当前位置: 首页 精选范文 建筑设计规则范文

建筑设计规则精选(十四篇)

发布时间:2024-01-30 15:23:17

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇建筑设计规则,期待它们能激发您的灵感。

建筑设计规则

篇1

关键词:建筑设计,不规则地段,突破设计制约

中图分类号:TU2

Abstract: In this paper, I discussed architectural designing on complicated plot, saw the difficulty of it in a dialectical prospect. In addition, I discussed how these types of buildings interact with the plot, the architectures nearby and interact with the function of the building. Furthermore, the new designing’s adaption and conscious activity with the environment, and its commercial value and its contributions to urban landscape system.

由于现代城市建设速度的迅猛发展,各地老城区的改造项目也不断增加,使我们在做规划和建筑设计中经常会遇到一些形状不规则的地段:有的地段形状狭长窄小;有的地段平面形状带有很尖的锐角;有的地段带有很多的弧线边;有的凹凸变化复杂等等,奇形怪状五花八门。对于这些形状特殊的地段,由于受到各种各样因素的制约,建筑师们对此经常感到非常棘手。若客户对建筑师在设计方面的约束较小,给予建筑师在建筑设计方面以较大的自由度,则建筑师们还能比较从容地应对。如遇到对设计要求较严格的客户,建筑师们就要拿出很大的精力和时间,并需费非常大的周折,来进行场地平面及建筑总体方面艰苦的平面和空间构思。由于香港的特殊条件,那里的建筑师们对此类问题的应对就有很多可借鉴的例子,例如香港关吴黄建筑师事务所设计的香港圣约翰大厦就做的比较出色,为我们在处理这样非常狭窄复杂形状地段上的设计做出了典范(见图)。这栋高层商业大厦位于港岛中环花园道33号。它的两侧是很近而且弯曲的街道,两条街道距离在15米左右,在场地长向还有非常大的高差。为不使如此体量的建筑在这样狭小的场地上太过于拥挤,而采用了底层架空的做法,用了6根粗壮的柱子及垂直交通核心筒将整个大厦托起。这样其下部空间就变轻灵很多,底部的半开放空间与街道城市空间互相交融,同时它的地下层候车廊对外开口位置则利用了场地高差,巧妙地设置在场地低处。使商业大厦的入口空间与乘客候车的公共入口空间截然分开来,使其在人流上和功能上互不干扰。另外,在场地最低处设置的喷泉跌水(与层层的台阶交合一起),还为城市景观和公共设施做出了贡献。

底层平面

地下层平面

香港圣约翰大厦外景

在多年来的设计工作实践中,我自己也碰到了很多形状复杂的地段,对在设计中处理这样的地段也积累了一些正反两方面的经验。对于在设计中碰到的各式各样的复杂地段,在接到设计任务后首先要进行非常细致有针对性的分析;带着规划部门对规划和建筑的要求及客户的设计要求,找出地块中尽可能多的有利或不利因素,进行总体地协调;把握地段中的主要矛盾,并在设计上做出适当的取舍;去全面地进行发散性的思考和比较,开动自己的四维想象空间。

其一,要考虑建设地段周边环境对它的影响及它建成后能对地段周边环境的影响,即相互之间的影响。这里包括周边交通环境对它的影响及它对周边交通环境的影响(因各地块的划分通常通过道路来划分),它的出现有可能对其周边产生交通压力;它未来的建筑体量是否对周边环境有影响,是具有亲和性还是具有侵略性;在它的建筑造型和色彩上是否与周边其它建筑相互协调,是否能相互融为一体并交相辉映;它的建设是否对周边建筑在生态环境上产生不利影响(如日照、通风、绿化、噪音等方面);地块上的建筑空间与现有城市空间如何相互交融等。如何在设计中消除负面影响并对破坏的生态环境加以补偿(如增加绿化及水体设计、减噪隔音等小气候方面设计);因它增加的人流对周边生活配套设施的压力或它对周边生活配套设施给予的改善等等。从总体设计上要有能解决问题的信念,在具体设计问题上要逐个认真对待。对束缚设计手脚的外在因素,如原有相邻建筑对其的压迫感、周边交通的局促感、旧建筑与新建筑的不协调感等进行一一破解。

其二,不规则地段对新建筑物本身使用功能的影响。建筑的使用功能虽然在某些的情况下对场地有一定的适应性,但是一般来说,不规则地段对它的影响还是非常巨大的,特别是当建筑对室外功能场地尺寸的要求较严格时。例如像有停车位数量要求的停车场地和对回车空间有要求的场地,各类厂区及公共建筑、各类学校建筑(内部需设的各类标准的运动场地,如篮球场和排球场)等等,有的要求场地方整规则(如各种货物堆场、集装箱堆场等);有的有要求场地要有固定朝向和建筑物的摆放朝向要求;有的在功能上要求场地的出入口有固定的出入方位等等。在这样的地段上,建筑的摆布往往受到建筑后退建筑红线距离和场地内外建筑日照距离的更严格的考验。对同一个地块,同样的功能要求,不同阅历的建筑师往往在设计上有不同的设计思路。地块虽是相同的,但好的建筑构思能产生事半功倍的建筑效果。地块形状是固有不变的,而地面上的空间是可以让建筑师们充分发挥的(当然是在城市规划部门的规划设计条件所控制的范围内)。

其三,从项目的经济方面考虑,往往在这样的地段上它的商业价值较高且地价也非常贵(这在城市的老城区别突出)。这也就对我们规划建筑设计方的规划和建筑设计提出了更高的要求,要求其地块内的建筑容积率、建筑物的高度、建筑覆盖率等都应有一个较高的经济水准。建设方对其地块内建设资金的投入要求有一个较高的经济回报率,这里也包括其建设方所要求的建设后所形成的建筑形象(建筑广告效应)等等。在这些方面的设计工作就需要与建设方进行密切的配合,发掘出地块中潜在的经济性。在设计中精心推敲,地尽其力,一举数得,以使其地块体现出更高的商业价值(其中含所允许的最高的容积率、所允许的最高的建筑高度、最佳的建筑使用空间和功能、最好的建筑形象、最高的销售价格等等)。另外,城市中这样的地段往往处在繁华地段或主要街区,在这些地块上的建筑对城市景观有着举足轻重的影响,新建筑的建成也往往会引人注目并品头论足。这也就带来了正反两方面的城市景观价值,好的新建筑能给所处地段原有的城市景观和交通带来新的面貌,似锦上添花。现在对在这些寸土寸金的地段,很多建设方都要求建筑师把建筑布置的很满,占满建筑控制线内的每一寸土地,而不考虑留出一定的建筑外部空间作为建筑与街道的过渡。这就形成了一个误区,似乎只有这样才把地块充分利用好了。在城市景观上,形成我们现在街道两侧笔直的建筑“墙体”,没有大小变化的街道空间,走在这样的街道上使人感到非常呆板压抑。

综合上述的各项考虑,在对其地块的详细规划和各个单体建筑方案设计上,要提出有针对性的设计思路(因为每个项目的问题组合都是不同的),再进行细致的多方案比较。

首先要对建筑的使用功能进行揉合调整,在不影响建筑总的使用功能条件下,其所做的规划设计应尽可能地来适应现有场地。在设计中要观察发掘出所给场地中对拟建建筑带有积极性的东西,并对那些不利因素进行规避,能改造的地方尽力进行改造,化不利因素为有利因素。在设计中还要精心计算合理地利用场地,不使土地产生浪费。对于建筑覆盖以外非常零碎的部分尽量辅以绿化,以绿化的氛围来做建筑改造适应场地的补充。用创造性的建筑形象来弥补困难形状的场地带来的缺憾。对于那些较狭小的场地,并不是一味在设计上用建筑去填满它,而应该留出一定的场地空间,在设计上使场地内的建筑空间有一定的空间变化。在竖向上从建筑的空间变换来寻求解决困难形状的场地另外的设计途径,平面解决不了的在空间来解决。对于这样的比较困难的场地,首先要在建筑设计方案本身上做文章,不要因项目的场地原因怨天忧人,要知道这也是对建筑师自己的一个非常好地挑战机会。只有你能认认真真地从建筑设计上解决了这方面的问题,那么你所做的项目建筑设计一定是优秀的。而若回避这些矛盾就得不到解决这类问题的能力,就不能从困境中得到历练而升华。

作为一个以建筑设计为职业的建筑师,要想在建筑设计工作中不断提高自己的设计水平,并想在建筑设计上有所作为和发展,就要设计工作中认真对待每个所面临的设计项目,特别是地段形状复杂的设计项目。谋求在设计实践中探索解决这类问题的方法,积累解决这类问题的经验,这对建筑师来说是非常重要的。我相信建筑师同行们,能在不断解决各种各样复杂形状地段的实际设计工作中得到更多的乐趣。

注:图片来源自《香港建筑》---万里书店 ∙ 中国建筑工业出版社

个人简介:杜耀东男汉族1959年12月生本科学历工学学士

高级建筑师、国家一级注册建筑师、注册咨询工程师(投资)

大连经济技术开发区规划建筑设计院 总建筑师

篇2

【关键词】建筑结构设计;不规则设计;分析

引言

近些年来,我国建筑领域不规则建筑发展十分迅速,相对于传统结构建筑来说,不规则建筑设计相对复杂,难度也较大,但是在遵循设计原则,保障设计合理性与科学性的前提下,其结构的坚固性与稳定性是可以保障的。

一、不规则建筑结构设计的相关问题概述

1.不规则建筑结构的基本特征

1.1首先是平面不规则结构,第一是不规则:平面狭长、凹进太多、凸出太细,第二就是局部不连续设计,这种设计的特点是楼板凹进后,导致有效楼板的宽度小于本层面楼板的典型宽度的一半。

1.2然后是竖向不规则结构的设计,这种结构的设计特点是楼层侧向刚度与其相邻的上面楼层相比,低于70%,如果是高层结构,那么上部份楼层的收进部分延伸到外面地面的高度从水平方面测量就必须要比相邻下面一层的高度高于25%。

1.3其次是建筑结构整个平面作为原始的平面结构,设计的时候只是在原有平面的基础上进行搭建或者拼接的设计,这样的设计通常来说就是针对原有的设计进行一部分的调整,从而达到不规则结构的目的。

1.4最后是与原有建筑结构相比,高于其结构标准的设计,通常业内将这类建筑统称为超规范结构,总结来说这种建筑结构具有高于原有建筑结构设计,高度在一定范围内,设计以及技术难度大,材料相应变化;在其他限制数值方面也超出;结构从新设计,采用新型的材料以及技术等特点。

2.不规则建筑结构设计计算

针对不规则建筑结构的设计来说,计算是非常繁琐,计算必须要保障精准,严格按照相关规定进行,在确保外观的前提下进行优化设计,具体来说就要保障结构平面的规则性,不规则是相对而言的,它是可以有多个规则平面组合而成的,这样能够保障受力的均匀性。其次,是采用合理的计算方法,建筑结构设计中,抗震计算是一个重要的部分,那么对于地震发生后建筑结构的抗震能力预测和计算,我国现有的计算标准和公式有很多种,因为不规则建筑结构抗震能力预算具有非常突出的不可预测性,我国现阶段并没有在一种明确的计算方式对其进行计算,比较常见的就是底部剪力法;振型分解反映谱法以及弹性时程分析法。最后,就是针对抗震措施的强化方面,地震作为建筑结构所面临的最大威胁,对于不规则结构的建筑来说,这种威胁更加明显,那么强化抗震措施的设计就显得更加重要,为了能够确保不规则建筑结构的安全和稳定,要针对各个区域的受力值差异进行深入研究,不管是检测还是计算难度都很大,虽然现阶段我国能够借助计算机等设备进行很多计算,但是也不能确保计算完全不存在误差,因此,抗震措施的强化就显得更加重要,也是不规则建筑设计中一个重点、难点。

3.不规则建筑结构的电算参数设置

3.1扭转耦联。从理论分析和工程实例计算得知,非耦联计算通常用于平面结构。因此,空间分析软件SATWE取消了是否选择扭转耦联的选项,在结构计算中总考虑扭转耦联的影响,显然这对扭转不规则结构的计算分析是十分有利的。

3.2振型数量。《高规》规定,抗震计算时,宜考虑平扭耦联计算结构的扭转效应,振型数不应小于15,且计算振型数应使振型参与质量不小于总质量的90%。为了保证抗震计算结果准确,必须选取足够多的振型数量,使有效质量系数大于0.9。

3.3双向地震。从我国在建筑物抗震数值以及设计理念方面来看,依据相关条文和规定,如果采用不规则结构,那么在日后的抗震能力上,必须采用双向抗震措施,施工中要进行全面的监督和管理,严格依据相关规定设计进行。

3.4设置弹性楼板。弹性楼板,简单的说就是楼板具有一定的弹性,当然这个弹性的数值具有明确的范围,弹性数值过大,则建筑的整体结构不稳定,弹性数值过小,则会影响建筑结构的抗震能力,因此,在进行施工建设初期,应该对楼板的质量和楼板的各项属性都进行严格的审查,合格后的楼板才能运进施工现场。

二、建筑结构设计中不规则设计实际应用

1.工程概述

某国际中心办公楼项目,为一栋地下四层,地上38层以办公为主的综合性超高层建筑,建筑物高度为179.5米,大屋面上有约21米高的钢结构。地上部分主楼和该工程其它楼栋之间由防震缝完全隔开,地下室连为一体,通过设置施工后浇带来解决主楼与相邻地下室荷载差异引起的沉降差。

2.超限类型和程度

高度超限:主楼大楼结构高度179.5米,超过7度设防框架一核心筒A级高度限值130米;扭转及平面规则性:v向18层偏心率0.1879>0.16,扭转位移kt>1.3;竖向规则性:3O层、36层搭接柱转换。

3.抗震不规则的结构处理

高度超限:本工程高度较大,采用弹性时程分析法进行多遇地震下的补充汁算。进行风载、多遇地震下结构整体抗倾覆验算,同时考察主要墙、柱的拉压力状况,控制其破坏程度,并设置型钢和加强配筋提高延性;扭转不规则:部分楼层扭转位移比大于1.2,但小于1.4。对此,后续设计尽可能优化刚度分布,加强边框架对扭转刚度的贡献,改善扭转不规则;考虑双向地震作用下的扭转影响。

