定义如下:
CEST 比率的定义如下[45]:
在最初对 APT 量化的过程中,选 取 -3.5 ppm 作为参考信号,就是前面3.1 节的 MTRasym 的量化方法[46].最近,Heo等人通过使用插值半固体参考 信 号 (extrapolated semi-solid MT refer- ence,EMR)量化 CESTR[6,47].
参考 值 归 一 化 后 的 CEST 比 率 的 定 义 如下[45]:
CESTR 和 CESTRnr 中的参考信号 (也 就是ZEMR)和 标记信号分别是拟合 2 池 MT 模型和CEST 度量计算中的经过 B0 校正过的Z 谱数据. 仿真证明,在临床的3T 和4.7 T 的时候,CESTR和 CESTRnr 量化更可靠[45].CESTR 的 EMR 谱(ZEMR)可以 通过相应的 ω1和频谱范围 Δ 获得.
CESTR 的Zlab是通过5池Bloch方程获得.具体获得方法只需对前面介绍的2 池模型的 Bloch 方程进行扩展即可.图4和图5分别为B0 =3T和9.4T 时5池模型在B1_sat 分别等于0.5μT,1μT,1.5 μT,2μT,2.5μT 和3μT 六种饱和功率下的基于 Bloch方程的Z 谱和几种常见量化方法:CESTR、 CESTRnr、MTRRex和 AREX 的仿真结果.仿真Z 谱中使用的参数和文献[45]的一样.从图5到图6可以看出:相同 B1_sat 时,3 T 时 Z 谱在3.5ppm 和 2 ppm 的下降均没有9.4 T 时的明显;特别地,在高场(B0 =9.4 T)、B1_sat 较低的时候 (尤 其是在 B1_sat <=2μT),APT 在3.5ppm 和 Amine在2 ppm 的下降看得很清楚;对于 CESTR、CESTRnr、 MTRRex和 AREX 四种量化方法,随着 B0 场强的增大,2ppm 和3.5ppm 的峰值都变得更加明显,而且3.5ppm 的峰值比较窄,2ppm 的峰值比较宽,因此,低场时的 CEST 信息被隐藏.这也是德国神经退行性疾病中心(GermanCenterforNeuro- degenerativeDiseases,DZNE)Zaiss 等人在 2019年2月最新发表深度低场预测高场的信息这篇论文的目的[48].
4 小结与展望
经过调查统计,我国共有100多所高校招有化学工程与技术专业硕士研究生,该专业研究方向过多,一个专业出现87个研究方向。研究方向的划分有的甚至是跨学科的。如化学工程与技术专业是属于工学的,应用化学专业是属于理学,可应用化学居然是化学工程与技术专业的一个研究方向。同属于一个研究方向,研究方向的名称也是多样化的,缺乏统一标准,如安徽大学、南昌大学的绿色化学工程,上海大学就称为绿色化学与工艺。为了解决上述问题,我们请教了化工领域的专家,给这87个研究方向做一个归类,分为9个大的方向(表1)。由表1可以发现我国化学工程与技术专业是存在学科集群现象的,表现在:专业的学科建设,已经不单是化学工程的问题,而涉及到了化学化工研究的所有领域,包括应用化学、环境化工、工业催化、资源与材料工程、新能源技术、生物工程与技术、过程系统工程、油气加工及石油化工等。我国化学工程与技术专业学科集群的力度较大,表现在:各个高校的研究方向基本上都比较多,如清华大学、中国矿业大学、北京工业大学、北京理工大学、华南理工大学、华东理工大学、上海大学等高校,其研究方向都是传统与现代并存,传统化学化工的研究方向所占比例较大,如化学工程,包含的研究方向较多。部分代表21世纪化学化工发展方向的研究方向,在很多学校都受到重视,如资源与材料工程,研究方向也比较多。
二、化学工程与技术专业学科集群的创新及竞争优势
本文选择山西省高校做研究,分析其师资力量情况,以分析化学工程与技术专业集群的创新及竞争优势。山西省作为我国化工3大生产基地,化学化工产业是山西省的支柱产业,化学化工专业是山西省高校、特别是工科院校的学科优势之一。选择山西大学、中北大学、太原理工大学的化学化工学院为样本(见表2),按照前文对学科集群的认识,这些学院都有9个以上相关专业和研究方向,已经形成了一定的学科集群规模。其中论文指该学院教师被SCI、EI、ISTP3大检索刊物收录的论文数。中北大学的数据包含了CA论文。山西大学的数据不包括ISTP论文。专著指该学院教师出版的学术专著数,不包括教材。项目及奖项指该学院教师申请的省部级以上项目、经费及省部级以上奖项。发明专利指:该学院教师申请并且授权的发明专利。3所高校的化学化工学院拥有一定数量的教授和博士生导师,博士学位的教师也占到了较大比例。3所学院教师的科研成果也较为可观,被3大检索刊物收录的论文数量较多,出版了一定数量的专著,申请了一定数量的国家自然科学基金项目。山西大学化学化工学院承担了国家自然科学基金的重大攻关项目,以及“863”项目,甚至获得了国家科技进步奖和国家技术发明奖二等奖各1项。中北大学化学与环境学院承担过“973”项目,获得过国家技术发明二等奖1项,三等奖2项,国防科学技术一等奖2项。中北大学和山西大学还拥有发明专利十几项。从师资力量来看,应该说学科集群让山西省高校化学化工领域的创新取得了一定的成就,使得山西省高校化学化工专业在全国具有了一定的竞争优势和影响力。
三、化学工程与技术专业学科集群的协同创新模式
山西大学至今已与国内20余所高校、科研院所建立了学术交流与合作关系;与日本岩手大学、香港浸会大学等国家和地区的高校及科研单位签订协议,开展交流。在校企合作方面,与山西三维集团股份有限公司、太原钢铁(集团)公司、天脊集团等大型企业,在产品研发、岗位培训等多方面进行了良好的合作。太原理工大学与山西化工研究所建立了山西省化学工程技术中心,还与山西焦化集团公司等6个企业建立了长期稳定的产学研合作关系。中北大学安全工程系与航天一院、航天三院、北京理工大学、南京理工大学、第二炮兵工程学院、西安近代化学研究所等科研机构和相关生产企业进行了卓有成效的科研项目合作。从产学研合作角度来看,三所高校都与国内外相关院校、科研院所和企业建立了良好的产学研合作关系。从企业合作的视角来看,在研发方面,与山西省的产业集群密切相关,合作领域主要为新能源技术、环境化工、生物工程与技术。3所高校的化学工程与技术学科集群与山西省的产业集群具有一定的协同关系,构建了学科集群与产业集群协同创新的模式,围绕着山西省的产业特色,为山西省地方经济服务。
四、我国化学工程与技术专业集群的路径
从以上3所高校的情况来看,基本上已经完成了单个高校某个学科的集群,在3所高校内部相关专业之间建立了学科集群,集群的方式是建立化学化工学院,统筹化学化工各个专业,从多学科、多专业、多研究方向的角度,进行学科集群。关于区域性学科集群,即单个高校与该高校所在地高校、研究所和企业之间的集群,3所高校都作出了一定的努力,也取得了一定的实效。集群的方式是产学研合作,与山西省高校、科研院所和企业建立合作关系,从而服务地方经济。关于跨区域性学科集群,即单个高校与该高校所在地之外高校、研究所和企业之间的集群,中北大学有一定的建树,却没有进一步深入。中北大学之所以能够有一定建树的原因是该校原来是部属院校,与其他部属院校具有一定的合作关系。因此,中北大学的跨区域学科集群,仅仅局限于与兄弟院校的合作,还没有进一步深入到与其他省份企业的合作上。
