发布时间:2024-03-07 14:42:02
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇大数据营销的概念,期待它们能激发您的灵感。
一、问题的提出
云计算、移动互联网等新信息技术的广泛应用及社会化网络的兴起,使信息数据产生机制更复杂、传播速度更快、类型更多样,全球进入信息数据量“井喷式”增长的大数据时代。国际数据公司(In原ternationalDataCorporation,IDC)指出:全球创建和复制的数据量五年内增长近九倍,预计将以每两年至少翻一番的速度继续增长。仅2013年,世界范围存储的数据就达1.2ZB(1ZB抑1021B),将这些数据刻录到CDR只读光盘并堆起,其高度将是地球到月球距离的五倍[1]。生产和信息方式的变革引起管理规范及其深层次上价值观的转变。传统企业营销中,为避免无法获取整体数据的弊端,多依据小样本采样统计推断以形成所谓“科学决策”。然而采样分析的成功取决于样本的绝对随机性,大数据时代,营销调研建立在对大样本持续收集数据的基础上,实时分析和输出调查结果将为营销决策提供及时判断临界值。在大数据背景下对营销活动进行研究,具有聚焦数据,提高营销决策科学性;强调洞察,增强营销活动“预见性”;重视创新,增强营销理论“前瞻性”等研究价值[2]。特别是中国具有众多人口和庞大市场,也使中国成为最为复杂的大数据国家之一。那么,大数据对营销活动究竟会产生怎样的影响?其内在机理是什么?通过文献综述,对大数据概念进行界定,梳理其发展的历史脉络,在此基础上分析大数据对消费者行为、营销决策模式、营销战略、营销要素等的影响表征及其机理,最后对大数据的营销应用研究做出述评。
二、大数据的发展脉络及概念界定
(一)大数据的发展脉络
大数据的概念最早要追溯到上世纪,只是在互联网时代,大数据才从规模、类型等方面得以实现。早在1981年,美国著名未来学家Toffler在其著作《TheThirdWave》中,提及“大数据”,并称之为“第三浪潮的华章”[3]。2001年,META集团(现为Gartner)的分析师Laney指出数据增长带来规模性(Volume)、高速性(Velocity)、多样性(Variety)等变化[4]。《Nature》则在2008年9月开设“BigData”专刊[5-7],同时《Sci原ence》也推出数据处理研究专刊“DealingWithDa原ta”,对数据洪流(DataDeluge)所带来的社会变革及影响做出讨论[8]。大数据研究的开创性论文是Gins原bergetal(2009)的“DetectingInfluenzaEpidemicsUsingSearchEngineQueryData”,该文探讨了如何利用谷歌搜索引擎查询词来预测流行病[9]。只是在最近几年,大数据才成为高频词。2011年5月,麦肯锡公司《大数据:创新、竞争和生产力的下一前沿》报告,指出“在数据渗透于各领域并成为生产要素的背景下,对海量数据挖掘应用,将带来新的生产增长和消费者盈余浪潮”[10]。2012年3月,美国开始实施“大数据研发计划(BigDataRe原searchandDevelopmentInitiative)”,将大数据喻为“未来新石油”,并视为与互联网、超级计算机同等重要的国家战略,这也是美国在“信息高速公路”计划后所实施的又一国家级重大科技战略。日本紧随其后,推出“新ICT战略研究计划”。同年,世界经济论坛《大数据、大影响》报告,从多个行业领域阐述大数据给世界经济带来的发展机会[11]。就国内而言,2011年12月,国金证券开创国内大数据研究先河,将其研究成果引入资本市场[12]。2012年5月,香山科学会议组织“大数据科学与工程:一门新兴的交叉学科”为论题的会议,同年6月,中国计算机学会青年计算机科技论坛(CCFYOC原SEF)举办“大数据时代,智谋未来”会议,对大数据挖掘技术、组织架构、平台治理等展开探讨。