4.整体结构分析

4.1计算假定及模型

对本结构计算分别采用SATWE和ETABS两种软件,均按照建筑实际尺寸建模至基顶。为验证嵌固层上下侧向刚度,地下室部分取塔楼以外2~3跨并入主体模型进行整体分析。计算楼层位移角及位移比时按刚性楼板,其它按弹性板。

4.2周期和振型

前3个振型计算结果见表1:本结构的扭转与平动周期比满足规范≤0.85要求。

4.3地震作用下层剪力及剪重比

见表2:底部3层剪重比略小于规范要求,但通过评定结构位移、整体稳定等指标认为整体刚度合理,故仅按照规范要求调整地震剪力。

4.4刚度比

高层建筑楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。按照SATWE的“剪切刚度”和“层剪力与位移比”两种算法的最不利结果,其层问刚度比均满足该要求,无薄弱层。

4.5大震下动力弹塑性分析

采用EPDA进行计算分析,选择频谱特性较为理想的两条双向天然波和一条双向人工波,计算步长为0.02秒,持时为5~10倍自振周期,输人主方向最大加速度为220cm/s,次方向为187cm/s,计算结果如下表:

篇3

关键词语:抗震设计 建筑结构规则性

在地震地面运动作用下,建筑物的损伤破坏首先会出现在结构侧向抗震系统的薄弱部位,薄弱部位的损伤破坏会进一步加剧结构抗震性能的退化,从而导致结构整体的倒塌。建筑物的薄弱部位主要来源于结构配置的缺陷或不规则,如结构或构件不规则的几何尺寸、软弱的楼层、质量过分集中以及不连续的侧向抗震系统等。 建筑结构的平、立面是否规则,对结构抗震性具有最重要的影响,建筑设计应符合抗震概念设计要求,不应采用严重不规则的设计方案,应重视其平面、立面和竖向剖面的规则性对抗震性能及经济合理性的影响,宜择优选用规则的形体,其抗侧力构件的平面布置宜规则对称、侧向刚度沿竖向宜均匀变化、竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小、避免侧向刚度和承载力突变。

一、建筑形体及其构件布置的平面、竖向不规则性,按不同要求可划分为:

1 、 混凝土房屋、钢结构房屋和钢-混凝土混合结构房屋存在表1-1所列举的某项平面不规则类型,或者表1-2所列举的某项坚向不规则类型以及类似的不规则类型,应属于不规则的建筑。

2 、 砌体房屋、单层工业厂房、单层空旷房屋、大跨屋盖建筑和地下建筑的平面和竖向不规则性的划分,应符合有关规范的规定。

3 、 当存在多项不规则或某项不规则超过规定的参考指标较多时,应属于特别不规则的建筑。

平面不规则的主要类型

不规则类型 定义和参考指标

扭转不规则 在规定的水平力作用下,楼层的最大弹性水平位移或(层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍

凹凸不规则 平面凹进的尺寸,大于相应投影方向总尺寸的30%

楼板局部不连续 楼板的尺寸和平面刚度急剧变化,例如,有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,或较大的楼层错层

表1-1

竖向不规则的主要类型

不规则类型 定义和参考指标

侧向刚度不规则 该层的侧向刚度小于相邻上一层的70%,或小于其上相邻三个楼层侧向刚度平均值的80%;除顶层或出屋面小建筑外,局部收进的水平向尺寸大于相邻下一层的25%

竖向抗侧力构件不连续 竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、桁架等)向下传递

楼层承载力突变 抗侧力结构的层间受剪承载力小于相邻上一楼层的80%

表1-2

二、不规则结构建筑设计的要求

体型复杂、平直面不规则的建筑,应根据不规则程度、地基基础条件和技术经济等因素的比较分析,确定是否设置防震缝,并分别符合下列要求:

1当不设置防震缝时,应采用符合实际的计算模型,分析判明其应力集中、变形集中或地震扭转效应等导致的易损部位,采取相应的加强措施。

2当在适当部位设置防震缝时,宜形成多个较规则的抗侧力结构单元。防震缝应根据抗震设防烈度、结构材料种类、结构类型、结构单元的高度和高差以及可能的地震扭转效应的情况,留有足够的宽度,其两侧的上部结构应完全分开。

3当设置伸缩缝和沉降缝时,其宽度应符合防震缝的要求。

三、针对不规则建筑的设计问题

1、建筑体型设计问题建筑体型包括建筑的平面形状和主体的空间形状的设计。震害表明,许多平面形状复杂,如平面上的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等在地震中都遭到了不同程度的破坏。唐山地震就有不少这样的震例。平面形状简单规则的建筑在地震中未出现较重的破坏,有的甚至保持完好无损。沿高度立体空间形状上的复杂和不规则在地震时都会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则;在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型。尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼。在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,避免产生因体型不对称导致质量与刚度不对称的扭转反应。2、建筑平面布置设计问题 建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距离、内墙的布置、空间活动面积的大小、通道和楼梯的位置、电梯井的布置、房间的数量和布置等,都要在建筑的平面布置图上明确下来。而且,由于建筑使用功能不同,每个楼层的布置有可能差异很大,建筑平面上的墙体,包括填充墙、内隔墙、有相应强度和刚度的非承重内隔墙等等布置不对称,墙体与柱子分布的不对称、不协调,使建筑物在地震时产生扭转地震作用,对抗震很不利。有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分[3]。有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,带来局部墙面的破坏。有的建筑物,如底层为商场的临街建筑,临街一侧往往不设墙体,而其另一侧则有刚度很大的墙体封闭,两侧在刚度上相差很多,也将在地震时引起扭转地震作用,对抗震不利。还有的建筑平面布置上,经常出现内隔墙不对齐或中断,使刚度发生突变和地震力传递受阻,对抗震也带来不利,客易引起结构的局部破坏。建筑平面布置设计对建筑抗震关系很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。在建筑平面布置的总体设计上要尽可能为结构抗侧力构件的合理布置创造条件,使建筑使用功能要求与建筑结构抗震要求融合成一体,充分发挥建筑设计在建筑抗震中的作用。 3、建筑竖向布置设计问题建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是单层或多层,还是高层建筑或超高建筑,这个问题是比较突出的。存在的这个主要问题是,由于建筑使用功能的不同要求,如底层或下面几层是商场、购物中心,建筑上要求是大柱距、大空间;而上面的楼层则是开间较大的写字楼或布置多样化的公寓楼,低层设柱、墙很少,而上面则是以墙为主,柱很少。有的建筑在布置上还设有面积很大的公用天井大厅,在不同楼层上设有大会议厅、展厅、报告厅等,建筑使用功能的不同,形成了建筑物沿高度分布的质量和刚度的严重不均匀、不协调。突出的问题是沿上下相邻楼层的质量和刚度相差过大,形成突变[3]。在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、剪力墙布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,给建筑物造成很多破坏,甚至是整个楼层的倒塌。在1995年的日本阪神大地震中,有多栋钢筋混凝土高层建筑发生了中间楼层的整体坐落倒塌破坏。因此,尽可能使剪力墙布置比较均匀并使其能沿竖向贯通到建筑物底部,不宜中断或不到底。尽量避免其某楼层刚度过少,尽量避免产生地震时的钮转效应

四、建筑结构不规则设计时的抗震作用计算

建筑形体及其构件布置不规则设计时,应按下列要求进行地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施:

1平面不规则而竖向规则的建筑,应采用空间结构计算模型.并应符合下列要求:

1)扭转不规则时,应计入扭转影响,且楼层竖向构件最大的弹性水平位移和层间位移分别不宜大于楼层两端弹性水平位移和层间位移平均值的1.5倍,当最大层间位移远小于规范限值时,可适当放宽;如图4-1所示。

2)凹凸不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型;高烈度或不规则程度较大时,宜计入楼板局部变形的影响;

3)平面不对称且凹凸不规则或局部不连续,可根据实际情况分块计算扭转位移比,对扭转较大的部位应采用局部的内力增大系数。

图4-1 建筑结构平面的扭转不规则示例

2平面规则而竖向不规则的建筑,应采用空间结构计算模型,刚度小的楼层的地震剪力应乘以不小于1.15的增大系数,其薄弱层应按本规范有关规定进行弹塑性变形分析,并应符合下列要求:

1)竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应根据烈度高低和水平转换构件的类型、受力情况、几何尺寸等,乘以1.25~2.O的增大系数;如图4-2所示。

2)侧向刚度不规则时,相邻层的侧向刚度比应依据其结构类型符合本规范相关章节的规定;

3)楼层承载力突变时,薄弱层抗侧力结构的受剪承载力不应小于相邻上一楼层的65%。图4-3所示。

图4-2 延竖向的侧向刚度不规则示例

图4-3 竖向抗测力结构屈服抗剪强度非均匀化示例

3平面不规则且竖向不规则的建筑,应根据不规则类型的数量和程度,有针对性地采取不低于相关规定要求的各项抗震措施。特别不规则的建筑,应经专门研究,采取更有效的加强措施或对薄弱部位采用相应的抗震性能化设计方法。

五、总结

综上所述,对于现代城市日益涌现的造型新颖别具一格的不规则建筑,结构设计人员应细心分析各种情况,从概念设计入手,找出结构的重点和薄弱点,因势利导客服不利因素,使整个结构在平面和竖向合理地布置结构刚度,避免和减少结构可能出现的薄弱部位,同时加强薄弱部位的构造措施,是建筑物从一格貌似不规则的建筑调整成一个结构上的规则建筑,只要结构工程师认真分析,抓住重点、强化构造,不规则结构设计中的抗震设计问题是很容易解决的。

参考文献:

[1]《建筑抗震设计规范》GB 50011 2010北京中国建筑工业出版社

[2]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

[3]王亚军、戴国荣,建筑抗震设计规范疑问解答 [M] 北京:中国建筑工业出版社,2006

篇4

关键词:建筑结构;不规则性;偏心距;抗扭效应

随着科学技术的不断发展和人们生活水平的日益提高,人们对物质外观、精神文化的需求也在不断加强,在审美观的全面提升下,当代高层建筑物的结构设计也从以前的规则性、对称性逐步转向不规则性、不对称性。在高层建筑结构设计中,不规则性可能会影响高层建筑的结构布局、位移比的控制、架空楼层或薄弱楼层设计、施工图的设计等,因此需从经济性、安全性、合理性的角度出发准确判断并分析高层建筑结构设计的不规则和位置,以最大程度的增加建筑物的各种结构性能。

1、我国高层建筑不规则结构的现状

经济全球化与科学技术高新化进程在不断加深,我国各行各业也在不断进步与发展,近些年来,我国房地产业、建筑业的发展势头较为迅猛,许多大中小城市都在不断的扩建和改造,而建筑设计者也为了顺应时代的召唤和城市建设的多元化发展,他们渐渐改变了建筑物务必规则与对称的传统观念,更多的尝试去设计一些不规则、不对称的多样化、标新立异结构的建筑物。现代人们的观念也在逐渐的改变,各大城市中已经出现了很多不规则的复杂结构建筑物,这是我国乃至全球范围内建筑行业今后的发展方向。另一方面,尽管不规则和不对称结构的建筑物使城市更加美丽和繁华,但其设计和建造无不考验着设计人员和建筑施工人员,这也对他们提出了更高更严的要求。

2、高层建筑不规则结构的分类

高层建筑不规则结构主要可以分为两大类:其一是竖直方向建筑物的不规则的结构类型,比如竖向抗侧力部分构件的不连续、侧向刚度结构不规则、楼层架空层使其质量与承载力均发生突变等等;其二是平面方向不规则的结构类型,比如楼板局部由于反梁结构突起出现的不连续、厨房及卫生间降板使楼板凹凸不规则、扭转导致的不规则等等。

2.1 竖直方向建筑物的不规则

2.1.1 竖向抗侧力部分构件的不连续

高层建筑物中竖向抗侧力部分构件不连续的判断标准即在竖直方向上的部分抗侧力构件自身的内力借助水平转换构件使之向下传递。

2.1.2侧向刚度结构不规则

高层建筑物中侧向刚度结构不规则的判断依据是本楼层中侧向刚度取值是否小于本楼层上面一层该值的百分之七十,或者小于本楼层上面相邻的三个楼层该值平均值的百分之八十,那么除去顶层不计算,则楼层局部收进的水平方向数值不小于与本层相邻下一层的百分之二十五。

2.1.3 楼层质量以及承载力的突变

高层建筑物楼层之间是否质量突变,其判断标准是本楼层的质量大于与其相邻的下面一个楼层质量的二分之三倍。而判断承载力是否突变的标准是楼层之间的抗侧力结构抗剪力数值小于与其相邻的上一层该值的百分之八十。

2.2 水平方向建筑物的不规则

2.2.1 楼板局部产生不连续

高层建筑物楼板局部产生不连续的判断依据是本层楼板设计尺寸与平面刚度是否发生急剧突然的变化。

2.2.2楼板凹凸不规则

高层建筑物楼板凹凸不规则主要是判断其结构平面凹进一侧(如厨房、卫生间的降板)尺寸会大于该楼板投影方向上面总尺寸的百分之三十。

2.2.3 楼板扭转不规则

高层建筑物楼板扭转不规则的判断依据是本楼层弹性水平位移的最大值要大于其两端处弹性水平位移的平均值的1.2倍,亦或是本楼层最大的相邻层间位移要大于其两端处的层间位移的平均值的1.2倍。

3、高层建筑不规则结构设计采取的对策

高层建筑物在地震的时候较易遭受破坏的一些结构大多都是平面不规则性结构,同时建筑物的刚度偏心、质量、承载力以、抗扭转刚度过于脆弱的建筑结构,其中,扭转效应对于建筑设计结构的破坏是最为严重的,那么,在工程设计的时候就有必要对其结构的相关扭转效应进行有效控制与限制,例如可以尽量对建筑物设计结构平面上的不规则进行控制,这就能够防止较大偏心的出现,进而使得建筑物的内部结构出现明显的扭转效应;另外,还可以在一定的条件下尽量增强高层建筑物设计结构的扭转刚度,抑制其太脆弱而产生破坏。因此,有效研究减少建筑物内部结构扭转效应的对策就成为设计过程中所要重点关注的问题。