这篇《山东理工2014年首次博士研究生招生报名时间确定》是
山东理工大学《2014年招收攻读博士学位研究生招生简章》,2014年,该校将首次招收博士研究生,涉及3个一级学科12个研究方向。
据悉,山东理工大学2014年博士研究生招生的三个一级学科为机械工程、农业工程、化学工程与技术,包括12个研究方向,分别为车辆及其电子电气、数字化制造与质量控制、光机电一体化、机械设计及高性能零件、机械化旱作农业技术体系及装备、农产品加工技术与装备、农业生物质能源与材料、农村电网自动化、催化反应与分离工程、生物化学工程、电化学工程、精细化学品清洁生产过程工程。
根据招生简章,符合报考条件的考生可于2014年3月15日-21日到该校研究生招生办公室报名,招生考试时间为2014年4月12日-13日,考试分初试和复试两个阶段进行,学校将根据考生的综合成绩确定拟录取名单。根据安排,该校博士研究生学制为3-5年。
关键词:职业标准;维修电工;电气自动化技术专业;学习领域课程开发
【中图分类号】G71
基于工作过程的学习领域课程的开发,已成为近年来高等职业教育课程改革的热点。基于工作过程的学习领域课程的实质,在于课程的内容和结构追求的不是学科架构的系统化,而是工作过程的系统化。职业教育的课程开发必须打破传统学科系统化的束缚,将学习过程、工作过程与学生的能力和个性发展联系起来,将“工作过程的学习”和“课堂上的学习”整合为一个整体,将职业资格研究(包括职业分析、工作分析、企业生产过程分析)、个人发展目标分析与教学分析和教学设计结合在一起。
高职电气自动化技术专业中维修电工的考证及学习是重要项目之一,该专业的核心能力对应的职业是维修电工。因此,以“维修电工”国家职业资格为标准、以高职人才培养为目标,将维修电工职业标准有机地融合到专业学习领域课程开发中,以项目为导向、工作任务为载体,重建专业方向课程体系,以解决专业教学与“维修电工”考证相互脱节的问题。
一、确立专业及其面向的职业岗位分析
根据企业调研,维修电工在不同工业部门如机械与设备制造、汽车与配件工业、电子工业,从事自动化生产。除操作自动化生产设备以外,这些设备的维护成为其专业工作的重点。此外,维修电工参加生产设备的建造和改造,进行电子维修,在车间维修并制造电子、自动化和信息技术的组件和仪器。符合专业要求的工具、测量仪器和测试材料、旨在有效完成任务的工作和工作岗位设计以及与同事进行符合专业要求的交流,都属于维修电工的任务要求。同时,还要考虑经济、社会和生态的不同要求以及由此引起的对职业行动的要求。维修电工能对任务进行整体性观察并在完整性的工作过程背景下对其进行组织,也就是说,借助其企业关联知识关注过程的衔接并与其他部门(机械保养、物流、制造计划等)合作。
二、提取、划分、分析典型工作任务学习难度范围
电气自动化技术专业中以电气设备的运行、安装、调试与维护及营销服务等职业岗位为导向,重点突出技能培养,根据职业能力要求提炼难度1-4级的典型工作任务。
(一)职业定向的工作任务(学习难度范围1)
工厂车间照明设备的安装与维修、普通机床电气设备的安装与维修、电机的安装与维修、小型电子设备的调整与改装、工厂供电系统的计划与实施、做计算机控制系统的计划与实施、印刷电路板的设计与制作、现场总线与工业以太网的构建与维护。
(二)系统的工作任务(学习难度范围2)
交直流调速系统的安装与调试、设备运行的检测与控制、电气设备控制的安装于调试、生产过程的组织与实施。
(三)蕴含问题的特殊工作任务(学习难度范围3)
电气设备的调整与改装、数控设备的维护。
(四)无法预测的工作任务(学习难度范围4)
生产设备的调整及生产质量保障。
三、构建电气自动化技术专业维修电工方向教学计划
根据典型的工作任务,提炼支撑课程,形成了12门理实一体化的学习领域课程。
学习领域课程编号 学习领域课程 基准学时
小计 第一学年 第二学年 第三学年
1 电工基本技能 2周 2周
2 电气设备安装与维护 4周 4周
3 电子技术应用实训 4周 4周
4 电气绘图技术实训 8周 8周
5 PLC应用技术 5周 5周
6 组态控制技术 2周 2周
7 传感器技术及应用 4周 4周
8 交直流调速系统与应用 3周 3周
9 集散控制与现场总线 3周 3周
10 单片机应用技术 4周 4周
11 自动化课程综合实训 5周 5周
12 自动化课程设计 2周 2周
合计学时 1196 468 286 442
四、建立学习领域课程教学计划(举例)
以《自动化课程综合实训》学习领域课程为例,建立讲授单元和行动单元学习任务和内容。讲授单元主要对PLC的组成与基本工作原理;PLC的编程软件及编号范围;基本逻辑指令表示方法及其应用方法;掌握梯形图的绘制原则及PLC设计原则、步骤和方法;对典型生产线工业控制对象进行系统的意见设计、系统的软件设计、安装调试设计,共计150课时。
行动单元中建立五个子学习领域课程:
1、控制方案的初步设计(学时:12),学生根据项目设计要求对现有自动化生产线及需改造的生产线进行调查,并据此形成初步控制方案,讨论并完善,最后提交具体可操作性的控制方案。
2、交流电机的PLC变频控制(学时:48),根据项目设计要求对交流电机的控制所需器件进行选型,了解并掌握器件使用完成交流电机的PLC变频控制子系统,并进行系统测试调试,最后提交相关技术文档。
3、物料分控系统的PLC控制(学时:24),根据控制方案要求对物料分控所需器件进行选型,了解并掌握器件的使用方法,完成物料分控子系统,并进行系统测试调试,最后提交相关技术文档。
4、机械手的PLC控制(学时:30),根据控制方案要求,了解并掌握机械手的使用方法,完成机械手控制子系统,并进行测试与调试,最后提交相关技术文档。
5、系统综合计划与调试(学时:36),根据控制方案要求,对全系统进行联合调试,分析并找出其中的问题,完成全系统了,并提交相关技术文档。
将维修电工职业标准融合到高职电气自动化技术专业的学习领域进行课程开发中,解构原有的基于知识储备的学科体系架构课程,重构基于知识应用的行动体系架构课程,凝练工作过程要素,在现实的职业资格基础上,培养学生普适的职业资格,为未来的职业资格奠定基础,提升学生的“职业竞争力”。通过学习领域课程的开发研究,可有效的优化学校课程资源,在有限的课时内发挥课程最大的作用;可优化课程结构,提高人才培养质量,体现高等职业教育人才培养的特色;为相关专业的课程结构的改革提供思路,使之更加适应培养学生综合职业能力和全面素质的需求。
参考文献:
[1]王平均,王伟,韩宝如.基于工作过程的课程考核评价体系研究――以高职维修电工实训课程为例[J].辽宁高职学报2013(5):49-51.