2013年6月,国家自然科学基金委管理科学部、美国营销科学学会(MSI)、南京大学商学院(管理学院)和香港中文大学工商管理学院联合主办“2013营销科学与应用国际论坛”,也将“大数据、社会化、移动化对市场营销的新挑战”作为主要议题之一。2014年2月,北京银行与小米科技就移动支付、便捷信贷、产品定制、渠道拓展等签署协议,表明国内企业运用大数据战略进入实质性阶段。2014年3月5日,总理第一次把大数据写进政府工作报告,阐明了国家对大数据产业鼎力支持的政策,随后一系列公开讲话进一步明确了这一战略部署。2015年2月,百度公司利用百度迁徙、百度指数等大数据产品直观地呈现了春运“景观”,把大数据研究成果可视化地展示在电视屏幕上。2015年3月,政府工作报告中进一步提出“互联网+”计划,推动大数据与现代工业相结合。
(二)大数据的概念界定
大数据本身就是抽象的概念,当前对其概念界定尚未达成统一,不同组织及学者给予不同的表述,见表1。尽管各方对大数据概念并不统一,但其中“大规模数据”“体量、复杂性及速度超越传统数据”“超越现代技术手段处理能力”等观点得到基本认可。IBM公司及Laneyetal(2001)认为大数据具有“3V”特征:规模性(Volume),数据量一般要达到TB级甚至PB级;多样性(Variety),数据结构类型包括结构化数据、半结构化数据和非结构化数据;高速性(Ve原locity),产生、处理、分析数据的速度加快。国际数据公司(IDC)在此基础上,增加“价值性(Value),即“大数据价值很大但呈现低密度性”的特点,从而形成大数据的“4V”特征[16]。而NetApp公司认为大数据具有“ABC”三特征:大分析(BigAnalytic),通过对大数据实时分析构建新的业务模式并更好地了解顾客需求;高带宽(BigBandwidth),快速有效地对数据进行处理分析;大内容(BigContent),包括各种类型数据,同时对数据存储、扩展、安全等管理的高要求[17]。
三、大数据对未来市场营销的冲击
根据(移动)互联网时代大数据的特征、消费者行为变化及营销模式的可能演变,通过相关文献梳理,勾画的大数据对未来营销活动的影响趋势,见图1。
(一)大数据对消费行为的影响
1援消费行为更理性。工业化时代,信息不对称的客观存在,消费者易受各种如低价促销、广告宣传等影响。而大数据时代,消费者有更多、更方便的途径获取更详细的商品价格、成本、产地、质量等信息,并可更方便地搜寻、比对和遴选,从而做出更理性的选择[18]。2援消费行为幂律分布。大数据时代,消费者评价系统更广泛,先前购物者的购后评价及经验对新消费者具有重要参考。相比先前购物者的好评,消费者则会更关注其差评,以便做出正确的消费决策。同类产品中,质量好、价格有优势、服务好的产品受到越来越多的青睐,并不断吸引新的消费者,形成“滚雪球式”的“马太效应”,消费行为呈现幂律分布。3援消费行为更个性化。工业化时代,商家追求规模经济的考虑,只能在有限范围满足消费者个性化消费。而大数据时代,信息广泛并快速传播,消费者的消费认知及创造力大大提升,消费异质性不断增大,对产品或服务的关注并不仅限于以往的质量、品牌、价格、售后等,更关注其个性化的满足程度。
(二)大数据对营销决策模式的影响
大数据时代,思维方式发生三个变革:其一,要分析与事务相关所有数据而不是少量数据所构成的样本;其二,要接受数据纷乱复杂的事实,而不能过于苛求精确;其三,更加主动地分析相关关系而不再探究难以捉摸的因果关系[19],可以说,数据驱动型决策(Data‐drivenDecisionMaking)是大数据背景下决策的特点[20],以“数据化、智能化、实时化垣经验”将成为大数据时代的营销决策范式。1援数据决策技术升级,注重实时处理及相关分析。传统分析多基于多元统计、计量经济学模型等方法,对大量一手和二手结构化数据实施分析,从中寻求研究对象的内在联系,常用方法有:聚类分析、因子分析、相关分析、回归分析、A/B测试、数据挖掘等。大数据背景下,数据规模大、传递速度快、非结构化数据多等特点,使得传统数据分析及数据库管理手段很难适应时代要求。数据产生及传播速度加快,要求数据应用实现从离线(Offline)向在线(On原line)的实时处理转化[21]。