3.1 提高建筑物抗扭构件的抗剪力

高层建筑物的抗震设计就是达到建筑物在地震时安然无恙的效果,这单单依靠结构布局的调整是不够的,由于建筑物结构在非弹性时期内,对称、规则的结构会因为双向水平的震动作用产生形态变化进而出现偏心现象,那么考虑结构本身的抗震性能就可以来强化建筑物中受抗扭效应制约的结构的抗剪性能,这样就可保证建筑物在地震的时候还会处于整体弹性的状态。

3.2 控制高层建筑物结构的抗扭刚度与抗侧刚度之比

由于高层建筑物内部结构中扭转效应和结构周期之比的二次方趋于一种线性的关系,那么在建筑物结构设计的时候,需要想方设法的减小其结构周期。比如说在设计楼层剪力墙时,要在条件允许的情况下加厚或加长相邻的剪力墙,尤其是要注重距离刚心比较远的剪力墙。通常使建筑物结构中抗扭刚度加大的方法是在相应构件上增设拉梁,并且尽量缩短其结构扭转周期,另外也可以加大相邻连梁刚度来达到目的。

3.3 在结构中加设防震缝来减小地震造成的破坏

现代建筑工程中越来越多的出现一些复杂的各类建筑结构,这都是由于实际条件限制而使得无法将平面结构设计成规则或是对称的结构,这时就有必要设置规范的防震缝来把结构分解成相对简单的单一结构个体,其中还要注意在设置抗震缝的过程中,若两侧的构件体系差异较大或者对震动反应表现不同之时,那么抗震缝的设计宽度就要更多的考虑薄弱一侧的结构构件;而当结构相邻的建筑构件基础沉降量比较大的时候,也可增设兼做沉降缝的建筑抗震缝。

3.4 建筑结构设计中的偏心距减小

科学研究表明在一定条件下,高层建筑物结构设计中的偏心距和扭转效应呈线性关系,那么可以控制建筑物结构在平面上的布置,让其设计结构的刚心与质心最大程度的接近,这样就能有效的减小楼层之间的位移比,进而改善建筑物内部结构中的扭转效应。在工程实际的设计过程中,为了使结构偏心距尽量减小,首先就要进行准确的初步计算,在找到结构的刚心和质心后加以分析,并调整整个建筑结构在平面布置上的不对称和不规则性,与此同时,还要运用有关数据和条件,加之实践经验来判断出建筑物平面结构的实际刚度分布,以便能够有效增减偏离质心的抗侧力结构构件。

4、小结

高层建筑物的实际设计过程中,为了不影响建筑后续的建模、布置、施工,就要对建筑结构的不规则性合理判断,这样才能确认建筑设计的安全性、经济性、合理性。在结构设计的时候需要重点考虑建筑物的薄弱楼板或构件,在强化的同时不断控制减小,这也是今后高层建筑结构设计中对不规则性研究所要解决的重要问题。

参考文献:

[1] 辛.高层建筑结构设计不规则性的研究与应用[J].建筑科学,2012,3:69.

篇5

关键词:规划设计,建筑设计

1 工程概况

塘栖“栖溪泽第”位于塘栖镇东南角,西接塘栖路,南临康达路,位于两路交叉口,北侧为15米规划道路,东侧临河。用地总体偏东南约35度。周边居住及商业氛围目前一般,西、南隔路分别为天府家园和水岸名筑楼盘及安置房等。本工程土地用途为住宅用地,西南侧有一处保留加油站用地。规划总用地面积为79416㎡,容积率不大于2.5,地块轮廓呈不规则有角度的四边形,规划要求退界情况见用地条件图。

2 设计依据

1.《城市居住区规划设计规范》GB 50180—93(2002年版)

2.《住宅建筑规范》GB 50368—2005

3.《建筑设计防火规范》GB50016—2006

4.《高层民用建筑设计防火规范》GB 50045—95(2005年修订版)

5.《杭州市城市规划管理技术规定(试行)》(2008年版)

6.《汽车库建筑设计规范》JGJ100-98

7.关于《杭州市城市建筑工程机动车停车位配建标准实施细则(试行)》的通知【杭建设(2009)123号】

8.《杭州市建设项目日照分析技术管理规则》(杭规发(2006)423号)

9.甲方提供的设计任务书及地红线图

10. 国家、浙江省及杭州市有关规范规定

3 设计理念

3.1 营造小镇“浪漫庄园”式的闲居生活

历史悠久的古镇提供了宜居的大环境。如果说“江南佳丽地”是塘栖古镇的独特气质,“浪漫庄园”则是我们对本项目总体居住特色的定位,她体现了“亲情、邻里、休闲、雅致、浪漫”的小镇居住特色。我们不仅仅是在设计生活空间的壳子,更要营造独特魅力的生活方式。本案关注户外公共生活空间的最大化,“赠送了一座公共享受的庄园”, 是社区居民亲情、邻里交流的不可缺少的核心场所,是居住的最大附加值。

3.2 中、法古典风情“造园”的现代演绎

塘栖是中国传统的江南水乡小镇,“浪漫庄园”则带有浓郁的法式风情。采用中西合璧、体现东西方古典文化交融的现代演绎是本案的重要表现形式。本案从造园入手,以师法自然的中式园林“引水环岛,曲径筑路”,构筑了 “有自然之理、得自然之趣”的景观大背景。以轴线规则式的法式园林构筑了建筑庭院空间,突出了典雅与浪漫的情调。“中式为园、西式为庭,”两者点、线、面结合,相映成趣,独具特色,以“水”为核心纽带,既突出了塘栖的水乡文化,又体现了法式园林中最重要的水景要素。

3.3 享受精致“慢”生活的休闲岛——社区的水上沙龙(SALON)

“SALON”意为豪华会客厅,是法国社交文化代名词,社区沙龙意味着丰富的文化聚会生活。社区沙龙以“岛”为中心,注重公共生活内容,较之普通会所增设小型图书馆(书吧)、艺术画廊、画室等文化艺术交流场所,是会所功能精致化的延伸,园林式布局、室外活动场地、开放式管理,使之成为居民聚会交往或独享的公共客厅。无论琴棋书画、健身娱乐,同道者都能在此惬意“消磨”时光。这里也是社区的精神家园。

4 总平面设计

4.1 总体布局

(1)规划结构简洁明确,一心一环一轴。一心:采用景观最大化的周边大围合式布局,形成约3.5万平方米的中心景观绿地。一环:高层建筑依据地形特征,18层-26层高低错落、点板结合,形成周边一圈南低北高的变化排列:主干道塘栖路周边局部用点式楼沿着斜轴错位布置,减少对北面楼的影响。南面18层为主,局部24层以突出主景观入口。北面26层居中,24层分置两翼,形成屏风式天际线。环型围合的形势使每栋楼都能争取到与中心花园的关系,尤其是南北正对中心的楼具有很好的优势。与楼相呼应,曲折的环型路网连接了每一幢住宅。一轴:南北以景观主入口至中心庄园(会所)规划了充满法式园林风情的主景观轴线,形成南入口广场——景观灯柱大道——喷泉广场——法式景观桥——庄园广场——立体景观泳池——主会所系列空间。这条轴线也是整个楼盘的公共生活中心轴。

(2)道路交通系统:小区机动车与人行分离,机动车不进入中心景观空间内部,在周边绕行。共设两个机动车入口和一个景观入口。入口:小区出入口分工明确,南北分设专门的景观入口和机动车入口:北入口:机动车为主的出入口,利用北侧的高层退界设置地面停车带,车辆通过小区北入口广场进入地面停车场或地下车库。南入口:人行为主的景观形象入口,可根据需要控制进入的机动车辆。南机动车库入口:为了便利,南面也单独另设了地下车库次出入口,直接与城市道路相接。道路:小区道路等级分级明确,北部为主机动车道7米,沥青路面,结合布置停车带。中部小区次干道6米,景观铺装路面,平时与南入口管理配合为限制性道路。宅前路4米,景观铺装路面,满足消防道要求。景观步行道0.9~2M。在紧急状态下,小区各道路可作为消防车道与消防登高场地结合使用。

(3)景观环境设计:小区的集中绿地率高达40%以上,因此在大景观设计上层次感、韵味感极为丰富。中式生态园林为面、西式规则园林为点、为轴,中西造园元素完美结合。空间上既有自然生态的中心岛景绿化、周边大公园绿化、住宅架空层绿化,又有人工为主、浪漫精致的景观轴线绿化、沿街商业绿化,非常丰富,形成了有亲和力的各种生态环境。景观设计紧扣“栖溪泽第”楼名,突出水居特色:引水环岛、曲水绕宅,塑造了自然生态的水环境,体现的是静景。而艺术喷泉、跌水林荫道、景观泳池等动感十足的法式水法艺术则营造了法国园林的浪漫与精致,与典雅的建筑元素融合,给人浪漫情调和审美享受。大水景均不深,400-600浅水,由于采用卵石铺底的自然驳岸和绿化到边,不仅满水时能够体现生态水景的韵味,景随水走,而且在枯水时仍能保持自然的景观。

4.2 公建布局

小区设置沿街商业,均为2层,因退让保留的加油站,沿塘栖路设独立商业,配套公建和综合服务用房(中心会所)结合设置。包括社区要求的物业用房、社区用房、公厕、消控中心和其它服务性的公建。

4.3 消防设计

本工程小区建筑设计均为一、二级耐火等级。各栋住宅及公建、地下室间距,长度、面积及安全疏散均符合防火要求。本工程小区内道路兼作消防车道,消防车道可到达每幢建筑的长边。消防车道的宽度均>4.0米,消防车道上空4.2米以下范围内无障碍物。每幢高层建筑附近均设有距离高层建筑10-15米,宽度为6米的消防车道作为消防登高场地。尽端式道路设18×18米回车场地。在南入口边裙房底层设消防控制中心。高层住宅每个消防分区中有一部电梯兼作消防电梯,消防电梯前室采用正压送风或自然通风,高层楼梯间均为防烟楼梯间。本工程设有1个地下停车库,共可停放车辆1400辆。根据停车库规范,防火分类为Ⅰ类,耐火等级为一级,分为10个防火分区,设置喷淋系统。本工程内的建筑材料按其耐火等级采用相应的防火标准材料。

篇6

关键词:高层建筑;结构设计;不规则性;研究应用

中图分类号:TU972文献标识码:A文章编号:1673-0038(2015)50-0067-02

近些年,随着人们生活水平的提高,人们对于生活的舒适性,以及审美观点也在不断的加强。这样的大环境的影响下,不规则的建筑物走进了我们的视野。这样的建筑物,打破了原来的建筑形状,不但为社会带来了美观性,还为建筑的防水,防震等带来了可能。

1高层建筑结构设计不规则性的表现

1.1建筑的结构不对称

在进行高层建筑物的建设的时候,经常会因为高层建筑物的选址地点,选址环境以及当地的大气的环境等进行合理的调整。不仅是在高层建筑的施工过程中进行相关的进度上的调整,更重要的是要在建筑物的构造上进行相关的调整。为了满足高层建筑物安全使用的目的,以及满足高层建筑物各种功能方面的要求,目前应用较为普遍调整是实现高层建筑物结构上的调整,在整个高层建筑结构的调整中包括对建筑物的平面形状的调整,内部构造的调整。这种调整都是不规则的。通过这种不规则的结构调整,改变整个建筑物的受力情况,以及整体的作用力的情况,最终实现最安全的建筑结构。并且,建筑的结构上的不规则性还体现在了建筑外观上的不规则,传统的建筑讲究的是和谐对称,这种和谐对称的建筑,在社会上普遍存在,早已经形成了审美疲劳。但是现代的建筑却改变了传统的和谐对称的方式,将美观,大胆作为建筑的主线,使建筑成为社会上的一道风景线。

1.2建筑中平面的质量不对称

建筑的质量对称不是代表的是绝对的对称,而是建筑物中的各个结构中的小的质量方面相对的结构对称。为了满足建筑物的地质环境等的问题,国家规定可以进行相应的质量上的偏移。这样的偏离能够减少一个位置一个点的作用力。高层建筑的利用质量上的不对称的方法,来解决地面不平,地质松动等环境的缺陷,也可以通过对建筑物进行质量不对称建筑来增加整个建筑的抗震的能力。将质量的重心尽可能的垂直于地震的作用力的方向,就能够很大声程度的给地震的强度带来一个缓冲的能力,从而减少了地震对于高层建筑的作用力,因此,就起到了抗震的作用。

1.3建筑中平面的刚度不对称

高层建筑物当中的平面刚度主要就是指整个建筑物所承受的重力的压力。这种压力分为外压力和内压力两种。外部的压力主要就表现为和建筑物付负载的重量相垂直的压力,而内部的压力则是表现为和建筑物所负载的压力方向一致。建筑物的刚度上的不对称,主要是由于要在建筑施工的过程中考虑到实际面临的问题,并且采用最经济的手段进行改良,因此就需要在建筑的刚度的问题上进行相关的改变,对建筑物的刚度进行相应的不对称建筑,可以促进高层建筑的稳定性。

1.4建筑中平面的强度不对称

建筑中的强度的问题,主要是通过在建设施工过程中对钢筋水泥、混凝土等建筑材料进行使用。但是由于在建筑过程中,对钢筋、水泥、混凝土等建筑材料的使用配比不可能实现完全的平均,因此,就出现了建筑平面上强度不对称的问题。在平面的强度不对称和平面的质量不对称的情况下,好多人都认为这两种的不对称是相同的,但是两种平面的不规则却是有本质上的不同。强度的不对称是不可以避免的,在工程的施工过程中难免会因为相应的不确定性导致在建筑平面上的刚不对称,最终导致整个建筑物的不规则。虽然平面上的强度不对称可能会影响到相应的建筑的抵抗能力,但是通过对实际的情况进行分析,合理的进行建筑中的强度上的不对称,又能够很好的促进建筑物的建成。