[2]刘勇,段保才.高职教育课程模式的选择――基于工作过程系统化的学习领域课程模式.中国高教研究,2011(6):85-89.
材料化学工程是由化学工程学科和材料学科交叉渗透所形成的一门分支学科,其研究方向主要有两个:一是以新材料为基础,不断发展反应过程的反应技术,比如吸附过程、膜过程、催化过程等。该方向主要是通过材料的特征将其分离并进行反应,其目的是揭示材料微观结构中物质进行传递和反应机理,进而总结出适用于材料设计和反应过程优化的理论方法和工艺技术。二是在材料制备的过程中,用化学工程的理论方法解决所遇到的关键问题,比如如何运用微结构的性能关系来实现对材料微观结构和性能的控制,从而完成从材料制备到定向制备的转化。新材料的开发是材料化学工程发展的关键和先导,直接可以衡量出国家的材料化学发达与否,因此,开发新材料对于材料化学工程的发展至关重要。材料化学包括陶瓷材料、聚合物材料、磁性材料、化学传感材料、电子材料、超硬材料、无机非金属材料、催化和吸附材料和薄膜材料等,这些材料很大程度上丰富了材料化学工程的领域,对其发展做出重要贡献。
2新材料的开发
我国在新材料的开发领域取得了很多亮点,这些新材料的开发成为分离和反应过程的重要基石。一些研究所和大学正在开发一种非晶态的金催化材料,这种材料很有发展前途,因为它具有非常明显的催化特性,而且其催化活性还具有特殊的选择性,具有显著的催化活性和特殊的选择性。对这种材料进行流程综合和技术集成,可以有助于我国新型石油化工技术的构建。石油化工科学研究院也开发出一种新型的钛硅分子筛催化材料,这种材料具有定向氧化催化作用,可以实现“原子经济”,使“零排放”工艺成为可能,而且也具备工业化生产的可能性。而在新材料的分离技术方面,我国也取得了很大的进步,其中南京工业大学发展了以陶瓷膜材料为原料的新单元技术,同时加强了对集成单元技术的开发,这些研究不仅使我国陶瓷技术更加趋于成熟,而且还形成了陶瓷膜新产业,为我国带来巨大的社会和经济效益。
3材料化学工程技术的进展
材料化学主要是对产品微结构进行调控,其主要手段是在加工材料时,将化学方法引入进去,这样我们就可以通过宏观条件来调控产品的微观结构,从而为材料的加工和制备提供理论和技术指导。因此,化学工程技术的改进将直接促进材料化学工程的发展。我国在化学工程技术改进方面已经取得了非常大的进展。清华大学在碳纳米粉体材料的制备过程中,引入了传统的流化床技术,大大降低了生产成本,从而使此生产技术可以用于工业化生产,带来巨大的经济效益。北京化工大学则用超重力场技术来放大纳米材料生产过程中的形貌控制问题,这样就可以通过调节超重力场的强度来调节和改变产品的粒径,。通过这种方法,我国已经成功制备出碳酸钡、碳酸、碳酸锂、氢氧化铝和碳酸锶等纳米粉体,并且形成了工业化生产的技术体系,为我国带来巨大的经济效益。
4展望
材料化学工程作为一门交叉学科,不仅促进了材料工业的发展,而且也丰富了传统化学工程学科的内容,因此,具有非常重大的研究意义。我国材料化学工程的研究已经取得很多可喜的成就,很多成果在世界上都位于领先水平。但是,材料化学工程中仍然有很多问题需要我们解决,因此,我们需要再接再厉,争取使材料化学工程的研究更加深入,使其更好地为人类服务。
5结语
2、生物科学。生物科学这个专业可能第一眼看上去比较高级,技术含量比较高,可这是一个笼统的专业代表,不同的大学对这个专业的主要研究方向都有所异同。该专业毕业后很难找到对口的工作,社会需求量很少。
3、化学工程。化学工程是一门比较基础的学科,当今社会的进步与化学工程是密切相关的,对考研和就业来讲都是个不错的选择,但由于化学工程从业者需要经常接触化学试剂,其中难免会有有毒有害的物质,长时间处于这种状态可能会对身体造成一定程度的影响。
4、环境工程。环境工程专业主要培养可持续发展理念,掌握污染防治和环境规划和资源保护等方面的知识。对就业而言,很难找到称心并且专业对口的工作,该专业很吃学校的名气,如果不是211,985高校毕业,有很大比例的毕业生会选择与专业不相关的工作,并且环境工程专业毕业的本科生在薪资待遇上也一般不及其他专业的应届生。
关键词:能源化学工程;培养目标;课程体系;人才培养模式
1能源化学工程专业的产生
随着世界经济的不断发展,人类社会对能源的需求越来越多。能源问题成为21世纪人类面临的最基本问题。长远来看,在全世界范围内,一次能源仍将占主要地位。但随着时间的推移,一次能源逐渐消耗殆尽,煤、石油和天然气等含碳能源的洁净、高效利用,太阳能、风能、地热能、生物质能、潮汐能等具有清洁、低碳、可再生等优势的新能源的开发利用将成为未来世界经济可持续发展的关键[1]。能源化学工程(EnergyChemicalEngineering)作为一个全新的专业应运而生。安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,仅仅依托煤化工,但又不局限于煤化工,涵盖燃料电池、生物质能、电化学、生物柴油、环境化工等丰富内容,于2011年新增加能源化学工程专业。关于能源化学工程专业本科生课程体系建构、人才培养模式正处于不断探索和完善中。
2能源化学工程专业的培养目标
能源化学作为化学的一门重要分支学科,是掌握煤炭综合利用,了解非煤矿物能源,普及新能源和可再生能源知识、实现能源科学利用和可持续发展的重要科学技术基础。它利用化学与化工的理论与技术来解决能量转换、能量储存及能量传输问题,以更好地为人类经济和社会生活服务。化学变化都伴随着能量的变化,而能源的使用实质就是能量形式发生转化的过程。能源化学因其化学反应直接或者通过化学制备材料技术间接实现能量的转换与储存[2-8]。能源化学工程属于一个全新的专业,之前仅在化学工程与工艺专业里涵盖过一点,主要关注怎么利用能源、对大自然造成较少的伤害。主要研究方向:能源清洁转化、煤化工、环境催化、绿色合成、新能源利用与化学转化环境化工。如今上升到一个全新的专业独立出来,可见其重要程度。专业人才培养目标的制定应建立在对专业深入分析和了解的基础上并结合国情、校情,能源化学工程专业人才培养目标也不例外[9-10]。考虑到安徽省淮南市是历史悠久的煤炭城市,再结合安徽理工大学化学工程学院化学工程系专业的办学特色,考虑专业发展与社会进步对人才的客观、合理的要求。我们在制定本专业的培养目标时,强调“厚基础、宽专业、高素质”,力求培养出具有良好科学素养、基础扎实、知识面宽,同时具有创新精神和国际视野的高级专门应用型人才[11-12]。学生具有了扎实的化学化工基础知识和能源化学工程专业知识就能够快速适应涉及化学、化工、传统和新能源加工等领域的相关工作。具备在煤炭行业、电力行业、石油石化行业、生物质转化利用行业从事低碳能源清洁化、可再生能源利用以及能源高效转化、化工用能评价等领域进行科学研究、生产设计和技术管理等工作。我们培养的毕业生工作领域包括:煤化工行业、天然气化工行业、电厂化工综合利用行业、生物质能源化工行业、固体废物综合处理行业、石油加工行业、石油化工行业、催化剂生产和研发行业。可以在这些行业从事设计、科学研究、技术管理等工作或继续深造[13-16]。