数据关联成为大数据的主要价值来源,但数据间交互广、价值密度低、碎片化严重,也使决策重点从以往因果关系分析向相关关系分析转变。2援决策参与主体向社会大众倾斜,数据分析师地位加强。大数据使营销决策越来越依赖于数据分析而非经验或直觉[22],直觉判断将被精准的数据分析代替。管理者决策重心在于正确发现并提出问题,一线员工对决策参与度将大大提升,决策主体从社会精英向社会大众倾斜,扁平化组织架构、学习型企业文化将得到加强。同时,能综合运用数据分析、分布式管理的数据分析师,将为企业营销决策提供更多智力支持。
(三)大数据对营销战略的影响
1援激发协同营销的竞争格局。大数据环境下企业与行业的边界日趋模糊,营销系统开放性更明显。企业竞争不再局限于个体之间或供应链的链条间,而是向多主体所构建的商业生态系统间延伸[23]。企业营销战略的设计应打破传统的个体竞争思维,在不断提升自身营销网络化和动态化能力基础上,利用外部资源,形成协同营销格局。2援一对一营销的精准定位。大数据背景下,企业可以记录消费者在产品各个生命周期阶段的品牌偏好、口碑评价等行为数据,基于社会学、心理学、营销学、传播学等相关理论,并借助数据挖掘、统计计量等,按一定的细分标准进行消费行为细分,从而结合自身资源优势,形成目标市场的选择和一对一营销的精准定位。
(四)大数据对营销要素的影响
1援产品:顾客参与式的产品设计和个人定制。大数据背景下,虚拟企业和智能车间将会越来越多地被采用,顾客参与式的产品设计和个人定制将大行其道。那些市场价值在较短时间发生贬值的短生命周期产品的时效性更强、需求波动大,与外界存在着复杂非线性关系[24]。而长周期产品特别是其中生产工艺复杂、流程管理复杂、客户需求复杂的复杂品(ComplicatedProduct)将实现供应链纵向一体化整合及全生命周期数据整合[25]。“全息”生命周期的完整大数据可帮助企业构建消费者兴趣图谱,从而应用于营销和新媒体关系定位中。2援渠道:渠道缩短及渠道多元化。大数据背景下,信息技术更为成熟,经由中间商的渠道模式将让位于直销,渠道长度越来越短。特别是具有及时反馈交互关系平台技术的实施,使企业可开发出更多、更便捷的渠道与顾客连接,实现多渠道及跨渠道营销。诸如微商等“屏幕+手指+快递”的购物方式,配合超低的价格,使营销渠道更趋多元化。3援价格:透明度更高,基于支付意愿的差异化定价。传统营销定价多从产品成本、利润率、顾客接受度等简单因素考虑,并依据先前相关销售经验建立精算模型。大数据背景下,传统精算模型将被颠覆,价格不对称性有所改善,定价透明度越来越高,明智的价格策略是企业“阳光”定价,基于支付意愿的差异化定价将成为主导,电子支付成为主流。4援促销策略:促销手段的数字化、互动化趋势。大数据背景下,传统电视、报纸、广播等大众传媒的传播效率不断下降,而建立在数据库基础上的移动互联网将成为促销信息的重要传播手段,促销手段更具数字化。同时,促销手段更新颖,目标受众被多元化数据锁定,并特别强调与顾客间的互动和情感沟通。
四、大数据研究在营销中的应用评析
(一)研究层次:偏宏观层面研究,轻微观分析
当前对大数据的相关研究,更多从宏观层面对其概念内涵、形成脉络及其对社会所产生的影响方面展开描述,而对大数据所形成各种影响的内在机理缺少必要的微观分析。大数据为未来营销带来深刻影响,但机会和挑战并存,其合理利用前提是必须拥有准确、可靠、及时的高质量的数据[26],只有在此基础上,才能提炼出有效的营销决策信息,才能帮助企业实现精准定位。
(二)研究视角:多立足于信息科学视角,缺少管理视角
当前,国外从管理学视角应用大数据技术来支持管理决策已成为商科教育的热点[27]。相比之下,国内相关研究还处于起步阶段,数据驱动决策的管理模式还有待形成,现有的相关研究则更多立足于对数据信息的采集、处理、检索、挖掘及离线分析等信息科学视角。而只有立足管理决策的视角,探讨大数据对现代经济组织的战略定位、架构设计、营销实施等实时问题,才能真正发掘大数据的“资源”价值,建立起信息引导决策的机制。