2高层建筑结构设计不规则性的应用

2.1在防震上的应用

高层建筑物在设计的过程中,最害怕的就是地震的影响,因此在进行高层建筑物的建设设计上要充分的考虑整个高层建筑物的抗震的能力,因此就需要对高层的建筑进行具体问题具体分析。现阶段增加高层建筑的主要的方式就是采用建筑设计的不规则性的应用。在对建筑进行防震的设计的时候,主要应该考虑的就是当地震来临的时候如何的进行地震力度的分散,也就是对地震进行垂直荷载能力的分散。这就需要对整个楼面的支撑系统进行相应的分散,尽可量在抗震布置上为地震力寻求一个最短的路径,将建筑的负载量传到建筑的墙或者是地面上,以防止地震给建筑带来损害。另外,在进行防震上,竖向的进行建筑的布置也是相当的重要的。在布置的过程中,要尽量的将水平负载的压力与平均值进行接近。在建筑过程中,单独的考虑这些是不可行的,不能够在建筑物形态规则的状态下实现整个建筑防震的可能性,者就需要在建筑的结构形态上进行协调,因此,就产生了建筑的不规则性。

2.2在建筑强度上的应用

传统的建筑物都是以强烈的线条和对称的形态进行建筑的,这样的建筑形状,有时会因为整个建筑的地势,环境等问题严重的影响到建筑的未来发展,因此,就需要在建筑的形态上进行合理的创新和应用,减少整个建筑物的强度的偏心距离。在实际的应用上,可以将传统的强度过强的高层建筑进行改进,充分的利用柔的特点,将高层建筑物的强度较硬的线条用柔和的线条进行代替,不仅能够改变整个建筑的外观,给人一种亲切的感觉,还行能在实际的应用上增减整个建筑的功能,例如线条较缓的建筑物在较线条较硬的建筑物更容易排水。另外在建筑强度上进行不规则性的应用,还能够增加整个建筑的扭转的强度。扭转的强度问题,是防止高层建筑出现裂缝,并且不足以抵制外来的力量的问题。一旦整个建筑的扭转强度不够,那将会严重的影响到整个建筑的之后的实际应用,为建筑带来安全隐患。但是因此,在扭转强度上进行不规则性的应用是相当的必要的,通过格结构强度的不规则减少一个点的作用力,提高了建筑的扭转能力。

2.3在建筑偏心距上的应用

高层建筑的设计问题上,对偏心距的实际使非常的重要的。偏心距一旦扩大,将严重的影响到整个高层建筑的稳定程度,但是传统的建筑方法,不能够有效的减小偏心距,只亚欧利用不规则性的设计才能有效的减小偏心距。一般在不规则性的指导下减少建筑的偏心距有以下几种办法。①尽可能的减少整个建筑物的位移的程度,争取在进行建筑的设计的初期,就将整个的建筑的位置进行有效的控制。②要对建筑物的结构上进行良好的布局。这样的布局呈现,不但可以增加建筑物的审美效果,并且一旦建筑物在建筑的过程中偏心距过大,还能够通过结构、平面上的不规则设计及时的减小相应的偏心距,促进建筑的正常的施工。

3总结

综上所述,在高层建筑的结构上实行不规则性的创新,不仅能够在建筑的外观上给人耳目一新的感觉,还能够充分的满足建筑本身的功能方面的需要。这就说明,在高层的建筑上,要积极的进行创新,大力的加强创新的能力,不仅能够在建筑的施工上减少成本的投入,还能一定程度的促进社会的发展,而且还有利于美化环境,创造良好的社会氛围。

参考文献

[1]安志宏.高层建筑结构设计不规则性的研究与应用[D].吉林大学,2004.

[2]王司洋.高层建筑结构设计不规则性的研究与应用[J].科技致富向导,2015,03:145+189.

篇7

关键词:现代建筑; 不规则结构; 结构设计

前言

在现代城镇建设中,不规则的建筑结构往往是不可避免的,而且正是这些造型新颖别致的不规则建筑物,给居住环境带来气象万千,别具一格的人文景观。因此,对不规则结构不应一味地排斥、拒绝,而应当因势利导,趋利避害。只要深入领会规范的精神,把握住工程的实际情况,抓住优化设计方案,合理选择计算方法和计算参数,认真分析薄弱部位和地震力调整,强化抗震构造措施等设计环节,就能使不规则结构的设计问题迎刃而解。

一、特征

1、 第一类: 平面不规则结构。一是扭转不规则:位移比大于 1.2。二是凸凹不规则:①平面狭长,在抗震设防烈度为 6 度、7 度时,平面长宽比大于 6.0(8 度时大于 5.0);②凹进太多,平面凹进一侧的尺寸大于相应投影方向总尺寸的 0.35(8 度时大于0.3);③凸出过细,凸出部分的长宽比大于 2.0(8 度时大于 1.5)。三是楼板局部不连续:①楼板开洞凹入后,有效楼板宽度小于该层楼板典型宽度的 50%;②开洞面积大于该层楼面面积的30%;③采用细腰形平面;④有较大的楼层错层。

2、第二类:竖向不规则结构侧向刚度不规则:①楼层侧向刚度小于相邻上部楼层的70%或其上相。邻三层平均值的 80%;②高层结构上部楼层收进部位到室外地面高度大于房屋高度的 20%,上部楼层收进的水平尺寸大于相邻下一层的 25%;③高层结构上部楼层外挑,下部楼层的水平尺寸小于上部尺寸的 90%,且水平外挑尺寸大于4m;④结构顶部取消部分墙、柱形成空旷房间。二是竖向抗侧力构件不连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、桁架等)向下传递。三是楼层承载力突变:A 级高层建筑的层间受剪承载力比小于 0.8,B级高层小于 0.75。

3、第三类: 复杂高层结构带转换层的结构、带加强层的结构、错层结构、连体结构、多塔楼结构等。

4、 第四类: 超规范结构。一是超高结构,超过了规范规定的最大高度。二是超限结构,超过了规范规定的其它限值。三是新型结构,特指采用新材料、新工艺、新技术建造的,规范没有涉及的新的结构类型。超规范结构由于其超过规范的限值,或违反规范强制性条文的规定,或没有现成的规范条文作依据,没有成熟的技术可借鉴,不论其平面立面的布置是否规则,都将其定为不规则结构,以便从严设计审查,显然是非常必要的。

二、设计计算

1、 优化设计方案:一是调整结构方案,加强结构抗扭刚度,减小结构平面布置的不规则性,避免产生过大的偏心矩。二是对平面凸凹不规则结构,可以设置防震缝或滑动铰支撑,形成多个较规则的抗侧力结构单元。三是对楼板不连续结构,可以设置拉梁或拉板,减少楼板的不连续程度。四是对楼层刚度突变和承载力突变的结构,应改进设计减少结构竖向的不规则程度。

2、选择合理的计算分析方法。一是多遇地震作用和弹性工作状态下的内力和变形分析第一阶段设计可假定结构与构件处于弹性工作状态,内力和变形设计可采用线性静力方法或线性动力方法。常用的结构分析方法有:(1)底部剪力法,适用于:规则的多层结构;规则的高度不超过 40m高层结构。(2)振型分解反应谱法,这是 SATWE 软件主要的计算分析方法,适用于:规则的多高层结构;一般不规则多高层结构;特别不规则的高层结构。(3)弹性时程分析方法,应采用二组实际强震记录和一组人工模拟的加速度时程曲线,其平均地震影响系数曲线应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符,即单条波计算的结构总地震剪力不小于按反应谱方法计算的65%,多条波计算的平均值不小于反应谱法的 80%。SATWE 软件包含该分析方法,其适用于:7 度~9 度抗震设防的甲类高层结构,复杂高层结构,特别不规则的高层结构。二是罕遇地震下的弹塑性变形验算。第二阶段设计是对大震下容易倒塌的不规则结构和有特殊要求的结构进行弹塑性分析验算,结构在大震下的薄弱部位,位移限值,塑性铰位置及其发生的时刻,以便有针对性地采取抗震构造措施。主要分析方法有:弹塑性时程分析方法和静力弹塑性(推覆)分析方法。弹塑性变形验算方法适用于:12 层以下纯框架结构(可用简化的弹塑性时程分析验算);特别不规则的高层结构;严重不规则的高层结构。该类结构除计算分析外,还应按建设部令 111 号规定,在结构初步设计阶段申报抗震设防专项审查。应当指出,对高烈度地区重要的、标志性的不规则建筑物,由于其社会影响和经济利益巨大,必须提高抗震设防标准,由“中震可修”提高到“中震不坏”,因此对这类结构的关键构件和薄弱部位,应采用比规范更严格的抗震要求,如中震不屈服设计、中震弹性设计或大震承载力验算。主要措施是:①根据抗震设防烈度,提高最大地震影响系数,如采用中震或大震的影响系数;②根据扭转变形指标位移比的增大程度,适当从严控制地震作用下层间最大位移角的限值。

3、强化抗震措施。抗震措施是大量震害的教训总结,是众多专家学者设计经验的概括,是抗震计算结果的合理有效补充,尤其是对特别不规则和严重不规则的结构,由于其结构体系过于复杂,很难满足结构计算软件的技术条件和基本假定,精确的解析其实并不精确,计算误差往往很大,不符合工程的实际情况,从这个意义上说,抗震措施比抗震计算更重要!因此在规范中,抗震构造措施大多用强制条文书写,设计人员无论是否完全理解这些条文的含义,都应当坚决遵照执行。

三、电算参数设置

1、扭转耦联。从理论分析和工程实例计算得知,考虑扭转耦联影响的计算适用于任何空间结构,非耦联计算通常用于平面结构。因此,空间分析软件 SATWE 取消了是否选择扭转耦联的选项,在结构计算中总考虑扭转耦联的影响,显然这对扭转不规则结构的计算分析是十分有利的。

2、振型数量。《高规》规定,抗震计算时,宜考虑平扭耦联计算结构的扭转效应,振型数不应小于 15,且计算振型数应使振型参与质量不小于总质量的 90%。为了保证抗震计算结果准确,必须选取足够多的振型数量,使有效质量系数大于 0.9。但振型数也不能取的太多,不能超过结构有质量贡献的自由度总数。SATWE 软件计算振型数的缺省值为 15,设计人员可以根据工程实际情况自行修改。对于不规则的建筑结构,特别是具有弹性楼板,楼板开大洞,错层,跃层,多塔等结构,由于有质量贡献的自由节点数大大增加,选择的振型数也必须大大增加,才能确保有效质量系数大于 0.9,使抗震计算结果真实可信。

3、双向地震。《抗震设计规范》强制条文规定,质量和刚度分布明显不对称的结构,应计入双向水平地震作用下的扭转影响。但“明显不对称的结构”如何衡量呢,如果没有明确的标准,强制条文岂不成为可执行可不执行?建议设计人员将本文提出的特别不规则结构作为明显不对称、不均匀结构,考虑双向地震影响。

4、设置弹性楼板。当结构平面凹凸不规则,楼板不连续,楼板开大洞等情况形成狭长板带时,当连体结构采用弱连接楼盖连接两翼主体结构时,当采用框支剪力墙转换结构时,该部位的楼板不应采用刚性楼板假定计算,而应采用弹性楼板模型计算地震作用效应,即在SATWE 软件特殊构件设置中将其设定为弹性板。

四、结语

随着我国经济实力和科学技术水平的大幅提升,人们思想观念的不断更新,严格意义的规则建筑已经很难见到,代之而起的是大批新颖别致,标新立异,张显个性的建筑物,各地大量涌现的现代新型建筑物几乎都是不规则或很不规则的,它们的出现既给城镇建设带来了崭新的面貌,又给工程设计人员提出了严峻的挑战,如何按照规范精神,进行不规则建筑结构的抗震设计与计算分析,成为工程设计中必须解决的重要课题。

参考文献

篇8

关键词:建筑;不规则性;结构设计;

中图分类号:TU318 文献标识码: A

设计者为了迎合城市建设的发展需求,逐步更新了自己以往建筑物必须要对称、规则的观念,他们正试着建造一些标新立异、新颖别致、独树一帜的建筑,如非对称、不规则的建筑结构物。随着人们观念的转变,现如今大城市中出现了许许多多的复杂体型和不规则结构,这种趋势在某种程度上代表了我国以后建筑的发展方向。不规则建筑的设计与建造却给结构设计人员以及施工人员带来了严峻的考验。

建筑物的不规则性主要表现在几个方面:建筑水平面的凹凸不平不规则、局部的连接的楼板不是完全的连续、规则,还有就是建筑本身在他的竖向刚度上会出现不连续、不规则等现象。在实际的施工过程中,必须要十分准确的判断出来建筑物不规则的位置,只有这样才能不影响到对建筑物结构的建模、确定建筑物的结构等一系列的布置方案,还有就是要确定建筑物自身的缺点,找出它的薄弱地方,然后在最大程度上提高整体建筑物的合理性、安全性和经济性。很多情况下,不规则的建筑物结构会引起结构上水平方向上的偏心侧力,这样也会造成进一步的扭转变形,对于结构的抗侧力是十分不利的,它还会导致建筑物在成本上有不必要的浪费。因而设计者在设计的时候一定要尽量的将建筑物设计为对称、规则的,这样也方便了提高建筑物本身的一些结构性能。

1建筑结构不规则性类型

1.1复杂高层结构和超出规范结构:1)典型的有带有转换层、加强层、错层、连体、多塔楼等的结构。2)超高超限的结构,其高度超过了规范规定的最大高,或其超过了规范规定的其最大最小限值;3)新型结构,我们在这里特指采用最新材料、新工艺技术建造的建筑并且规范没有涉及到的新的建筑结构类型。