3能源化学工程专业课程体系
除了公共基础课程、学科专业必修课程,立足能源城淮南市,依托安徽理工大学化学工程学院化学工程系的特色开设特色专业核心课程(如,能源化工导论、化学反应工程、化工热力学、化工分离工程、煤化学、工业催化I、能源化工工艺学、化工过程分析与合成、化工过程控制、化工设计基础)以及特色专业任选课(如,煤气化工艺学、煤基合成燃料、生物质能源及化工、燃烧工程、燃料电池、现代仪器分析、电化学工程、膜科学技术过程与原理、基本有机化工工艺、废弃物处理与资源化、环境化工、化工专业英语)。此外专业实践模块本系能源化学工程专业开设的专业基础实验-《煤化学及工艺学实验》,包含实验项目:煤样的制备、煤样的粒度分析、煤样堆积密度的测定;煤中水分、灰分、挥发分产率的测定及固定碳的计算;煤中硫元素的测定;煤的发热量测定;煤中碳氢元素的分析;煤气成分分析;烟煤坩埚膨胀序数的测定;烟煤奥亚膨胀度的测定;煤的粘结性指数的测定;煤灰熔融性的测定。这些实验项目以煤化工为特色,厚基础理论,意在培养学生扎实的理论基础。开设的专业实验-《能源化工专业实验》,包含实验项目:煤样的XRD分析;煤的热重分析;水煤浆的制备和性能评价;油品的常压蒸馏;生物柴油制备及性能评价;石油产品的性能测定1;石油产品的性能测定2;电化学-燃料电池电化学性质的测定;电化学-质子交换膜电化学性质的测定。这些实验项目不限于煤化工,设计生物柴油,电化学,燃料电池等,重在拓展知识面,培养宽专业,高素质人才。
4能源化学工程专业建设中存在的问题
安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,开设能源化学工程专业,经过这些年的不断摸索,至今已有一届毕业生,通过学生反馈,在专业建设上仍有一些不足:
(1)专业实践教学条件有待改善。就当前现状来看,本专业实验条件还相对落后,缺少大型分析仪器和设备,实验室建设相对滞后,现有实验器材台数还不能很好满足学生分组实验要求。
(2)师资队伍建设还需进一步加强。由于本专业办学历史较短,师资力量相对不足,专业结构也不近合理,一批青年教师还需逐渐成长,缺乏高水平科研项目和教学研究成果。
(3)部分课程设置不尽合理,同时,专业基础课、专业课开课的先后顺序还需进一步调整和完善。对于新开设的课程,有的授课教师对内容不太熟练,有必要加强教师的授课水平,有条件的话可以走出去,加强与兄弟院校和科研院所的交流合作。
(4)校外实习基地建设有待加强。现有实习基地以煤化工企业为主,与能源化学工程专业培养目标中强调的“宽专业”背景还有一定差距[17]。以煤化工行业为背景的院校能源化学工程专业建设是一个不断发展的过程。在开设该专业时仍需明确方向,吸收、借鉴相关院校办学经验,不断摸索、改进、完善专业建设。不仅要办出自身专业特色,还要进一步解放思想,紧跟经济社会发展需要,培养出适应经济社会发展的高素质应用型人才。截止到目前为止,安徽理工大学能源化学工程专业建设经费陆续到位,新进大型设备招投标已完成,等待供货、安装调试。专业教师也正忙于实验室和实训基地的规划设计。结合应用型人才培养目标,学院领导带领专业教师通过广泛调研,集众家之长,具有专业特色的实践教学基地也逐步落实到位。相信安徽理工大学能源化学工程专业的明天会更加光辉灿烂。
参考文献
[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(06):209-210.
[2]韩军,何选明,王世杰,等.《能源化学》教学团队多导师制的探讨[J].科教导刊(上旬刊),2011(09):72-73.
[3]龚启迪.浅析我国能源化学发展模式[J].化工管理,2015(24):4.
[4]2013年贵州大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,gaozhong.eol,2013.
[5]2013年东北电力大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,gaozhong.eol,2013.
[6]《能源化学》[OL].重庆创业资讯共享平台-重庆高技术创业中心,www.cqibi.cn.
[7]能源化学工程专业-百度文库[OL].wenku.baidu.c,2012.
[8]能源化学工程-百度文库[OL].wenku.baidu.c,2012.
[9]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(03):145-146.
[10]钟国清.无机及分析化学课程改革的实践与思考[J].化工高等教育,2007(05):11-14.
[11]徐美玲,李风海.能源化学工程专业无机化学教学改革的探索[J].山东化工,2015,44(17):150-151.
[12]高庆宇,吕小丽,蒋荣立,等.能源化学化工实验课程体系的建设与实践[J].化工高等教育,2009,26(02):20-23.
[13]陈彦广,韩洪晶,陈颖,等.基于国际化、工程化能源化学工程创新人才培养模式的评价及效果[J].教育教学论坛,2013(13):224-225.
[14]陈彦广,韩洪晶,杨金保,等.能源化学工程专业本科生创新能力培养体系的建立与实践[J].教育教学论坛,2013(15):228-229.