(三)应用范围:国内多理论研究,实践广度、深度不够
关键词:大数据时代;营销;创新方向
一、大数据时代营销创新研究的价值
1.1优化营销活动效果预测的准确性
随着我国市场经济逐步深入发展,市场的竞争也越来越激烈,企业的营销活动要想获得成功,必须要准确的定位顾客的价值,但是由于顾客需求的多元化、竞争方式的随机化以及科技更迭速度不断加快,企业想要进行有效的预测愈发的困难。但大数据给准确预测带来了可能,所谓“大”,不光是数据量的多,更意味着多样化的数据处理模式,通过大数据,可以在最大程度上综合数据,用多重数据方法来建模并进行分析,深层次的挖掘数据之间的相关性,以此来实现对未来事件的预测。
1.2提升营销管理的科学性
大数据时代营销创新的研究成果可以帮助到企业各个方面的营销活动,它使得营销活动的决策直到最终的实施环节都能做到严密而精确,使营销管理真正的成为建立在科学基础上的一种艺术。
1.3满足我国营销理论研究的前瞻性
由于大数据在全世界范围内都属于刚刚兴起的一种科学技术趋势,各国的研究程度差距不大,这实际上给我国的营销理论研究提供了一次飞速发展的机会,有可能帮助我国从模仿者一跃成为引领人。大数据目前已经在社会经济生活等许多方面发挥作用,许多企业正在利用大数据来推动营销管理的实践创新与变革。而通过大数据,我们又能将其中优秀的,有成果的实践活动理论,抽象化,从而建立起具有普适性的新的营销体系,这反过来又能够帮助大数据更好的运用于各行各业的营销实践。可以说,这是建立具有中国特色的具有前瞻性的营销理论的绝佳机会。
二、大数据时代营销创新研究的价值
到目前为止,理论界还并没有形成对大数据真正概念的共识。有人认为它是无法在一定的时间里通过传统的数据库软件来进行生成、管理以及处理的数据集合,但也有人从商业管理的角度看,认为它应该是一种“分析”,通过它来从数据中得到有效的信息,并通过这些信息获得商业优势的一种智能化的管理活动。大数据的具体定义尚未有定论,但无论从哪个角度看,人们普通认为其具备以下的几个特征:一是规模性,数据的绝对数量是首要保障;二是高速性,它包含数据生成与利用过程的高速以及分析处理数据上的高速这两个方面;三是多样性,大数据所包含的数据类型多种多样,包括以各种形式存在的结构化数据与非结构化数据;四是价值性,这些数据应当有助于社会经济领域各类管理实践效率的提高以及有助于管理模式的有效创新。
三、大数据时代营销创新研究的方向
3.1探索大数据的营销应用价值
由于目前人们对于大数据的具体概念与特征仍然存疑,并且大数据又不仅仅是一种技术手段,它应当是社会中不断增长的数据所催生的一种经济与技术现象,这也就意味着大数据只有“工具特征”,缺乏“专业属性”。如何将其所具备的各种特征与营销管理进行有效的结合并真正促进企业的营销创新是我们应当着重考虑的问题。所以,从大数据的共性特征着手,结合其在营销领域的具体特性,进一步探索大数据的营销应用价值是大数据时代营销创新研究的一个重要方向。
3.2探索大数据时代营销创新的内在机理
目前我们对于营销创新的具体研究往往都停留在对其性质特征的分析上,对其内在机理的研究却鲜有人提。大数据的出现,使得深化研究成为了可能。大数据所带来的数据透明化与共享大大增加了全球数据资源的可获得性以及可运用性。大数据在营销管理实践上的运用,是实现对营销创新目的的一个重要工具。
3.3探索大数据时代营销创新的支撑体系
在大数据背景下,营销创新不能仅仅依靠营销职能部门的努力,它必须依靠多方面力量的支持。由于数据的分析实践本身就是一种跨职能与跨层级的组织行为,并且大数据要想实现在企业中的良好运用也必须依靠外部力量的支持。因此,一个综合战略,制度,政策多方面的支撑体系是推动大数据时代营销创新的重要保障。如何从企业战略,顾客的根本需求以及产业政策等多方面着手,建立起这样一个良好的支撑体系,也成为了大数据时代营销创新研究的另一个重要方向。
四、结语
随着云计算、物联网技术的发展,我们已经步入“第三次工业革命”时代,大数据的兴起正是一个重要标准,现代企业之间的竞争开始转化为数据之间的竞争,与以往相比,企业的数据越来越丰富,给企业带来了巨大的参考价值。