1.2竖向不规则结构

1)侧向刚度不规则的结构:①侧向刚度小于相邻上部楼层的70%或相邻三层楼层平均值的80%;②建筑上部楼层的收进部位与室外地面高度差大于房屋高度的 20%时,上部楼层收进后的水平尺寸大于大于其下一层的 0.75倍 ;③建筑下部楼层的水平尺寸小于上部尺寸的90%并且水平尺寸大于 4m;④结构顶部因为取消墙柱而形成的空旷建筑。2)竖向抗侧力构件不连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力由水平转换构件(梁、桁架等)向下传递。3)楼层承载力突变:A 级建筑的层间受承载力比小于80%;B 级高层小于75%。

1.3平面不规则结构

(1)扭转不规则:判断标准是每一楼层自身最大的弹性水平位移大于该楼层两端的弹性水平位移平均值的1.2倍,或者是最大的层间位移大该楼层两端层间位移平均值的1.2倍。 (2)凹凸不规则:判断标准是建筑结构平面凹进一侧的尺寸大于其投影方向上总尺寸的30%。(3)楼板局部的不连续:判断的标准是楼板的尺寸以及平面刚度发生急剧的变化。

2 高层建筑结构对称、均匀性的主要体现

高层建筑主体抗侧力结构沿两个主轴方向的刚度比较接近、变形特性比较相似。这个主要就是因为高层建筑一般都是三维空间的结构,实际的地震荷载、风荷载等等都均有比较任意的方向性;高层主建筑主体抗侧力结构两个主轴方向的刚度比较的均匀,这样就能够具有比较优异的抗震抗风的特性。

高层建筑的主体抗侧力结构沿竖向断面、构成变化比较均匀、不要突变。这个主要说的就是主体结构的剪切刚度不能够有突变。这种均匀的高层建筑可以很好的避免因为薄弱层的破坏而引起的结构上的整体破坏,尤其是以强震区的高层建筑特别要注意这一点。

高层建筑主体抗侧力的平面布置,往往应该注意同一个主体方向各个分片的抗侧力结构刚度要尽量的平均,应该尽力避免在主体结构布置中出现某一、两片的刚度因为各种原因而存在的比较大的差异的结构。

高层建筑主体抗侧力的水平布置还要注意中央核心与周围结构刚度的协调统一,保证主体结构具有良好的抗扭刚度,以便避免高层建筑在地震荷载以及风荷载的扭矩作用下产生过大的扭曲变形而导致他的结构在一定程度上存在着被破坏的危险。

3不规则性在高层建筑结构设计中应用要点的有效把握

不规则性的分析、判断及应用会对建筑工程结构设计工作产生非常深远的影响,结构设计中的布置、建模、位移比、薄弱楼层都是可能受到影响的对象,同时不规则的合理使用也决定着建筑工程整体结构设计的科学、经济及安全性。在设计过程中需要把握的几个要点如下:

3.1 降低相对偏心距的数值,变换不规则平面的设计

相对偏心距与扭转效应之间存在线性联系,可以选择变换平面设计及布置拉近刚心和质心之间的差距,通过降低楼层之间位移比值来纠正扭转效应。结构设计者应该在初始计算判断的前提条件下,变换不规则平面的设计及布置,经由计算结果获得结构的刚心、质心,分析其刚度分布,结合实际要求适当增加或减少与质心存在较远距离的剪力墙。

3.2 将防震缝纳入考虑范围,持续优化抗震设计

如果建筑工程的平面类型非常繁杂,而且无法满足规则性结构要求的时候,应该考虑使用防震缝,将平面结构划分成为若干个简单的单元。假设与抗震缝相连的两个结构之间存在非常显著的差异性,就可以将其结构机制因素排除在外,以较低一侧的结构高度来获得防震缝的宽度。若防震缝两侧结构出现较大基础沉降现象,则应该提高拓宽抗震缝的宽度数值。

3.3调整建筑结构的抗侧刚度和抗扭刚度比值

根据一些相关的资料表明,建筑结构的扭转效应与结构周期比的平方的关系基本上是呈线性的关系,因而在设计建筑物的时候,可以考虑适当的减少一些建筑结构的周期。在做剪力墙的时候,则需要在合理的范围内尽量的加长或者是增厚周边的剪力墙,尤其是要重视那些离刚心最远的一些剪力墙。加大结构抗扭刚度的一般做法就是在建筑结构边缘上设置拉梁,同时也要缩小建筑结构的扭转周期,也可以通过增加周边连梁的刚度来实现。

3.4 提升周围抗扭构件的抗剪性能,确保满足弹性要求

如果不规则性高层建筑结构设计已经获得理想的位移及周期比,单单通过变换结构设计仍然无法在强烈震动条件下获得满意的结构安全效果。结构在非弹性状态时期会使已经对称的结构在水平双向震动影响下出现偏心,这种现象是伴随着形态的不同而发生改变。在抗震能力的基础上来说,设计者应该注重周围抗扭构件抗剪性能的提升,确保能够在强烈震动情况下具有良好的弹性,只有这样才能持续提升我国高层建筑结构设计的整体效果,为广大人民群众提供更为优质的服务。

结语:结合现状,不规则的建筑结构型式更适应市场需求,但却较难满足规范要求。不规则建筑的不规则性,对其结构设计提出了更高的难度和要求。要达到既适应市场需求,又满足规范要求,并且结构构件安全,使用功能适用,结构造价适宜的设计目标,但只要抓住解决建筑不规则的核心问题,把握住工程的实际情况,抓住优化设计方案,合理选择计算方法和计算参数,认真分析薄弱部位和地震力调整,强化抗震构造措施等环节,就能使遇到的问题迎刃而解。

参考文献:

[1建筑混凝土结构设计规范(GB 50010-2010) [S].北京:中国建筑工业出版社.

[2高层建筑混凝土结构技术规程(JGJ3-2010)[S].北京:中国建筑工业出版社.

[3] GB 50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.

篇9

Key words: high-rise buildings;structure design;irregularity;research and application

中图分类号:TU973 文献标识码:A 文章编号:1006-4311(2016)07-0107-02

0 引言

在设计高层建筑结构的时候,因为会受到多种因素的影响,导致建筑结构经常出现不规则性,主要就是体现在局部楼板不规则、竖向自身刚度不规则以及凹凸不规则等,所以,在实施设计建筑结构的时候,需要准确判断设计建筑不规则性,保证建筑的安全性和稳定性,高层建筑设计不规则性不但能够提供良好视觉效果,也能影响建筑整体安全性,因此,在设计建筑结构的时候,需要高度重视不规则性,完全设计建筑结构的效果和作用。

1 高层建筑不规则性的发展现状

伴随着不断发展科学技术以及国家经济,开始大力发展建筑行业,为了能够满足市场需求以及城市化发展进程,设计人员在设计建筑结构的时候,需要不断更新和改变设计理念,从传统的对称设计规则和理念变为多样、新颖、独特的建筑设计风格,如不对称、不规则高层建筑结构,因为不断改变的思维意识,越来越多出现复杂外形的设计结构,不规则的高层建筑形式,基于此,未来高层建筑发展方向就是不规则设计,虽然不规则设计方式能够极大程度提高建筑美感度,但是会在一定程度上提高建筑强度,怎样在保证稳定、安全的基础上,设计独特的不规则建筑形式,成为建筑行业未来发展的重大问题[1]。

2 划分高层建筑中不规则结构

依据抗震规范设计建筑不规则架构的时候能够分成以下三个级别:一是,一般不规则。依据相关标准和设计规范来提出合理解决措施;二是,特殊不规则。经过相关部门和专家论证以后提出符合标准规范的解决措施,检查建筑抗震级别的时候严格遵守第111号建设部设计规范;三是,严重不规则。依据实际设计规范要求合理调整和修改建筑方式。包括竖向不规则和平面不规则两种结构形式。

2.1 平面不规则结构种类 平面不规则设计结构主要包括扭转不规则、凹凸不规则、楼板局部不规则三种形式,从以上三个角度来着重分析高层建筑平面设计不规则形式。

2.1.1 平面刚度偏心 平面刚度偏心包括两种形式,平面外刚度和平面内刚度,平面外刚度就是垂直荷载作用方向的刚度;平面内刚度就是具备一致与荷载作用方向的刚度。因为理想设计构件模型、施工环境、承受荷载与实际构件情况之间的差异,促使出现不唯一的平面刚度,也就是说会适当降低刚度[2]。

2.1.2 平面质量偏心 设计不同尺寸界面结构构件的时候,会出现质量偏心现象,此外因为施工条件、设计结构等原因出现质量偏性,依据国家抗震相关设计规范指标,设计平面规则结构的过程中,分析偏心影响的时候,需要合理应用简化的提高边榀结构地震作用效应方式,对于设计高层建筑结构来说,具备和国外一致的标准和规定,计算楼层偶然偏心质量单向水平地震情况的时候,与建筑物在地震作用方向上的每层投影长度的5%息息相关。刚度计算公式如下:Ki=Vi/Ui

其中Vi是第i层剪力,Ui是第i层层间位移。

2.1.3 平面强度偏心 平面应变以及平面应力都与简化空间模型理念息息相关。平面应变就是说在同一平面内进行所有应变;平面应力是说在同一平面内所有应力。常见的两种偏心问题就是平面刚度偏心和平面质量偏心,在实际设计高层建筑结构的时候,经常会忽视强度偏心的影响,在设计过程中,钢构件、钢筋使用型号、混凝土的配置都具备一定不确定性,因此,会促使设计结构强度与实际强度之间具备一定差距,从而使得设计结构强度的时候出现偏心,工作人员很难有效控制结构强度,因此在施工中不能忽视平面强度偏心[3]。

2.2 竖向不规则结构种类 在实际设计高层建筑结构的时候,会经常出现一些竖向不规则结构,例如,设计高层建筑过程中,采用上下粗、中间细的形式,上述结构形式会在一定程度上提高或者增强楼层承载力,如果不能全面分析竖向不规则结构,会极大程度影响建筑整体设计效果,竖向不规则设计结构主要包括侧向刚度不规则、楼层承载力突变、不连续竖向抗侧力三方面。

3 高层建筑结构设计中不规则性的应用

依据相关研究可以发现,当建筑结构遭受到地震等自然灾害的过程中,相比较同类型建筑结构中,存在平面不规则性建筑设计结构更容易被破坏,并且上述建筑还存在相对比较薄弱的抗扭转刚度、刚度偏心、质量偏心等问题,需要进一步分析和研究建筑设计不规则结构。高层建筑不规则结构中,最严重的破坏方式就是扭矩效应。在实际设计结构和实施建筑结构的时候,扭转效应对于高层建筑来说具备极大影响,应该及时采取有效解决措施,可以最大限度限制使用不规则平面结构设计高层建筑,能够在一定程度上降低过大偏心问题,从而能够及时的降低扭转效应影响高层建筑设计的效果,并且适当增加建筑设计的扭转刚度,促使不会因为具备比较弱的强度二提高扭转效应,在分析判断高层建筑扭转效应的过程中,对比法分析依据以平动为主的第一自转周期及以扭转为主的第一自振周期,如果存在相似的数值,在振动耦连影响前提下,会极大程度影响设计高层建筑的扭转效应。尽可能降低扭转作用,从以下方面分析解决措施:

3.1 高层建筑结构设计中降低相对偏心距 经过大量实践可以发现,设计高层建筑不规则结构的时候,相对偏心距和扭转效应存在一定线性关系。想要有效降低设计高层建筑不规则结构的扭转效应,并且尽可能缩小楼层位移比,应该合理调整布置建筑的平面结构,保证能够具备更加类似的刚心位置和构架质心。实际建筑施工过程中,初步计算分析刚度结构,合理调整不符合规范的不规则建筑结构平面设计,依据初步计算结果可以有效确定设计建筑结构的刚心和质心。有机结合以往经验和相关资料数据,来准确分析和判断设计建筑结构的刚度,在比较原理质心的位置,适当提高或者降低构件抗侧力[4]。

3.2 高层建筑结构设计中合理调整扭转刚度和抗侧刚度 在设计高层建筑结构的时候,结构周期和扭转效应之间具备一定线性关系,所以,在实际设计高层建筑不规则结构的过程中,应该尽可能降低周期。设计剪力墙结构的时候,需要适当增加剪力墙厚度,特别是远离结构刚心为指导强力墙更应该给予一定关注,合理增加设计的扭转刚度,能够有效降低设计结构扭转周期,在结构边缘附近设置一定的拉梁或者提高拉梁刚度[5]。

3.3 增加建筑附近抗扭构件的抗剪力 在存在很强震动的影响下,如果仅仅只是依靠调整和改变结构布置形式是不能完全符合规范的,设计建筑结构的时候需要保持纵横安全性,经过大量实践表明,在非弹性时期设计高层建筑的时候,会在一定程度上遭受到水平方向震动影响,由于不断改变形态,对称建筑结构会形成相应偏心,所以,应该不断提高和强化设计建筑结构的抗剪性能,保证在强烈震动基础上能够具备整体弹性的高层建筑设计结构,以便于保证拥有良好的抗震性[6]。

3.4 设置防震缝 在设计高层不规则建筑形式的时候,经常会应用一些复杂架构的平面形状,因为受到实际情况的影响,不能合理设置成规则的平面建筑结构,因此,利用防震缝来有效的把建筑结构变为交单的结构单元。在高层家建筑设计中应用不规则结构的时候,防震缝具备一定作用和意义。如果存在不同体系结构的两侧防震缝、不同应用的地震反应效应,需要依据实际宽度来合理设计防震缝。如果出现沉降比较大的相邻基础结构,防震缝能够被当做沉降缝[7]。

3.5 实际应用 北京商务中心的中央电视台大楼,基本支柱结构是两栋倾斜的大楼,悬空180m的位置向外延伸10m,形成正面O型侧面S型的结构。主要应用多种不规则菱形渔网状金属脚手架,163m以上部分主要形成L形式悬臂,主楼双向内侧存在6°的倾斜,利用诸多不规则几何图形构成玻璃幕墙,促使此建筑技术含量高、结构新颖、造型独特。

篇10

【关键词】建筑工程;结构设计;基本原则;设计方案[Abstract]Along with the performance requirements of the demand of the social development of the building is more and more high, construction continues to expand the scale, structure is more and more complex. The design of a fundamental link is extremely important is building structure. In the construction engineering project, with an excellent and reasonable structure design, it can almost be thought that this project has been successful in half, this shows the importance of building structure design for building engineering. This paper describes the basic principles of building structure design, discusses issues related to the reasonable design of building structure design.