[15]王淑勤,郭天祥,汪黎东.能源化学工程专业建设初探[J].山东化工,2015,44(19):116-117.
[16]走进奇妙的“化学反应”中-历数化工制药类专业[J].考试与招生,2012(5):42-43.
关键词:化学工程与工艺实验;数据处理;MATLAB软件;化工实验数据;化学实验 文献标识码:A
中图分类号:O652 文章编号:1009-2374(2015)09-0059-02 DOI:10.13535/ki.11-4406/n.2015.0785
1 MATLAB软件
MATLAB软件最早由美国的Mathworks公司提出,其主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言的编辑模式,代表了当今国际科学计算软件的先进水平。近年来MATLAB软件逐渐被用于化学工程与工艺实验的数据处理中,极大地提高了数据处理的效率。
2 化学工程与工艺实验数据处理
化学工程与工艺实验不同于普通的化学实验只重视一个原理的求证,它的目的是为了解决工业中的化工问题,其特点主要有实验时间长、实验规模大和实验数据处理繁杂等。在整个化学工程与工艺实验里数据处理是必不可少的阶段,也是印证化学实验成果是否行之有效的必要手段,但是由于实验数据过于庞大,实验当中相关的参数关系大多是非线性的,单单依靠传统的手工计算不仅速度慢,还容易出现计算失误的情况,根本无法满足实际的需求,因此,将MATLAB软件融入实验数据的处理中刻不容缓,它能有效地将繁琐的计算步骤化解成简单的计算,提高工作效率,让实验数据的准确性达到最高值,避免误差的产生。以下通过研究两个化学工程与工艺实验,分析MATLAB软件在处理实验数据时与传统的手工计算有什么优势和便利。
3 化学工程与工艺实验数据处理设计
3.1 数据处理的程序框架
因为每一个化学工程与工艺实验的目的都不相同,因此其处理的步骤以及涉及的化学公式也不尽相同,不可能以一个程序来概括,但是经过大量的实验研究和总结,发现不同的化工实验中都会有其相似之处,它们都可以由图1来概述:
图1
3.2 数据处理的程序编制
3.2.1 数据输入。化学工程与工艺实验的数据输入主要依靠提示的函数input实现,比如以温度为例子,则其输入函数为:t=input(‘请输入实验的温度(摄氏度):’),其中输入函数大多是以矩阵的输入形式为主。
3.2.2 处理和作图。化学工程与工艺实验中得到的数据时常会存在离散的情况,必须经由多种拟合的方法将它们结合成一条或多条连合的曲线,而其中最常用的拟合方式是最小二乘法,因此本实验设计中的拟合方式也采用最小二乘法的方式。
设实验的离散数据(x1,y1)通过最小二乘法将其拟合成因变量y,自变量x,输入的函数关系为y=f(x),函数关系的主要思路是让离散数据中的x1的残差平方以及Σ(f(x1)-y1)2达到最小值。因为在得出化工实验数据中多少会因为外界的因素存在着一些误差,因此最小二乘法可以无需使输入函数y=f(x)必须经过全部的离散数据(x1,y1),但是残差平方和必须达到最小值。根据最小二乘法的拟合方法可知,最小二乘法可以满足化工实验数据处理中的拟合应用需求。
在化学工程与工艺实验中会涉及到流体的流动阻力研究,研究主要是通过测试流体的流动阻力,在经过特定的计算之后得出摩擦系数(λ)和雷诺准数(Re)的离散数据,再同理,经过最小二乘法拟合出连续的曲线,并根据其画出相对应的图形。因为摩擦系数(λ)和雷诺准数(Re)属于成双对数函数,则:
λ=aReb+c (1)
当a,b,c是常数时,则可以设c=0:
λ=aReb (2)
因为λ与Re属于成双对数函数,则:
Logλ=blogRe+loga (3)
得出上述式子之后可以将MATLAB里的函数polyfit()进行线性的拟合,以作为化工数据处理的程序
原理。
3.2.3 建立数据库。因为经过上述的设计,化学工程与工艺实验数据处理只能得知在特定的温度下(比如10℃、20℃以及30℃等)实验的物性数据,但
是在实际的生产中,工业生产所涉及的温度多变,不单单只停留在设计好的温度当中,因此,这就需要我们在数据中选择最相近的数据,假设它们属于线性的关系,再利用内插或者外推的方式计算出实验的物性数据常数。在本文的化工实验中,编写的程序已经将实验温度和密度以及实验的温度与黏度进行多次的实验拟合,建立出了一个相对完整的数据库,在工作中只需将温度输入进系统,则程序可以自动跳出在特定温度下的物性数据,提高数据处理效率。
3.3 程序的运行
在编制完成化学工程与工艺实验的数据处理程序,且建立数据库之后,便应该输入数据以验证程序是否能有效地处理实验数据。在化学工程与工艺实验的数据处理中,MATLAB软件的应用是十分重要的,经过实验可知,在化工实验当中会出现大量的离散数据,必须经过拟合的方式进行处理,其处理过程中不仅工作量大,而且十分繁琐,一旦出现差错则必须重新重来,浪费大量的人力物力资源,而且在处理好实验数据之后,在查看实验当中还要将化工实验数据重新计算一次,看结果是否与原先的计算结果相同,工作量十分重,但是如果运用MATLAB软件则大大降低了数据处理难度,只要在MATLAB软件中输入相应的化工实验数据,就可以得到结果,节省了时间,提高了工作效率。
4 结语
在实际的应用中,化学工程与工艺实验所要处理的数据十分庞大,而且涉及的计算公式也十分多,甚至很多时候为了将数据的计算公式导出来还要建立复杂的模型,一旦有一个步骤出现差错则会直接影响到实验的成果,如果使用传统的手工计算方式,为了避免差错则必须对每一个数据处理环节进行反复计算,降低了工作效率,因此MATLAB软件的应用对于化学工程与工艺实验的数据处理十分重要,它不仅将复杂的计算变得简单,也让事后的实验验证效率得到提高,促进了化工实验的
发展。
参考文献
[1] 赵新强,谢英慧,曹吉林,李国玲.化学工程与工艺教学实践[J].河北工业大学成人教育学院学报,2014,6(1).
[2] 韩正.计算机引发化学工程革命[J].发明与创新(综合科技),2013,12(1).