参考文献:
[1]冯芷艳,郭迅华,曾大军,陈煜波,陈国青.大数据背景下商务管理研究若干前沿课题[J]. 管理科学学报. 2013(01)
(1西华师范大学 四川 南充 637002 2四川大学锦城学院 四川 成都 611731)
摘 要:从大数据环境视角出发,研究探讨如何权变地解决创业预测、决策与定位的精准化问题,并在此基础上提出了精准创业的概念模型,为推动创业与创新取得良好效果具有导向意义。
关键词 :大数据;精准创业;关系函数
中图分类号:TN912 文献标识码:A doi:10.3969/j.issn.1665-2272.2015.14.009
*基金项目:四川省教育厅科研项目“创新创业教育支撑体系实证研究”(项目编号:14SB0444);西华师范大学教改项目“创新创业教育实践平台的影响维度实证研究”(项目编号:JGXMYB1318);教育部教育管理信息中心MOOC课题2014-2016年度重点项目“大数据环境下创新创业教育的结构模型与实现路径研究”。
收稿日期:2015-04-30
在大数据环境下,数据与资金、人才、技术等成了企业生存发展的重要资源,对这些资源的运用方式决定了创业企业的兴衰存亡,创业者要想高效运用这些资源,就要解决一个问题——精准。“精准”能够使企业明确目标、节省成本、开发需求、占领市场,进而获得利润,长久地生存发展下去。Barabási认为,在大数据时代人类行为的95%都是可以预测的。这个比例之大,使得创业者对“精准”占有市场和化解风险有了重新的期盼。
1 精准的理论研究历史脉络
本研究通过对不同历史时期实现精准的表述,将精准的研究分为以下几个阶段。
第一阶段,小数据市场调查与预测阶段。在数据来源领域,Kiaer是第一个使用抽样方法收集数据的人,并进行了许多纯粹的抽样调查。最先将随机化理论引入抽样调查的是Bowley,同时也是他发展了目的性选择理论。Mahalanobis提出了交叉子样本的理论,以此来降低非样本误差的问题。此后,统计学陷入了对各种抽样方法的研究之中,但是,都不能完全避免抽样所带来的误差。
第二阶段,精准营销阶段。电子商务的飞速发展,使得各种网络营销概念层出不穷,Wunderman提出了精准营销的概念。Abin和Brebach提出了精准营销的4R法则,即Right customer +Right message +Right channel +Right time。Kotler认为精准营销中至关重要的就是建立个性化的沟通,它的含义就是前文所提到的4R法则。Laursen基于大数据时代的商业分析补充了一些新的精准营销的方法与案例。
第三阶段,大数据精准预测阶段。Hubbard认为大数据的源头之一是数据化决策,财富500强企业都在使用量化决策方法,企业要想在复杂多变的社会环境中立于不败之地,就必须对企业所掌握的数据进行分析,分析后的信息就是企业管理决策的重要依据。Sch nberger提出了大数据时代,不再依赖随机采样和因果关系。Maex和Brown在《大数据营销:定位客户》指出可以利用大数据来辨认出最佳顾客——利润最高的顾客,如果用效率最高的方式和这些顾客打交道,就能使他们的购买力提高,进而增加企业的利润。
综上所述,笔者认为,基于互联网和大数据技术的精准预测方法,将逐步取代传统的创业决策方式,成为创业研究的新趋势。
2 上述研究共同指向的新问题
2.1 没有结合时代趋势引入“大数据”方法
文献中还没有将大数据的精准效果应用在创业领域的概念。Hubbard认为,具有高信息价值的量一般都是客户从未量化过的,一个被量化事物的经济价值,和它所受到的关注常常成反比。绝大多数企业都缺乏科学决策的思想,缺乏对用户购买行为产生的各种数据进行分析,仅凭经验判断、直观感觉做出的决策出错的几率很大。归根结底是没有引入大数据的方法,缺乏对精准效果的把握。
2.2 缺乏“精准”的概念内涵