Keyword construction; structure design; basic principle; design

中图分类号:TU318 文献标识码:A文章编号:

前言:

对于建筑质量问题来说,规范结构设计的原则,做好设计方案的选择才是关键,这直接关系着施工的质量和最终的建筑安全。但是在具体的设计中,设计方案的选择受到很多原因的影响,从而最终造成设计方案不能实现,不但造成了各种资源的浪费,也影响了建筑事业的发展,所以可见规范建筑结构设计的原则,选择合适的设计方案是很重要的。建筑结构的设计方案是一项建筑工程施工中的基础和保障,建筑的施工方案,包括建筑材料的选择、施工工艺的应用、施工质量的控制等等,都要根据建筑结构的设计方案来确定。由此可见,建筑结构设计是关系着建筑工程质量的重要因素,而建筑工程的质量又是保证用户人身安全的关键。

一、建筑结构设计的基本原则

通常来讲,在某种有序的活动中,都需要遵循一定的原则才能保证活动的顺利进行,建筑结构设计也不例外。由于建筑结构设计需要将建筑工程中的方方面面都考虑到,是一项庞大复杂而又系统有序的工作,必须遵循一定的基本原则,以保证结构设计方案的合理性。

1、抓大放小原则

抓大放小原则是指在建筑结构的设计中,要分清建筑中不同结构的主次关系,重点确保主要建筑构件的结构设计要合理稳固,但这并不是说要忽视次要建筑构件的设计优良性,而是指当建筑物突然发生某种危险时,要保证主要建筑构件能够发挥职能,即使次要建筑结构被毁坏,也不至于使整座建筑倒塌或使建筑核心受到严重损害。

2、刚柔相济原则

刚柔相济原则是建筑结构设计中的一项重要原则,这是因为建筑物必须同时具有一定的刚性柔性这两大特性才能保证建筑物的安全正常使用。建筑物的刚性是指建筑结构设计要考虑到建筑物本身以及其内部所要承受的各方面力的荷载作用,只有具备一定的刚性才能支撑整个建筑的正常使用。

3、多重设防原则

多重设防原则主要是为了提高建筑物在遭遇危险或灾害时的自身抵抗能力而设定的。近年来,常有建筑物因结构设计不合理,在遭受一些外界灾害时,表现出很弱的稳定性,甚至会导致建筑物坍塌的现象。这就是在对建筑结构进行设计时没能遵循多重设防的原则。

4、打通关节原则

在传统的建筑结构设计中,常常会在一些结构组合部位留下节点,大大降低了建筑的整体性,也使得建筑物的使用寿命因节点的破坏而大打折扣。为此,在建筑结构设计中要采用合理的措施方法,在保证建筑物整体稳定和平衡性的前提下,运用打通关节的原则,将建筑结构中的节点都设法消除掉,以最大程度的降低节点对建筑物整体结构的影响。

5、以人为本原则

建筑设计以及建筑施工的最终目的是为人类服务,为此建筑物必须要能满足人们的各项需求方能实现其最终价值,这就要求在对建筑结构进行设计时,要依照以人为本的原则进行方案设计。

6、绿色环保原则

这项原则是在全球生态环境急剧恶化的情况下成为现代建筑结构设计中需要注重的基本原则。如今我国的城市现代化不断发展,城镇人口日益增加,建筑面积的扩大致使绿化面积逐年减少,生态环境遭到很大破坏,严重威胁着人们的健康。

二、建筑结构的合理设计方案

1、结构计算中的注意事项

(1)在刚度比较均匀的多层结构中,通常采用底部剪力法进行底层框架结构的验算;在具有薄弱层的底层框架混合结构中,要把塑性变形集中的影响考虑到底框与砌体的验算中。

(2)连续板计算时,要采用双向板查表,重视材料泊松比带来的影响,不能简单地使用单向板计算法,否则,由于受跨中弯矩未调整的影响,最终的计算值将偏小。

(3)严禁荷载计算错误。在对建筑物的荷载承受力进行计算时,不能单单只注重建筑物自身的荷载以及预期中建筑内部所承受的荷载,还需要考虑到建筑物的最终用途,建筑物所在环境以及其整体结构形式。

2、构造的注意事项

(1)在抗震设计中,要注意构件的配筋率,必须保证在地震发生时,建筑结构的延性,以及最小配筋率的要求。在进行结构设计时,最好采用纵墙和横墙共同承担压力的结构,建筑结构要尽可能地使用规则结构,设置防震缝,以此来增加建筑物的抗震能力。

(2)钢筋各个部位的锚固、延伸长度和搭接长度都必须符合规范,材料也必须严格按照强度的要求进行选用。

(3)墙体开裂是建筑屋面常见的现象,为了防止屋面温度应力引起的墙体开裂,建筑结构在设计时就必须采取有效的通风融热措施。

三、建筑结构设计方案的主要方法

1、屋面结构图的设计方法

如果建筑的屋面是坡面式的,可以采用梁板式和折板式两种结构处理方式。其中,梁板式可以用在建筑平面不整齐,板的跨度比较大的建筑结构中。而且,一般屋面坡度和屋脊线转折比较复杂的坡屋面也都采用这种结构。而折板式则和梁板式的适用条件则相反。这两种结构处理方式的板都是偏心受拉的构件。在板配筋的时候必须有板负筋拉通,这样可以抵抗拉力。板厚基的厚度不能小于一百二十厚。以某建筑工程为例,其建筑结构设计中涉及到钢筋混凝土结构与钢结构交接的结构形式,而钢结构的所在部位位于坡屋面的位置,而屋顶檐口的造型又是统一标高的,致使钢结构屋脊和女儿墙交界的地方泛水高度达不到技术规范的要求。为了解决这一问题,技术设计人员采取了一定的处理方法,并通过详细明了的剖面示意图(如图1所示)进行表示,使施工人员对于设计的要求一目了然,很好的达到了工程的预期效果。

2、结构平面图的设计方法

如果建筑地域的防震烈度为六度区的时候,按照我国的防震设计要求,可以不必采用截面抗震验算,但结构的设计也一定要达到抗震的标准。所以对于砌体结构的建筑,软件建模可以省略,在进行设计的时候只要注意受压和局部受压的问题,就可以直接设计。如果条件和时间允许,要做建模也无可厚非,因为它可以利用建模来荷载导算。但是,如果建筑的地域防震烈度为七级时,就必须采用建模来进行计算。

3、大样详图的设计方法

建筑详图如果没有发生错误,在这基础上可以进行绘制大样详图,还可以在曾经做过的详图基础上进行部分的改进。只要让建筑的整体外形不改变,考虑到结构的受力能力和施工起来比较方便即可。但在外形尺度和标高上必须和建筑专业统一协调。

四、结语

建筑结构设计在建筑工程建设中是一项非常重要的工作内容,是关系着建筑施工质量的关键因素,对于建筑物的使用性能和使用寿命的影响都有着不可忽视的重要作用。因此,在对建筑结构进行方案设计时,一定要以结构设计的基本原则为指导,采用科学合理的方法进行设计,在此过程中,要求设计人员一定要具备扎实全面的建筑专业知识,严谨负责的工作态度以及灵活创新的头脑,保证建筑结构的合理性、科学性、可行性与经济性。

参考文献:

[1]魏然.建筑结构设计基本原则及合理设计方案[J].民营科技,2011,(05).

篇11

修订后的3.4.1条w为:“建筑设计应依据抗震概念设计的要求选择建筑方案,不规则的建筑方案应按规定采取加强措施:特别不规则的建筑方案应进行专门研究和论证,并采取特别的加强措施;不应采用严重不规则的建筑方案”。该条为强制性条文,必须严格执行,但目前不少工程设计对不规则建筑方案的定性和定量,以及如何采取加强措施偏差较大。为较好地执行该条文。对如下几个问题与同行们共同探讨。

一、不规则建筑方案判定

什么叫“不规则的建筑方案”?根据《抗规》3.4.2条,可以概括为以下三类:

1)建筑的平面布置不规则,如平面复杂、不对称、细腰形或角部重叠形、凹凸尺寸过大等。

2)建筑的竖向布置不规则,如尺寸突变、缩进或外挑过大、多塔、连体等。

3)结构抗侧力构件不规则,如结构平面布置不规则、楼板不连续、不对称,平面整体刚度差,竖向构件的截面尺寸和材料强度突变等。

《抗规》第3.4.1条,对建筑方案的不规则程度分为了三个层次:即一般不规则、特别不规则和严重不规则。

怎样判别不规则建筑的不规则程度呢?

2006年,国家建设部以[2006]220号文件颁布了关于印发《超限高层建筑工程抗震设防专项审查技术要点》的通知,在《技术要点》的附录一“超限高层建筑工程主要范围的参照简表”中对建筑不规则性进行了明确的归纳和分类,如表1和表2。

在《建筑工程抗震设防分类和抗震设计2008年修订统一培训教材》中引用了表1、表2的不规则项,对不规则程度进行了划分:

1)一般不规则的建筑:建筑结构(包括某个楼层)布置上出现表1中一项不规则,即为一般不规则建筑。

2)特别不规则的建筑:主要有三类,其一、同时具有表1所列九个方面的基本不规则项的三个或三个以上:其二、具有表2所列的一个不规则项:其三、具有表1所列两个基本不规则项且其中有一项接近表2的不规则指标。

3)严重不规则:指体型复杂,多项实质性的突变指标或界限超过抗震规范3.4.3条规定的上限值或某一项大大超过规定,具有严重的抗震薄弱环节,可能导致地震破坏的严重后果者,意味着该建筑方案在现有经济技术条件下,存在明显的地震安全隐患。

对于多层砌体房屋建筑的不规则性,应参照上述要求和《抗规》有关规定进行判断。

二、判断不规则建筑的几个计算参数

从表1、表2中可以看出,判断建筑的不规则性,除了外观体型要求的相关参数(如平面凹凸尺寸不大于相应边长30%,楼板有效宽度不小于50%,开洞面积不大于30%,竖向尺寸缩进不大于25%,外挑大于10%和4m)外,还有五个参数指标用来判断建筑的不规则性(即扭转位移比、扭转周期比、层刚度比、受剪承载力比、塔楼偏置比)。它们是描述抗侧力构件不规则性的定量指标。这些参数指标的基本概念和作用可简单归纳如下:

1.扭转位移比

扭转位移比是楼层平面不规则性的一个判断指标,目的是限制平面布置的不规则性,避免产生过大的偏心而导致结构产生较大的扭转效应。它的表达形式:U=Umax/u,其中Umax为楼层竖向构件的最大水平位移,u为单向地震作用下,在楼层角点处竖向构件的水平位移或层间位移的最大值和平均值。

参照表1和表2,扭转位移比大于1,2为一般不规则,扭转位移比大于1.4为特别不规则。《混凝土高规》4.3.5条,在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍:B级高度高层建筑、混合结构高层建筑及本规范第10章所指复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。楼层扭转位移比计算,不同的计算假定和计算原则会得出不同的计算结果,因此设计人员必须把握下列基本假定和计算原则:a)采用刚性楼板假定,而不应采用弹性楼板假定:《抗规》第3.4.2条的条文说明中明确规定,楼层的扭转位移取结构的端部位移,目的是考虑结构受到整体扭转的效应,因此采用pkpm软件计算时应采用刚性楼板假定。弹性楼板的假定只用于结构或构件的内力设计计算。b)对一般结构可只考虑结构的偶然偏心;c)对复杂高层建筑及超限建筑工程,应考虑双向地震作用下的扭转影响和偶然偏心下的扭转影响,并取偶然偏心和双向地震作用的不利值判别结构规则性:关于双向地震作用,《抗规》和《混凝土高规》明确规定,质量和刚度明显不规则的结构,应计入双向水平地震作用的扭转影响。但对上述规定又未作出量化标准或指导性建议。中国建筑科学研究院朱炳寅在建筑结构杂志文章中认为,在计算中存在两个问题:“一是对双向地震作用的把握问题,双向地震的作用是仅考虑内力还是考虑全部效应。我国规范未明确说明双向地震作用是否只用于承载能力计算,因此可以理解为适用于全部效应计算中,双向地震作用于内力计算和扭转位移计算。二是对质量和刚度明显不规则的把握,该问题比较复杂。对复杂高层及超限结构,当不考虑偶然偏心时楼层扭转位移比u≥1.2时,可判定为结构的质量和刚度分布已处于明显不对称状态,此时应计入双向地震作用的影响,在对结构的规则性进行判定时,可取偶然偏心和双向地震的不利值。而对于一般结构的规则性进行判定时,只考虑偶然偏心而无需考虑双向地震作用”。

2.扭转周期比(Tt/Tl)

扭转周期比,是指结构扭转为主的第一自振周期Tt与平动为主的第一自振周期Tl之比,简称周期比,是衡量结构扭转刚度的一个指标。

周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,周期比控制不是在要求竖向抗侧力构件足够结实,而是在要求抗侧力构件布局的合理性,其目的是限制结构的扭转刚度不能太弱。若结构的扭转周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,一般只能通过调整平面布置来改善。《混凝土高规》4.3.5条规定:结构扭转为主的第一自振周期Tt与平动为主的第一自振周期Tl之比,对于A级高度高层建筑不应大于0.9,对于B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85,在超限高层审查中将这一规定划为特别不规则平面。

3.层刚度比

层刚度比是控制高层结构的竖向规则性的重要指标,主要为了控制高层结构的竖向规则性,以免竖向刚度突变,形成薄弱层,因此层刚度比是判定结构薄弱层的指标之一。《抗规》3.4.2条楼层的侧向刚度小于相邻上一层的70%或小于上相邻三层平均值的80%,为侧向刚度不规则,表2中楼层侧向刚度小于相邻上层的50%,为特别不规则。一般情况