学科建设要结合未来国家发展重点、地方经济建设需要和学校具体情况有所侧重,坚持“有所为,有所不为”的方针,明确学科定位,凝练学科方向,突出学科特色。
1.1国家、地方的产业政策和学校办学定位
在2010年两会期间,国务院总理在作《政府工作报告》时指出:要大力发展新能源、新材料、节能环保、生物医药、信息网络和高端制造产业等战略性新兴产业。《国家中长期科学和技术发展规划纲要(2006-2020年)》也把新型材料和新医药及其相关产业作为重点领域和优先主题。功能材料产业和新医药是新乡市战略性支撑产业之一,是新乡市大力扶持和发展的产业。《2010年新乡市人民政府工作报告》和《新乡市国民经济和社会发展第十二个五年规划》中均指出:要做强、做大新型功能材料等优势产业,如“十二五”期间计划在膜材料产业投资80多亿元,实现销售收入170亿元,实现利税40多亿元。我校作为地方教学应用型高校,应与新乡经济发展紧密结合,立足新乡,面向全省,辐射全国。基于上述学科建设的方针和国家、地方的产业政策和学校办学定位,化学与化工学院选择了应用化学(功能材料方向)和生物化工(医药中间体方向)两个二级学科方向作为学院学科建设的重点。
1.2化学与化工学院已有的专业学科基础
化学与化工学院现开设有化学工程与工艺、制药工程、化学等本科专业。1993年应用化学专业被评为“河南省重点专业”,2002年化工基础实验室通过“河南省基础课教学实验室评估”,2010年化学工程与工艺专业被评为“河南省高等学校特色专业建设点”。学院自2004年至今,进行了产学研合作教育培养创新人才的实践。积极施行“校企”联合、“校研”联合,形成产学研共同体,把人才培养落实到链接“校研企”三方的“人才链”、“知识链”和“技术链”中,提升学生的科研素质、工程技能、创新意识,在此模式下培养的学生以高素质、强技能、应用型,深受社会和企业的欢迎。学院先后与河南心连心化肥有限公司、华兰生物工程股份有限公司、河南省伯马股份有限公司等50余家企业共同“订单式”合作培养学生500余名,实现了学校与企业的无缝接轨,为企业的可持续发展奠定了坚实的人才基础。科研成果的水平直接反映学科水平的高低。学院的“材料研究所”自1998年开始大力开展与地方经济发展联系紧密的特色学科--新型功能材料、新医药领域的研究,主要研究方向有:高温剂、膜技术和医药中间体,并取得了一批科技成果。学院研发的“绿色环保高温剂”项目,已申报国家发明专利,并在企业实现了技术转化,学院利用企业的技术转让费在校内建立了“高温剂测试中心”,以及“高温剂中试基地”,产生了良好的经济效益与社会效益。此外学院研发的“纳米TiO2生产工艺、非木浆纸生产工艺”等已完成中试;“一种含金属钨连铸滑板砖”已获得国家发明专利授权;合成出了多种医药中间体,已获准国家发明专利授权3项。学院在新型功能材料和新医药领域取得的丰硕科技成果,为凝练学科方向奠定了良好的基础。通过创新人才培养模式和科技成果转化,学院的专业、学科建设获得了长足的发展。
1.3凝练后的学科方向
随着国家科技体制改革的深化,企业已成为技术创新的主体,因而在确定学科研究方向时,学院特别重视与地方经济建设相结合。在为企业服务的过程中,学院从企业获得了大量的科技信息,也获取了众多的科研项目和科研经费。目前,学院的材料研究所已成为豫北地区功能材料行业的研发中心、技术推广中心。2007年4月,经河南省发展和改革委员会批准,学院与河南省伯马股份有限公司、郑州大学联合组建“河南省高温功能材料工程研究中心”,使学院学科建设的特色更加突出。学院通过与企业合作对接,在化学工程与技术一级学科下更加突出应用化学(功能材料方向:主要为剂和膜技术)和生物化工(医药中间体方向)两个二级学科方向作为学院学科建设的突破点。
2构建一流学术队伍,引领学科前沿
学科建设的实施主体是教师,高水平的师资对于学科建设的意义十分重大[2]。培养、造就一支结构合理,团结合作的学术梯队,是学科建设的基础;造就一批学术思想活跃、学术造诣较深、在国内甚至国际上有一定影响的学科带头人和学术骨干是学科建设的关键。结合学院在学科建设中的实践,我们认为师资队伍的建设应从以下三个方面着手:
2.1引进人才
人才引进是对学科带头人和青年骨干教师的引进,主要是为了提高教师的教学科研水平,注入新的活力。近两年学院共引进博士6人。引进人才的目的是对原有较薄弱学科力量进行补充,使原学科有所突破和创新;引进的“专家级人才”可培养一批接班人,带领和召集一批中青年骨干,增强本学科教师的自信心和凝聚力,使大家明确努力方向,使教师队伍的整体水平得到提升。
2.2培养人才
除了重视引进人才的后续培养与开发,使人才自身优势得以充分发挥外,更要立足于校内培养,重视在研究生特别是博士生中选拔、培养学科带头人。在改善工作条件,加大培养力度的同时,要引入竞争机制,为拔尖人才的脱颖而出创造一个良好的政策环境。例如,以学院的“材料研究所”、“河南省高温功能材料研究工程中心”为依托,在项目的研发过程中培养了一大批青年教师和部分优秀学生。
2.3共享人才
实施人才共享,充分开发各类人才资源是高校学术梯队建设的重要环节。
(1)加强校际合作,学院已与国内十余所知名高校建立了开放的教师资源共享平台。如请郑州大学化工和能源学院的教授给学院做了“制药工程在国内的近况”学术报告。
(2)互聘、返聘专家、学者,积极拓宽兼职教师来源渠道,实行专兼职结合的开放式教师选用模式。如学院聘请了国内十余所知名高校的12名教授为学院的兼职教授。
(3)与企业、科研院所联合与协作,选聘更多具有丰富实践经验的专业技术人员担任兼职教师。如聘请多名企业的高级工程师担任学院专业建设指导委员会的委员。
3建立高水平的教学科研平台,突出应用学科基础研究
学科专业建设投入具体包括实验室、实习基地等基础设施的建设,以及课程建设、教材建设等方面的硬件投入,这是学科建设顺利开展的物质保证。理工类学科的建设重点要放在实验室建设上,特别是要集中力量搞好重点实验室建设。化学与化工学院以“材料研究所”和“河南省高温功能材料研究工程中心”为依托,成立了“功能材料及其制品研究中心”。研究中心突出功能材料应用基础研究,积极发挥孵化器的作用,大力推进企业与高等院校和科研院所之间的知识流动和技术转移,积极推进科研成果工程化和产业化。不仅为地方经济的发展做出了贡献,而且也为学院功能材料的研究奠定了良好的学科平台。
4坚持开放办学,促进学术环境建设
学科环境建设是为树立良好的学术风气和职业道德,形成融洽的人际关系和良好的学术环境,以充分调动和发挥教科研人员的积极性、创造性[3]。
4.1校校合作