精准就是在恰当的时间,将恰当的产品,运用恰当的方式,销售给恰当的顾客,只有同时满足这四个条件才能称之为精准。大数据中的海量信息,能够帮助创业企业精准地找到其目标顾客,并为其预测顾客偏好的改变。创业企业据此可以决定公司的商业模式、盈利模式、营销方式等。由于大数据的精准预测的特性,对大数据的分析、使用可以大幅度降低创业失败的风险。而目前的创业决策还主要依靠主观臆断和经验,创业行为还近似赌博,缺少精准性。
2.3 缺乏“权变”的思维
Luthans认为,权变关系是两个或更多可变因数之间的函数关系,权变管理是一种依据环境自变数和管理思想及管理技术因变数之间的函数关系来确定的对当时当地最有效的管理方法。在不断变化并快速发展的数据环境下,没有一成不变、普遍适用的“最好的”创业理论和方法,企业在其生存和发展中,要根据组织所处的外部环境和内部条件的发展变化随机应变,这样才能使企业长久发展下去。
3 精准创业概念的提出
3.1 逻辑结构:一种权变的关系函数
在大数据背景下的创业活动,离不开权变思维,因为大数据和创业本身都是不断变化之中的。创业企业必须运用权变思维进行创业策略的规划设计,才能在瞬息万变中采用“更好的”应变策略。
创业成功率的高低关键是由精准效果来体现。精准效果也是检验各种创业理论解释力和预测力的基本标准。精准创业效果与创业企业利用所掌握的大数据进行精准的数据化预测、数据化定位及数据化决策有关,不能用固定的模式进行创业或者盲目地投资创业。
按照Luthans权变函数关系构架,大数据环境与创业之间,也是某种函数的关系(见图1)。将这个函数关系命名为通过大数据实现的精准效果,即“精准创业”。精准创业的关键在于怎样使大数据环境与精准创业之间建立函数关系。精准创业作为一种权变函数,其过程是数据化预测、数据化定位及数据化决策等因素的方程式,即Precise Entrepreneurship=F(Data prediction,Data decision,Data position),即PE=F(P,D,P)。
3.2 因变量:精准创业
在此权变函数关系中,精准创业(即精准效果)可作为因变量。因变量随自变量的变化而变化。创业企业应当根据自变量与因变量之间的权变关系来设计一种最有效的创业模式。在创业活动中,大数据环境支撑的各子系统之间相互影响,相互联系,并具有系统的开放性。创业活动中的个人及组织行为必须与大数据环境因素相适应,实施精准的数据化预测、数据化定位及数据化决策,精准各个系统环节,才能使创业达到最佳绩效。
3.3 自变量:大数据环境
在此权变函数关系中,数据化预测、数据化定位、数据化决策等因素可作自变量,大数据中数量庞大的数据资源能够帮助企业精准定位,准确预测经济形式的变化,并及时作出最利于自身的决策。因此企业对这些信息收集、整理、利用的能力至关重要,运用这些信息的程度决定了企业的兴衰存亡,这些能力也是大数据时代对企业的必然要求。
(1)数据化预测。大数据的核心就是预测。大数据包含着错综复杂的信息,创业企业可以采用与之相匹配的管理流程、技术手段去挖掘这些数据所带来的价值,从大量的客户数据、访问行为中去辨识客户访问数据的模式,从而为创业决策和定位提供精准化的预测。
(2)数据化决策。大数据在一定程度上降低了信息不对称的程度,使决策信息更加大数据化大数据整合了各种类型的数据。基于大数据的精准决策, 可以指导和帮助创业决策流程的每一个可以量化的环节并做出最优的处理。利用大数据决策大幅提高了企业决策中所含的技术量与知识量,大数据利用的有效与否是企业决策的关键。大数据为企业提高竞争力提供了新的舞台,这种竞争力归根到底是数据分析提炼能力,是情报分析利用能力。
(3)数据化定位。创业是伴随着高风险的,一次错误的目标顾客定位就会导致失败和债务。精准的定位,是对目标市场的供给和需求情况做出细致的分析后,针对目标顾客的细分需求,依据大数据进行差异化的定位。通过定位精准化,创业企业可以制定准确的战略把有限资源准确地用于如何获取新客户,提升现有客户和保持客户,促进企业的持续盈利。
精准创业,对提升创业绩效具有导向意义。值得指出的是,精准创业目前还是一个较为理想的概念。由于大数据环境还受社会环境、人的情感等诸多因素干扰,很难做到绝对理性精准化。不过,随着“互联网+”逐渐深刻地改变人们的生活,通过精准创业概念所体现的思想与方法,将成为未来最主要的创业方式。