采用地震剪力与地震层间位移的比值(Ki=Qi/ui),来衡量结构的薄弱层。在《抗规》与《混凝土高规》中,计算层刚度的方法有三种,即剪切刚度、剪弯刚度、地震剪力与地震层间位移的比值。a)“剪切刚度”(Ki=GiAi,hi)带转换层高层底部大空间为一层及砖混结构:b)“剪弯刚度”(Ki:Vi/i),适用于带转换层高层底部大空间为多层。c)“地震剪力与地震层间位移的比值”

(Ki=Qi/ui),适用于一般情况。一般情况下,在采用pkpm软件进行结构分析计算时,考虑地震作用,多采用地震剪力与地震层间位移的比值:若不计算地雕作用,对于多层结构可以选择剪切层刚度算法,高层结构和有斜支撑的钢结构可以选择剪弯层刚度算法。

我国现有规范中对刚度比除了以上要求外,对于结构特殊部位还应满足下列要求:

a)《抗规》附录E2.1规定,简体结构转换层上下层的侧向刚度比不宜大于2:b)《混凝土高规》第5.3.7条规定,高层建筑结构计算中,当地下室的顶板作为上部结构嵌固端时,地下室结构的楼层侧向刚度不应小于相邻上部结构楼层侧向刚度的2倍;c)《混凝土高规》第10.2.3条第2款对带转换层高层建筑结构,转换层上部结构与下部结构的侧向刚度比有明确的规定,必须按照《混凝土高规》中的附录E进行验算,并应满足其上下刚度比的要求。

底部大空间为一层的部分框支剪力墙结构,附录E.01规定采用剪切刚度比,即转换层上、下层结构等效刚度比Y,非抗震设计时Y不应大于

3.抗震设计时不应大干2。

底部大空间层数大于一层时,附录E.02规定采用剪弯刚度比,即等效侧向刚度比ye,一般情况宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。

4.受剪承载力比

受剪承载力比与层刚度比一样,都是对结构薄弱层判断的依据,只要受剪承载力比或层刚度比两者之一不满足,即可判定该楼层为薄弱层。它用来控制竖向不规则性,以免竖向楼层受剪承载力突变。

《抗规》3.4.3-2-2条的规定:楼层承载力突变时,薄弱层抗侧力结构的受剪承载力不应小于相邻上一楼层的65%。

《高规》4.4.3条:A级高度高层建筑的楼层层间抗侧力结构的受剪承载力不宜小于其上一层受剪承载力的80%,不应小于其上一层受剪承载力的65%:B级高度高层建筑的楼层层闻抗侧力结构的受剪承载力不应小于其上一层受剪承载力的75%。

当一般不规则或超出限值不大时,在设计计算中应引起关注。一般在SATWE“调整信息”的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,软件计算时会按高规5.1.14将该楼层地震剪力放大1.15倍。

5.塔楼偏置比

在《混凝土高规》的复杂高层建筑结构设计篇,第10.1.6条:

“多塔楼建筑结构各塔楼的层数、平面和刚度宜接近;塔楼对底盘宜对称布置。塔楼结构与底盘结构质心的距离不宜大于底盘相应边长的20%”。而在超限高层审查限值中,增加了单塔楼,将“单塔或多塔(含双塔)与大底盘的质心偏心距大于底盘相应边长20%”均判定为特别不规则建筑。

在设计中值得关注是:当采用结构计算软件时,应正确填写裙房层数,程序可以较准确地计算塔楼结构质心与底盘(裙房)结构质心的距离,然后利用计算结果判断该质心距离是否大于底盘相应边长的20%。当单塔或多塔与大底盘的质心偏心距大于底盘相应边长的20%,首先应该采取相应措施进行调整,例如:调整建筑设计方案、调整结构单元的分布或调整抗侧力构件的布置等,若无法对建筑方案进行调整时,应进行超限高层建筑抗震设防专项审查。

三、不规则建筑的处理方法

1.处理方法

抗震规范把不规则的建筑方案分为三个级别区别对待:

一般不规则――按规范、规程的相关规定采取加强措施;

特别不规则――经过专门研究和论证后采取高于规范、规程规定的加强措施,对于高层建筑还应严格按照建设部令第111号进行抗震设防专项审查;

严重不规则――应要求建筑师予以修改、调整。

2.对一般不规则建筑的处理方法

对一般不规则的建筑结构进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施的规定。主要体现在三个方面:计算分析方法、计算模型和薄弱部分的抗震构造加强措施。

1.)计算分析方法和计算模型

不规则的建筑应采用振型分解反应谱法。

平面不规则而竖向规则的建筑结构,采用空间结构计算模型,当凹凸不规则或楼板局部不连续时,采用符合楼板平面内实际刚度变化的计算模型。当平面不对称应计及扭转影响。

平面规则而竖向不规则的建筑结构,采用空间结构计算模型,其薄弱层的地震剪力应乘以1.15的增大系数,并按规范有关规定进行弹塑性变形分析,当竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应乘以1.25~1.5的增大系数。

平面不规则且竖向不规则的建筑结构,应同时按上述要求选择合理的计算模型、考虑扭转影响、乘以相应的增大系数。

2.)抗震构造加强措施

a)艹字形、井字形等外伸长度较大的建筑,当中央部分楼、电梯间使楼板有较大削弱时,应加强楼板以及连接部位墙体的构造措施,必要时还可在外伸段凹槽处设置连接梁或连接板。(《高规》4.3.7)

b)楼板开大洞削弱后,宜采取以下构造措施予以加强(《高规》4.3.8):1加厚洞口附近楼板,提高楼板的配筋率:采用双层双向配筋,或加配斜向钢筋:2洞口边缘设置边梁、暗梁;3在楼板洞口角部集中配置斜向钢筋。

c)抗震设计时,高层建筑宜调整平面形状和结构布置,避免结构不规则,不设防震缝。当建筑物平面形状复杂而又无法调整其平面形状和结构布置使之成为较规则的结构时,宜设置防震缝将其划分为较简单的几个结构单元。(《高规》4.3.9)

3.对于特别不规则建筑

特别不规则建筑应进行专项审查,设计单位应按照住建部《关于超限高层建筑工程抗震设防专项审查技术要点》的规定进行分析论证,提出论证报告进入程序性审查,论证报告重点要做好建筑结构抗震概念设计,7合理设定结构抗震性能目标,提结构计算分析模型和计算结果,提出结构抗震加强的相关措施,专项审查的内容主要包括下面七个方面

1) 建筑抗震设防依据;

2) 场地勘察成果:

3) 场地和基础的设计方案:

4) 建筑结构的抗震概念设计和性能目标:

5) 总体计算和关键部位计算的工程判断:

6) 薄弱部位的抗震措施:

7) 可能存在的其它问题,包括政府投资项目的经济合理性。

篇12

【关键词】高层建筑;不规则火灾扑救面;性能化设计

近十余年来我国的高层建筑可谓突飞猛进,其建设速度和建造数量在世界建筑史上都是少有的,截止2009年底,除港澳台地区外,我国现有百米以下的高层建筑共212757幢,百米以上的超高层建筑共1699幢。建筑的空间结构模式和立面造型也发生了很大的变化,已突破原有中规中矩的传统建筑模式,向灵活性和先进性发展,设计的侧重点已由追求经济效益向营造舒适的生活环境转变,越来越多的建筑呈现出不规则的建筑形状,以求达到建筑与环境的和谐统一。这种建筑往往在火灾扑救面上存在一定的问题,首先是不规则的建筑形态使消防车难以近距离登高扑救,其次是由于不规则其扑救面长度难以满足规范要求。下面就某四星级酒店为例对火灾扑救面性能化设计进行研究探讨。

1 火灾扑救面的要求

《高层民用建筑设计防火规范》要求高层建筑的底边至少有一个长边或周边长度的1/4且不小于一个长边长度,不应布置高度大于5.00m,进深大于4.00m的裙房,且在此范围内必须设有直通室外的楼梯或直通楼梯间的出口,即供消防车举高作业的火灾扑救面。无论是建筑物底部留一长边或是四分之一周边长度,其目的使登高消防车能展开工作。在发生火灾时,消防车辆要迅速靠近起火建筑,消防人员要尽快达到着火层,一般是通过直通室外楼梯间或出入口进入起火层,开展对该层及其上下层的扑救作业。登高消防车功能试验证明,高度在5m,进深在4m的附属建筑,不会影响扑救作业。

2 工程概况

该酒店位于高新技术产业开发区,项目基地用地8734.0m2,总建筑面积为51433m2,建筑物高度为86.94m,地上24层,地下2层,其中地上1至5层及裙房为餐饮、娱乐等功能场所,地上6至26层为客房,地下1至2层为设备用房和汽车库,属一类高层建筑。酒店定位为四星级酒店。建筑内设计有消火栓系统,火灾自动报警系统,自动喷水灭火系统,防排烟系统等。该建筑的平面布置如图四,即在其东西两个长边布置了高度为18.68、进深分别为14.15和27.8的裙房,原火灾扑救面设计在其南北两个短边,而且是不连贯的,火灾扑救面不满足现行国家规范中至少有一个长边或周边长度的1/4且不小于一个长边长度的要求,所以采用了性能化设计的方法,力求建设设计和使用功能和谐统一。

3 该建筑采取的消防设计方案

宾馆是人员比较集中的地方,在这些人员中,多数是暂住的旅客,流动性很大。他们对建筑内的环境、安全疏散设施不熟悉,发生火灾时,由于烟雾迷漫,心情紧张,极易迷失方向,拥赛在通道上,造成秩序混乱,给疏散好施救工作带来很大困难,因此往往造成重大伤亡。所以疏散和扑救特重要。

该楼南面道路原设计未能达到消防扑救要求,为此拆除了有碍消防扑救的景观、绿化等,同时加固了消防车道和路面,拓宽了消防车道,并于主楼东面增加了通往城市主干道的消防出入口,以使消防车畅通无阻。

为保证火灾时的消防扑救,结合本建筑的实际,准备采取以下措施:

主楼南侧:距轴BE、BF轴间的走廊处,B7、B8轴的房间内,已经设有便于消防扑救的开启窗扇,火灾发生时能够进出楼内公共走道。根据消防云梯车落地点及云梯75度仰角,通过模拟,云梯车可以攀登至主楼6层以上。具体见图1。

主楼西侧:经现场勘查为主楼长边,根据消防云梯车的落地点及其高度与75度仰角,通过计算模拟,消防云梯可以顺利攀登至15层以上。通过加固消防车落地点、拓宽道路及拆除障碍物,以使达到15层以上扑救要求。具体见附图2.

主楼北侧:BE轴至BE/1轴六层以上逐层外墙增加可开启的窗户,窗户大小为:1.2×1.6米,向内开启扇,并于窗台处设置踏台,以便发生火灾时消防人员通过消防云梯车登入,进入公共区域和其他房间,或方便室内人员呼救。具体见附图3

综上所述,该建筑可从三处展开登高扑救:南、北两侧均可通达六层及以上各层,西侧可以到达十五层及以上楼层,加上其内部设置的自动报警、自动喷淋、警报系统、室内消火栓系统及防排烟系统,能够及时发现并扑灭初起火灾,并且经全球性专业酒店管理公司(洲际酒店管理公司)日后消防日常工作的细致管理,让整个建筑物始终处于安全、放心、健康的运行状态之中。具体见附图4。

4 消防演练情况

假定火灾是发生在被裙房包裹面积最大云梯车最难靠近的6层发生火灾,由单位保安人员第一时间报警并迅速组织客人疏散,实施火灾初期的扑救工作。消防中队接到火警后于5分钟之内赶到火灾现场实施扑救,迅速成立火灾现场指挥部,指挥消防车和相关单位人员进行灭火救援,发现有被困人员后,在大楼备北侧,53m登高平台车顺利升至6楼窗口营救被困人员并转移到安全地带。同时在大楼的南侧,32m登高车顺利升至裙房上部,营救疏散到裙房屋面的被困人员并转移至安全地带,最后由消防中队人员穿戴好个人防护装备,深入大楼内部,对客房进行仔细搜查,搜救受伤、昏迷的群众,也可利用救援绳、缓降器、软梯、气垫等救生器材装备救人,保护受灾单位的人员生命安全。

5 结论

通过对该酒店的火灾扑救面进行现场演练,有效地解决了该建筑存在的消防设计问题。在其他类似建筑中有较好的参考价值。

篇13

关键词:结构设计;建筑形体;规则性。

中图分类号: TU8文献标识码: A

引言

针对现今建筑物平立面的复杂程度,为了能快速的选取合理的结构形式,并准确的建立力学模型,我们就必要对建筑形体的规则性,有一个比较深的认识。本文以结构设计规范为依据并结合一定的工程经验,阐述建筑形体的规则性在结构设计中的重要性、并对规则性判别及针对不规则建筑采取的加强措施作了一些总结。

1.建筑形体规则性重要性:

《建筑抗震设计规范》规定“建筑设计应根据抗震概念设计的要求明确建筑形体的规则性”。建筑形体是指建筑平面形状和立面、竖向剖面的变化。规则建筑是指平面和立面简单,抗侧力体系的刚度和承载力上下变化连续、均匀,平面布置基本对称。即在平立面、竖向剖面或抗侧力体系上,没有明显的、实质的不连续或突变。故“规则性”是诸多因素的综合要求。

建筑物平面、立面和竖向剖面的规则性对抗震性能和经济合理性影响很大。

首先规则的建筑抗震性能比较好。震害统计表明,简单、对称的建筑在地震时较不容易破坏。对称的结构因传力路径清晰直接也容易估计其地震时反应,容易采取抗震构造措施和进行细部处理。

其次规则的建筑(尤其是规则的高层建筑)有良好的经济性。根据工程经验,较规则建筑物的周期比、位移比等结构的整体控制指标很容易满足规范要求。同时由于地震力在各榀抗侧力构件之间的分配比较均匀,从而使各结构构件的配筋大小适中,使成本控制在一个合理的范围内。相反不规则结构则会出现扭转效应明显、局部出现薄弱部位等情况,应根据规范对结构进行内力调整并采取有效的抗震构造措施进行加强处理。从而使得内力变大,计算配筋变大,局部抗震构造更加繁锁。从而使工程造价有较大幅度的增加。