学院已与国内众多知名大学建立了良好的合作关系,开展全方位、多层次的合作,如互派教师讲学、定期开展学术交流等。
4.2校企合作
学院已与河南心连心化肥有限公司等50余家企业建立了产学研共同体,在人才培养、师资共享、教师实训、科学研究等方面开展全方位的合作。通过多种合作方式,学院形成了优良的学科环境,使学院较好地把握了学科前沿,从而推动学科建设。
5建立新型人才培养体系,加强本科生创新基地建设
培养高层次的人才是学科建设的主要任务之一。学院通过多种途径提高人才培养的质量和层次。
5.1与企业联合制订人才培养方案
学院结合化学工程与技术学科的培养目标,成立了由企业专家参加的专业建设指导委员会。经广泛调研,反复论证,构建了切实可行的分类人才培养方案,有所侧重地实施以就业为目的的“应用型、技术型”和以考研为目标的“研究型”人才培养方案,以培养不同层次、不同规格、不同类型的人才。
5.2成立“化学工程与技术创新基地班”
“化学工程与技术创新基地班”采取导师指导小组制,强化研究性教学课程,鼓励学生在大三、大四阶段主动参与科研活动,培养学生前沿科学意识和独立创新能力。创新基地班覆盖功能材料、生物医药等领域,突出剂、膜技术、医药中间体等研究方向的培养。
5.3与知名高校联合培养硕士研究生
为提高人才培养的层次,学院与国内知名大学初步达成联合培养硕士研究生的协议,即学生考取以上学校硕士后,继续留在我校进行硕士阶段的学习和研究。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和教学方法进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,J.M.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在课前预习阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、平时作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等教育,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
所谓多场分布,就是指发酵生物反应器中受到的多种物理因素影响,导致反应器内基质、产物等在浓度和温度上发生改变,从而对反应速率产生极大的影响,这些物理因素即为温度分布、速度分布和浓度分布。以发酵液中的反应为例,其反应的最终结果都与这些多场分布因素有关,如氧的传质速率、菌丝团以及菌体的内反应组分传质,还有固定化酶等等,都是主要的影响因素。在很多情况下,这些影响因素在影响反应过程的同时,还会起到主导反应的作用,即为发酵罐内反应的控制环节。所以,在发酵罐中的各项反应中,传递特性的作用十分关键,它的研究对于发酵罐内化学工程的研究来说具有良好的现实意义,并且为以后的发酵过程控制理论的完善奠定了基础。
2乙醇提纯工艺中所涉及的化学工程问题
乙醇提纯的主要工艺方法在进行乙醇的发酵工艺时,水是反应中必须要产生的物质之一,于是乙醇的提纯工艺就落到了水与乙醇的分离工艺上。基于化学原理上分析,这种提纯工艺可以采用精馏法,可以采用吸附法、共沸精馏、萃取精馏,也可以采用渗透气化膜分离法等等。一般来说,乙醇在发酵液中的质量分数在5%到12%之间,但是工业用乙醇的质量分数却在90%以上,那么这就给乙醇的提纯工艺提出了一定的挑战,采用传统的精馏方法已经无法满足工业的要求。由此,可以将发酵液中的乙醇混合物分两步进行提纯,首先,利用普通的精馏提纯方法得到质量分数为92.4%的乙醇,然后再利用萃取、共沸、吸附等精馏方法得到高纯度的工业乙醇。精馏这种乙醇提纯方法已经发展多年,其工艺与流程也比较成熟,然而在这种精馏过程中由于产生很高的热量,造成的能耗很高,并且在此过程中对于回流的要求也越来越高,大大增加了精馏成本。综上,在传统的乙醇提纯工艺上还具有很大的发展与创新空间,可以从设备配置、生产效率以及工程理论上进一步研究,得出更适合现代工业发展的有效方法。目前,这种工艺方法已经有所突破,如分类与反应过程耦合的方法,就是创新的代表。在燃料乙醇方面,乙醇的纯化可以采用的方法为多塔精馏,同时结合向乙醇混合液中增加原有体系分离因子的萃取精馏等,也可以利用膜蒸发分离的办法,其优点是降低能耗,避免污染环境。此外,吸附的办法在燃料乙醇纯化工艺中还没有很成熟的使用,需要进一步的探讨。现阶段,燃料乙醇生产工艺的研究,主要集中于单一操作过程,如吸附脱水共沸物、渗透蒸发、萃取精馏等,将这些单一过程组合研究的文章不多。实际的燃料乙醇纯化研究中,计算机仿真的应用开始不断增多,它在进行不同单元组合的反应规律研究上十分有利。此外人工智能方面在乙醇纯化工程模拟中也有很多的应用,对于条件限定后的每个单元操作以及分离流程耦合的筛选等都是工程模拟中的主要内容。由此可见,流程组合的研究已经上升到计算机时代,不再需要传统的凭经验进行流程与工艺的确定了。
3生物发酵反应与分离耦合反应
就目前的燃料乙醇工艺研究而言,主要为基础研究工作,如过程放大、生物反应与分析过程耦合、流程创新、工艺流程创新等。生物发酵反应与分离耦合。不是两者的简单结合,而是一种流程耦合,属于一种创新的技术和理论。如果化学反应结束后就可以直接得到产品,那么反应过程就是相应的过程,而在工程上所说的反应过程则是综合性的过程,包括方法、设备以及问题处理的过程。这其中形成了分离工程,利用能量与物质的传递、化学反应以及流体力学等相关知识,由此说明耦合问题可以进行,并且能够完成相关问题的解决,并且可以将生物发酵看作是耦合过程,用于提高发酵与分离效率,这种方法大大促进了燃料乙醇工艺的发展。它利用了工艺改善,采用了创新的方法,实现了工艺过程最优化,这是化学工程发展的最新契机,多场耦合的研究意义重大,为未来的发展与进步指明了方向。
4结语
关键词:化学工程;分离反应;系统工程
前 言
传统化学工程的分支学科,如分离工程、反应工程、传递过程、系统工程等,近年都有很大发展。它们与石化工业某些过程相结合,产生了一些新的过程和技术,提出了一些有希望的发展方向。另外,近年来在某些分支学科的结合点上,产生了一些化学工程新的生长点。它们对今后的炼油或石化工业可能有更大的影响。本文对以上的一些发展动态作了简要的介绍。
一、化学工程近期几个重要发展方向
1.反应过程与分离过程结合