参考文献
1 丹尼尔·A·雷恩.管理思想的演变[M].北京:中国社会科学出版社,2004
2 道格拉斯·W·哈伯德.数据化决策:大数据时代财富500强都在使用的量化决策法[M].北京:世界图书出版公司,2013
3 张玉利,李乾文,李剑力.创业管理研究新观点综述[J].外国经济与管理,2006(5)
数字的本质是人,数据挖掘就是在分析人类族群自身。因此在大数据的背景之下,问题的关键已经不仅包括用户说的是什么,还包括用户是谁?做了什么?大数据的营销价值,是随着实名制社区和电子商务的普遍化,用户之间所产生的人际关系链,也就是人脉价值,通过这种人脉最终实现交易数据跟交互数据的融合。
而大数据时代下的营销应该指的是在互联网普及的当下,社会化应用以及云计算,使得网民的网络痕迹能够被追踪、分析等,而这个数据是海量的以及可变化的,企业或第三方服务机构借助这些数据为企业的营销提供咨询、策略、投放等营销服务的行为。
和信息化很多概念一样,大数据营销其实也不算很新的概念,只是因为随着云计算、云端应用、各种移动设备的普及,以及社会化媒体的兴起,对数据营销体系的成熟,使得大数据营销受到越来越多的关注,并且逐渐成为多数企业的必选题。
大数据营销是未来营销的主战场,当电视、报纸等传统媒体在放缓,乃至衰减,而且随着多网融合,大数据正在将传统渠道的数据融合,由此形成了“数据为王”的营销格局。
在过去,我们总是倾向于通过采用小组和调查问卷的方式找出我们的客户在哪里。而当调查结果总结出来时,结果往往已经过时。而利用大数据,这种状况将不再发生。大数据能够帮助企业完全勾勒出其客户的DNA。充分了解客户是有效的与客户达成生意合作的关键。
大数据可以为企业提供针对个体客户的十分个性化的见解。使用互连的社交媒体数据、移动数据、网络分析和其他数据分析,企业可以充分了解每一位客户,实时地知道他们想要什么,以及何时想要。
此外,企业可以使用大数据发现顾客尚未提出的需求。通过分析企业已经掌握的数据模式和回归分析,你会发现客户尚不知道他们自己的需求和愿望。大数据还可以帮助企业发现在哪个市场推出首款产品,或在哪里放置产品。
未来的企业市场营销费用的分配,除了部分品牌投放外,多数投放都是在大数据下指引的,企业的消费群分布在哪里?企业的潜在用户在哪里?通过大数据找到他们分布的地方,然后用有创意的投放形式让他们成为企业的粉丝以及形成销售。最终达到营销策略的合理化。
创意是营销的前提,需求是营销的保障。但是规避风险也是营销过程中必须思考的问题。为了确定一个潜在的客户或者供应商的风险,您需要对客户或供应商进行特定的归类,每位客户或供应商都有自己的风险水平。更多的时候,如果您的客户或供应商被归类到一个错误的类别,无疑将导致错误的风险。
一个风险太高的配置文件没有所带来的害处反倒不是很大了,除非让您的企业失去营收收入;但过低的风险,有时可能使您的企业遭受严重的损害。利用大数据可以针对每位客户或供应商过去和现在的实时数据有针对性地确定风险类别。为企业的营销起到保驾护航的作用
营销是一个闭环行为,我们不仅要牢牢抓住的顾客群体,还有应付我们的竞争对手。
所谓知己知彼,百战不殆。所以充分了解您的竞争对手,分析竞争对手当下的状况,将帮助您提供一个有价值的开端。使用大数据分析算法能够找出您的竞争对手产品价格的变化,从而自动改变您的价格以及保持竞争力。您也可以监测竞争对手的其他行为:如自动跟踪对手的新产品或促销活动(市场如何反应)。
关键词:大数据;市场营销;专业教学;
中图分类号:G648 文献标识码:B 文章编号:1672-1578(2016)01-0028-01
在过去的数年中,以信息技术和网络技术为支撑的大数据技术展现了蓬勃的生命力,也在社会的各个领域得到了广泛的应用,在市场营销中有着重要的应用。高校作为培养高等人才的主要阵地,必须结合大数据技术的新发展,探讨大数据背景下的专业人才培养体系的调整和转变,以适应新形势下社会对高等人才的需求。
1.大数据的内涵和特征