综上所述,建筑形体的规则性对结构设计而言至关重要。

2.建筑形体规则性的判别:

建筑形体规则性的判别在《建筑抗震设计规范》和《高层建筑混凝土结构技术规程》中都作了一些定量的规定。而两本规范在具体条文上又有一定差异。本文对照两本规范相关条文,对规则性判别进行汇总,如下表:

《建筑抗震设计规范》 《高层建筑混凝土结构技术规程》

不规则性判断 平

凹凸不规则:

平面凹进的尺寸,大于相应投影方向的30% 1.平面简单、规则、对称、减少偏心

2L/m、l/Bmax、l/b进行限制

3不宜采用角部重叠的平面图形或细腰形平面图形

楼板局部不连续:

楼板的尺寸和平面刚度急剧变化。例如:有效楼板宽度小于该层楼板典型宽度的50%,或开洞面积大于该层楼面面积的30%,或较大的楼层错层(错层面积大于该层面积的30%) 有效楼板宽度不宜小于该层楼面宽度的50%;楼板开洞总面积不宜超过楼面面积的30%,在扣除凹入或开洞后,楼板在任一方向的最小净宽度不宜小于5米,且开洞后每一边的楼板净宽度不应小于2米。

应同时满足:

L2≥0.5L1a1+a2≥0.5L2

a1+a2≥5ma1≥2m,

a2≥2mA洞≤0.3A楼面

扭转不规则:

在规定水平力作用下,楼层的最大弹性水平位移(或层间位移),大于该楼层两端弹性水平位移(或层间位移)平均值的1.2倍 在考虑偶然偏心影响的地震作用下,楼层竖向构件的最大水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、混合结构高层建筑及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。

结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比,A级高度高层建筑不应大于0.9,B级高度高层建筑,混合结构高层建筑及本规程第10章所指的复杂高层建筑不应大于0.85。

则 侧向刚度不规则:

Ki<0.7Ki+1

Ki<0.8(Ki+1+ Ki+2+ Ki+3)/3

除顶层或出屋面小建筑外,局部收进的水平向尺寸大于相邻一下层的25%

框架结构:ri<0.7ri+1,ri<0.8(ri+1+ ri+2+ ri+3)/3

框-剪、剪力墙、筒体结构:

ri<0.9ri+1

当hi>1.5hi+1则ri<1.1ri+1

对底部嵌固层:则ri<1.5ri+1

当H1/H>0.2 时:B1/B

B1>1.1B,a>4m

竖向抗侧力构件不连续:

竖向抗侧力构件的内力由水平转换构件向下传递 结构竖向抗侧力构件宜上下连续贯通

楼层承载力突变:

Qi<0.8Qi+1

抗侧力结构的层间受剪承载力小于相邻上层的80% A级高度:层间受剪承载力不宜小于相邻上一层受剪承载力的80%,不应小于其相邻上一层受剪承载力的65%

B级高度:层间受剪承载力不应小于其相邻上一层受剪承载力的75%;

楼层质量沿高度宜均匀分布,楼层质量不宜大于相邻下部楼层质量的1.5倍。

通过上表可以看出,规则性判别主要从“扭转不规则、凹凸不规则、楼板局部不连续、侧向刚度不规则、竖向抗侧力构件不连续和楼层承载力突变”六种不规则类型作了一些定量的参考界限。相对于《建筑抗震设计规范》而言,《高层建筑混凝土结构技术规程》在具体规定上更加严格,个别条款更加细化。

根据不规则类型的数量及其不规则程度,又把不规则分为:不规则、特别不规则和严重不规则三个等级。

3.不规则性建筑加强措施:

建筑形体及其构件布置不规则时,应对地震作用计算和内力进行一定调整,并对薄弱部位采取有效的抗震构造措施。见下表:

《建筑抗震设计规范》 《高层建筑混凝土结构技术规程》

加强措施 平面不规则 扭转不规则:

位移比≤1.5(宜)

当最大位移远小于规范限值时,可适当放宽 A级高度:位移比≤1.5(应)B级高度:位移比≤1.4(应)

A级高度:Tt/T1≤0.9(应)B级高度:Tt/T1≤0.85(应)

凹凸不规则或楼板局部不连续:

采用符合楼板平面内实际刚度变化的计算模型,高烈度或不规则程度较大时,宜计入楼板局部变形的影响 当楼板平面比较狭长、有较大的凹入或开洞时,应在设计中考虑其对结构产生的不利影响(考虑楼板变形影响),对凹入或洞口的大小加以限制。

艹字形、井字形等外伸长度较大的建筑,当中央部分楼板有较大削弱时,应加强楼板以及连接部位墙体的构造措施,必要时还可在外伸段凹槽处设置连接梁或连接板。

楼板开大洞削弱后,宜采取以下措施:

加厚洞口附近楼板,提高楼板的配筋率,采用双层双向配筋;

洞口边缘设置边梁、暗梁;

在楼板洞口角部集中配置斜向钢筋。

平面不对称且凹凸不规则或局部不连续:

可根据实际情况分块计算位移比,对扭转较大的部位应采用局部的内力增大系数 抗震设计时,高层建筑宜调整平面形状和结构布置,避免设防震缝。体型复杂、平立面不规则的建筑,应根据不规则程度、地基基础条件和技术经济等因素的比较分析,确定是否设置防震缝。

竖向不规则 竖向抗侧力构件不连续:

水平转换构件的地震内力应根据烈度高低和水平转换构件的类型、受力情况、几何尺寸等,乘以1.25~2.0的增大系数 不宜采用同一楼层刚度和承载力变化同时不满足本规程第3.5.2条(侧向刚度不规则)和3.5.3条(楼层承载力突变)规定的高层建筑结构。

侧向刚度变化、承载力变化、竖向抗侧力构件连续性不符合本规程第3.5.2条(侧向刚度不规则)和3.5.3条(楼层承载力突变)、3.5.4条(竖向抗侧力构件不连续)要求的楼层,其对应于地震作用标准值的剪力应乘以1.25的增大系数。

结构顶层取消部分墙、柱形成空旷房间时,宜进行弹性或弹塑性时程分析补充计算并采取有效的构造措施。

措施:柱子箍筋全长加密配置,大跨度屋面构件要考虑竖向地震产生的不利影响。

侧向刚度不规则:

相邻层的侧向刚度比应依据其结构类型符合本规范相关章节的规定

楼层承载力突变:

薄弱层抗侧力结构的受剪承载力不应小于相邻上一楼层的65%

总而言之,建筑形体的规则性在抗震的概念设计中至关重要。对抗震性能和经济合理性影响很大。因此,进行设计时,应首先判别结构的规则性,并根据建筑物的不规则程度区别对待:对于不规则结构应按规范规定采取加强措施;特别不规则的建筑应进行专门研究和论证,采取特别的加强措施;而对于严重不规则的建筑不应采用。

参考文献

[1] 《多高层钢筋混凝土结构设计优化与合理构造》.李国胜.著

[2] 《建筑抗震设计规范疑问解答》.王亚勇.戴国莹.著

篇14

【关键词】不规则性;结构设计;高层建筑

前言

在工程中,由于会考虑各种不同的环境、条件等,导致建筑物不可能绝对的规则和对称。建筑物的不规则性一般表现在:平面凸凹的不规则、局部楼板的不连续、不规则以及建筑物自身在竖向刚度上的不连续性、不规则等。实际工程中必须比较准确地判断建筑结构的不规则位置,只有这样才不会影响到对建筑结构的建模、确定建筑结构的一系列布置方案、以及确定建筑物本身比较薄弱的地方,进而在一定程度上提高整个建筑结构的合理性、安全性以及经济性。不规则的建筑结构会引起结构在水平方向上的偏心侧力,而进一步产生一定的扭转变形,不利于结构的抗侧力,同时也会导致成本的较大增加。所以设计者需要尽可能的将建筑结构物设计为对称、规则的以便提高建筑物本身的一些结构性能。

1、高层建筑中不规则建筑的发展现状

随着我国科技技术水平的逐步提升,我国建筑行业也在不断的发展。随着城市的不断扩建,设计者们为了迎合城市建设的发展需求,他们已经逐步更新了自己以往建筑物必须要对称、规则的观念,他们正试着建造一些标新立异、新颖别致、独树一帜的建筑,如非对称、不规则的建筑结构物。随着人们的观念的转变,现如今大城市中出现了许许多多复杂体型和不规则的结构,这种趋势在某种程度上代表了我国建筑的发展方向。

虽然这些不对称、不规则的建筑结构给城市增添不少亮丽的风景,但是它们的设计与建造却给结构设计人员以及施工人员带来了严峻的考验。

2、建筑业中不规则的结构类型

结构类型可以大体的分为两类:(1)平面不规则结构类型,其包含的有扭转不

规则、凸凹不规则、楼板局部不连续等;(2)竖向不规则结构类型,其包含的有侧

向刚度不规则、竖向抗侧力构件不连续、楼层承载力突变、楼层间质量突变等。以下是常见判断两种不规则类型标准的具体介绍。

2. 1 平面不规则的类型

(1)扭转不规则:判断标准是每一楼层自身最大的弹性水平位移大于该楼层两端的弹性水平位移平均值的1.2倍,或者是最大的层间位移大该楼层两端层间位移平均值的1.2倍。(2)凹凸不规则:判断标准是建筑结构平面凹进一侧的尺寸大于其投影方向上总尺寸的30%。(3)楼板局部的不连续:判断的标准是楼板的尺寸以及平面刚度发生急剧的变化。

2.2 竖向不规则的类型

(1)侧向刚度不规则:判断的标准是该楼层的侧向刚度值大小小于与其相邻上一楼层的70%,或者小于该楼层以上相邻三个楼层侧向刚度平均值的80%,排除顶层不算,楼层局部收进的水平向尺寸大于其相邻下一层的25%。(2)竖向抗侧力构件不连续:判断标准是竖直方向上的抗侧力构件的内力通过水平转换构件而向下传递。(3)楼层承载力突变:判断标准是层间的抗侧力结构的受剪程度小于其上一层的80%。(4)楼层间质量突变:判断标准是楼层质量大于相邻下一楼层质量的1.5倍。

3、不规则高层建筑结构设计中应采取的措施

由相关技术人员的一系列研究表明:在地震中容易受到破坏的建筑结构往往是那些平面存在不规则性,并且建筑物的质量与刚度偏心以及抗扭转刚度太弱的结构。经过技术人员的进一步研究表明:扭转效应对建筑结构的破坏应该是特别严重的。所以在实际工程中需要对建筑结构的扭转效应加以限制,常用的限制方法可以归为如下:(1)尽可能地限制建筑结构的平面不规则布置,只有这样才可以在一定程度上避免产生过大的偏心,而导致建筑结构物产生比较大的扭转效应。(2)在一定范围内尽可能地提高建筑结构物的扭转刚度。结构的扭转效应可以由以扭转为主的第一自振周期Tc与平动为主的第一自振周期T1之比来大致的判定,当上述两种周期比较接近时,由于振动耦连的影响,建筑结构的扭转效应会明显增大。

减少建筑结构扭转效应具体的一些方法如下。

(1)减小建筑结构的相对偏心距。

相关研究表明建筑结构的扭转效应与相对偏心距在一定程度上是成线性关系的,如果想要改善建筑结构的扭转效应,以及进一步的缩小楼层的位移比,则可以通过调整建筑结构的平面布置,进而使得建筑结构的质心和刚心可以更加的接近。实践工程中减小建筑结构偏心距的常用方法有:① 调整建筑结构平面的不规则性布置应该是在初步计算分析后才进行,通过初步计算的结果找到建筑结构的质心、刚心,同时需要做的便是通过相关数据以及实践经验比较准确的判断建筑结构的刚度分布,最后在适当的增减距质心较远的抗侧力构件。

(2)调整建筑结构抗侧刚度和抗扭刚度比。

由相关研究表明:建筑结构的扭转效应与结构周期比的平方的关系基本上是线性的关系,所以在设计建筑物时,可以考虑适当的减小建筑结构的周期。在做剪力墙时,则需要在合理的范围内尽量的加长或者增厚周边剪力墙,特别需要重视的是那些离刚心最远处的剪力墙。加大结构抗扭刚度的一般做法是在建筑结构边上设拉梁,同时缩小建筑结构的扭转周期,还可以通过增加周边连梁的刚度来实现。

(3)提高周边抗扭构件抗剪力。

要保证建筑结构在强烈震动下依然安全,只靠调整结构布置是不够的。相关技术人员通过实验得到了如下的结论,即:当建筑结构处于非弹性时期时,对称的建筑结构受到双向水平地震作用便会随形态变化的而偏心。如果考虑建筑结构的抗震性能,则应该强化那些受抗扭效应制约构件的抗剪性能,以便使得建筑结构可以在强震作用下保持整体弹性状态。

(4)较小地震带来的破坏,设置防震缝。

在实际工程中经常会遇到平面形状比较复杂的建筑结构,由于受到条件的限制导致不能把平面结构布置成规则的结构,此时便可以通过设置一定的防震缝将结构分成比较简单的结构单元。在工程中适当的设置防震缝是十分有必要的,如:①需要设置抗震缝两侧的结构体系迥异或地震反应效应显著不同时时,抗震缝的宽度便需要考虑不利一侧的结构;② 当相邻建筑结构的基础沉降量较大时,可以设置兼做沉降缝的的抗震缝。

4、结语

实际工程中,建筑结构不规则性的判断会在一定程度上直接影响建筑结构的建模、建筑结构的一系列布置、薄弱楼层等,从而间接地影响整体建筑结构的布置是否经济、合理、安全。结构设计师在设计不规则的建筑物时,需要尽量地减小或者避免建筑结构中比较容易出现薄弱的部位,同时做到强化那些薄弱部位。现如今对于不规则高层建筑结构的分析还有很多问题需要解决,但是随着计算机科学的不断发展,会出现更多更好的方法来确定不规则建筑结构的计算模型,进而更加真实地模拟出实际工况。

参考文献:

[1]GB 50011-2010.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.