在一个设备中同时完成反应和分离两个过程。目前最成功的是由甲醇与异丁烯混合物合成甲基叔丁基醚,反应产物生成两个共沸物,分离比较困难。当采用了一个置有催化剂的反应蒸馏塔,便可取代原有的两个多管式固定床反应器、两个蒸馏塔和一个甲醇水洗塔等5个设备。使甲醇的转化率不受平衡转化率的限制,在蒸馏过程中也避免出现共沸物,反应热可供蒸馏使用,大大节省了投资和能耗。对酷化、醚化、烃化、水合等过程,只要反应条件和分离条件比较接近,都有可能采用反应蒸馏。近期有希望工业化的反应与分离结合的过程还有反应萃取、反应吸附、反应结晶等。尤以膜反应器最受关注。它是反应与膜分离结合的设备,最适用于各类可逆反应和反应产物对反应有抑制作用的过程。
2.多个反应过程的结合
把从原料转化为产品所需进行的多个反应在一个反应器中完成。为此需采用多种催化剂或多作用催化剂。
3.放热反应和吸热反应相结合
例如丁烷脱氢制丁烯为一强加热反应,要求反应温度较高若加入空气进行部分氧化脱氢,氧和氢结合是强放热反应,使总的放热反应可在较低温度下进行。
4.多个分离过程的结合
开发此过程的目的是强化分离效果,增加回收率、节约能耗。近年来研究较多且实用前景较好的过程有:渗透蒸发,即膜分离与蒸发过程相结合;膜萃取,即膜分离与萃取过程相结合;支撑液膜萃取即萃取与反萃取结合等一些新的分离技术都开始从研究走向实用阶段。
二、强化化学作用对分离体系中体相的影响
1.筛选分离剂
对某被分离组分有特殊的化学结合能力,增大分离因子;另一是对原分离体系加入附加组分,改变原体系的化学位,从而增大分离因子。另一类适用于萃取、吸收等使用分离剂的过程。
2.强化化学作用
相界面传质速率的影响。采用相转移催化剂(PTC)促进水相和有机相间的反应已为人所熟知。其实质是PTC可以促进反应组分通过相界面的传质速率。若两相间不发生反应,我们把这类促进通过两相界面的传质速率和选择性的物质称为“相转移促进剂”(PTA)。可以认为PTC也属于PTA中的一类。如用有机相萃取水相中的有机酸和酚,采用长碳链的胺为PTA,可以加快萃入有机相的速率。又如对气体分离膜,若在表层涂上一层固定液作为PTA,可以增大某组分通过的选择性和通量。又如把对被分离组分有特殊亲和力的PTA结合在相界面上,便形成各类的“亲和”(Affinity)分离过程。如亲和色谱、亲和吸附、亲和过滤、亲和膜分离等。已经形成强化分离过程的一个前沿研究方向。
3.优化化工动态过程
这是在计算机技术高度发展以及快速、高精度分析和监测仪器和方法产生的基础上才可能发展起来的技术。主要内容包括有以下5方面。
3.1分批操作的动态模拟和过程的优化。
3.2对开工、停工和变换操作条件时实现最优化控制。
3.3利用动态响应过程以快速研究传质过程和测定相应的传递参数。也可以研究反应机理和测定吸附和反应动力学方程与相关的参数。各种过渡应答技术、催化反应色谱等技术都已取得广泛的应用,并取得了许多用传统定态方法不易得到的研究结果。
3.4 把脉冲进料的高效分析技术如色谱、电泳进行放大,发展成为高精度的制备技术。
3.5 利用强制周期改变操作参数的方法强化反应和分离过程等。
三、计算机技术与石油化工相结合
计算机技术在化学工程发展中占重要地位。因此,计算机技术与石油化工结合将有助于精确连续化稳定发展。
1.运行优化与产品设计
在历史数据和多元统计方法的操作条件优化基础上,进一步用于产品的优化设计。还可以在炼化行业中进行一些相关的收集整理应用,例如Sebzalli利用PCA对炼油产催化裂化过程操作空间进行识别,而Chen利用模糊c-均值聚类方法,提出用于开发期望的产品操作策略。
2.过程监测与故障诊断
过程监测与故障诊断主要任务是对过程运行状态进行实时监控,并对系统进行分析异常,保证能及时发现运行过程故障,并在事故发生前采取有效的控制措施避免事故,以保证运行过程的安全与平稳。目前,基于数据的统计过程中控制在石化行业已得到普遍的关注,其方法也从以单一的变量统计过程控制向以主元分析为主的多变量统计技术转变。基于多变量统计技术应用于石化工业过程的监控始于20世纪80年代,其相关的多变量统计在石油化工方面的报道文献也较多。基于多变量的数据驱动的过程监测与控制也常被称为多变量过程控制(MPC)或多变量统计过程控制(MSPC)。其采用的方法也主要是PCA,PLS,基于支持向量机以及它们与其他方法的混合算法。
3.产品质量预测与控制
利用数据驱动方法进行预测离线或在线的产品质量,以克服没有在线仪表的困难,也不会受在线仪表价格昂贵的限制、避免了维护费用高的缺点。也可以进一步应用于控制回路用来完成产品质量的调控。这种数据驱动方法主要是通过对目标控制变量建立软测量模型来实现的。PCA、PLS、SVM是实现数据驱动的软测量模型的主要方法,人工智能算法(模糊神经系统、神经网络等)及其混合算法。在许多资料中都有对软测量模型方法及应用的综合报道。在石化行业中,一些典型的应用如:用来生产乙烯的在线质量监测,基于PLS的软测量模型,检验在线气相色谱仪的性能。Fortuna等人开发了一个基于多层感知器的复杂软测量模型,模型采用三层神经网络,取得了较好的在线预测功能,用于预测精馏塔汽油浓度。Bakhtadze等建立了原油精炼过程的产品软测量模型,该模型应用于缺少实验数据情况下的软测量建模,这种模型是将Takagi-Sugeno模糊模型和基于过程知识的相联搜索算法相结合。
材料是人类生存及发展的物质基础,是经济建设和国防安全的重要基石。新材料是现代高新技术发展的先导,是提升传统产业技术能级的关键。新材料的发展及材料技术的创新将会促进国家经济繁荣发展、提升国际竞争优势,是世界各国科技发展战略的重要组成部分。
长江师范学院经过多年的发展,在师资队伍建设、人才培养、科研创新平台建设等多方面取得了长足进步。在本次申硕工程中,我校拟申报的材料与化工专业硕士学位点是立足重庆,面向全国,以国家新材料发展战略和区域绿色产业发展需求为导向,以实际工程为背景,以工程技术应用为主线,培养出德智体全面发展、具有一定创新能力的应用型、复合型高层次工程技术和工程管理人才。
拟申报的专业学位点以国家新材料发展战略和区域绿色产业发展需求为导向,围绕国内外在新材料开发技术与化工工程技术领域存在的科学问题,开展有特色的工程应用研究,拟在高分子材料化工新技术、能源与功能材料、环境污染治理与低品位资源开发利用等新材料与化工工程领域形成突出优势,在特种功能材料与新能源材料的制备技术和污水处理技术上形成专业特色。
经过多年发展,材料与化工专业学位点的主要研究方向:材料化工新技术、能源化工新技术、环境化工与低品位资源开发利用。
(1)材料化工新技术 本研究方向主要围绕化学工程中的关键材料与技术,针对工程应用中遇到的具体材料瓶颈问题,开发具有实际意义的功能高分子材料和功能合金材料等。