大数据是一个十分抽象的概念,业界对于大数据较为贴切的认识是"大数据指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理并整理成为帮助企业经营决策目的的资讯"。大数据最鲜明的特征是种类多、速度快、容量大、流量快、价值高,大数据的这种特点是有别于以往传统的数据概念,大数据不仅要搜集海量的数据,还要根据这些海量的数据分析、挖掘、处理得到有用的有价值的信息。这意味着每个数据都能在互联网上获得生命,产生智能,散发活力和光彩。
2.大数据对企业市场营销行为的影响
2.1 企业的市场营销规划周期将缩短。大数据技术在市场营销行业中的应用会造成企业的市场营销规划周期的缩短,企业的市场营销规划是一个长期工程,通过长期性、根本性和方向性的企业与社会环境互动,但是大数据引起市场营销后,各种结合互联网技术的新型的市场营销手段层出不穷,市场营销有了大数据的支持,营销目标人群的精准度大幅提高,企业要及时根据当前的营销状况,调整市场营销策略,这样企业才不会在市场营销过程中落伍,销售目标才能完完成。
2.2 同类企业市场营销竞争更加激烈。企业的发展是基于新产品的开发和市场营销行为的成功,在技术水平基本持平的行业,产品的性能没有什么本质的差别,因此决定企业发展好坏的重要原因就是企业的市场营销水平。正确的市场营销策略、大范围的市场推广、精准的目标群体主动影响等都是企业市场营销的重要原因,大数据作为一个开放的环境和平台,可以为每一个企业服务,大数据提高的海量数据分析结果可以为企业制定差别化的市场营销方案,这会导致同行业的企业市场竞争越发激烈,加速了市场的优胜劣汰选择。
2.3 大数据对企业的市场营销将更加重要。大数据的出现使企业在制度市场营销方案时更加的科学,基于大数据的分析和判断能提高市场营销的效率和准确度,传统的市场营销是基于对市场大众的抽样调查,调查分析结果和真实情况还具有一定的偏离度,尤其是对于特殊行业。在大数据背景下的整个企业营销流程中,各种相关的数据调查和数据库有力地支持了市场营销方案的制定,使企业的市场营销行为更加的科学化和规范化。
3.大数据对市场营销专业教学的挑战
3.1 传统的市场营销专业教学缺乏大数据相关内容。大数据作为近些年发展起来的一项技术,在各行各业得到了广泛的应用,展现了很高的发展潜力,基于海量数据的快速分析,能够对社会公众群体的特征和行为进行统计性、科学化的概括,这种分析和判断的结果对于市场营销专业具有重要的作用,能大幅度提高市场营销的效率和效果,甚至可以说大数据技术的应用能引起市场营销专业的变革。传统的市场营销专业教学缺少关于大数据的相关知识,为了保证高校培养的学生能有效满足企业的需要,必须在专业课程培养体系中加入大数据技术、网络技术、搜索技术等,提高学生的专业能力。
3.2 传统的市场营销专业教学缺乏实训课程。市场营销是一门应用性、实践性很强的管理学科,在传统的课堂教学中,要尽可能地使学生做到理论联系实际,提高其实践能力,能够学以致用,但是往往在教学过程中还是能听到学生说,市场营销很抽象,感觉离自己很远,不好理解,也不好操作,总的来说传统的市场营销教学主要以教为主,学生的实训实操碍于客观条件长期被忽略,学生在校期间对于市场营销的理解是碎片化、理论化的,这十分不利用大数据背景下的市场营销人才的培养。
4.大数据背景下市场营销专业教学改进策略
4.1 及时更新市场营销教学内容。在大数据的社会背景下,企业的市场营销模式层出不穷、推陈出新,令人眼花缭乱,国内现行的教学体系基本沿用菲利普・科特勒的市场营销学课程体系,长期以来教材和教法相对固化,不利于培养学生的创新精神,也不能满足当下的大数据应用背景要求,因此高校市场营销专业教学要突破以往的旧体系,实时引入新知识、新内容、新教法,培养学生的专业能力和创新精神,以适应大数据时代企业对市场营销人才的需要。在教学过程中及时跟踪大数据市场营销经典案例,在课堂上和学生们探讨分析,引导学生使用大数据结论指导市场营销工作的开展。教师要及时调研大数据发展的新成果,及时引入课堂,使学生能接受最新的教学内容。