当前位置: 首页 精选范文 智能交通的关键技术范文

智能交通的关键技术精选(五篇)

发布时间:2024-01-29 17:18:16

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇智能交通的关键技术,期待它们能激发您的灵感。

篇1

【关键词】 3G通信 智能交通 控制系统

Abstract: The 3G mobile communication technologies in intelligent traffic control system command, using the rapidly developing 3G mobile communications network composed of 3G wireless LAN to transmit the traffic intersection point of the video signal and control information for intelligent traffic control system network to provide a new way .

Key words: 3G mobile communication; intelligent traffic; control system

一、引言

我国交通管理事业经过几年的发展,同以往相比,有了长足的进步。但因城市化交通持续发展和汽车拥有量的稳定快速增加,城市交通的发展已经超过了我国交通管理发展的速度。而由城市交通中交通违章(违法)行为给交通管理所带来的负面影响,往往是危害最大的一种。再加上我国各地城市交通发展情况不同,交通情况错综复杂,管理难度非常大。在我国大中型城市中交通路口众多,交通流量较大,违章事件频繁,在此情况下基于3G通信技术的智能交通指挥控制系统就能为控制交通违章行为的发生、智能化调节交通流量起到很大的作用。

二、系统的主要构成

基于3G通信技术的智能交通指挥系统主要由3G(TD-SCDMA或CDMA2000)数据通信链路,监控中心和多个监控远端组成。3G数据通信链路采用标准的TCP/IP协议,可直接运行在交通部门的内部无线局域网上。前端摄像机的视频信号利用网络视频服务器通过网络传输到分节点,在分节点可以直接传输上网,或者分节点有矩阵时,也可以把矩阵连接到DVR上,然后再传输上网。监控中心可以通过多级级联构成多级监控系统,系统可以根据现场情况和用户的需求配置不同的硬件设备。监控远端使用系统设备有远端监控主机、3G数据传输模块、告警采集器、温湿度传感器、画面分割器、摄像机、数字解码器、高速云台和可变镜头、话筒、扬声器等,完成监控中心所需的图像实时监控、现场交通信号智能控制和报警联动功能。监控中心使用系统设备有主控台、3G无线路由器、监视器阵列、视频切换矩阵、主交换机、视频服务器、电视墙等。具体可根据用户要求进行灵活配置。

利用发展迅速的3G网组成3G无线局域网来传输各交通路口信号点的视频和控制信息,为智能交通指挥系统组网提供了一条新路。网络管理用户可以对多个监控现场进行实时浏览监控。系统综合应用了智能图像处理与识别技术,智能控制技术、数字图像传输技术、数字图像压缩编解码技术和3G网络通信技术等,可实现交通监控现场的实时图像显示和网络传输、智能调整摄像机的位置、清晰度和亮度、实现对运动物体的跟踪与识别,对监控情况进行纪录及报警,实时智能调整控制区域内交通信号灯的切换等。

三、系统的主要关键技术

3.1 最佳交通流量预测算法

利用人工神经网络建立的预测模型有独特的优越性。人工神经网络利用输入数据和输出数据进行建模,是一种并行的计算模型,具有高速运算能力,有很好的非线性映射能力和很强的自学习、自适应能力及高度的灵活性。在各种形式的人工神经网络中,又以误差逆传播(BP)网络应用最为广泛,它已成为前向网络的核心部分,并体现了人工神经网络最精华的部分。目前,在人工神经网络的实际应用中, 绝大部分的神经网络模型都采用BP网络和它的变化形式。

高阶神经网络属于BP神经网络的一种,它与传统BP神经网络的不同在于构成高阶神经网络的神经元是智能神经元,即这种神经元具有“思考”的能力,它能根据自身外部网络的变化调整内部的转移函数,在内外双调的情况下,达到更好的学习效果。这样建立神经网络模型,可以应用并能够胜任于实时交通流预测。

3.2 TD-SCDMA3G移动通信技术

TD-SCDMA是目前世界上唯一采用智能天线的第三代移动通信系统。在系统中,由于采用了TDD模式,上、下行链路采用同一频率,在同一时刻上下行链路的空间物理特性是完全相同的,因此,只要在基站端依据上行数据进行空间参数的估底再根据这些估值对下行链路的数据进行数字赋形,就可以达到自适应波束赋形的目的,充分发挥智能天线的作用。

TD-SCDMA系统仅采用1.28Mb/s的码片速率,只需占用单一的 11Mb/s频带宽度,就可传送2Mb/s的数据业务而其他的3G FDD(频分双工)的方案,要传送2Mb/s的数据业务均需要2×5Mb/s的带宽即需两个对称的5Mb/s带宽分别作为上、下行频段,且上下行频段间需要有几十兆的频率间隔作为保护,在目前频谱资源十分紧张的情况下要找到符合要求的对称频段非常困难,而D-SCDMA系统可以“见缝插针”只要有满足一个载彼的频段(1.6Mb/s)就可使用,可以灵活有效地利用现有的频率资源。

3.3 数字图像压缩编解码技术

(1) 视频对象提取技术。MPEG-4实现基于内容交互的首要任务就是把视频/图像分割成不同对象或者把运动对象从背景中分离出来,然后针对不同对象采用相应编码方法,以实现高效压缩。因此视频对象提取即视频对象分割,是MPEG-4视频编码的关键技术,也是新一代视频编码的研究热点和难点。

在视频分割中基于数学形态理论的分水岭(watershed)算法被广泛使用,它又称水线算法,其基本过程是连续腐蚀二值图像,由图像简化、标记提取、决策、后处理四个阶段构成。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。

(2) VOP视频编码技术。视频对象平面(VOP,Video Object Plane)是视频对象(VO)在某一时刻的采样,VOP是MPEG-4视频编码的核心概念。MPEG-4在编码过程中针对不同VO采用不同的编码策略,即对前景VO的压缩编码尽可能保留细节和平滑;对背景VO则采用高压缩率的编码策略,甚至不予传输而在解码端由其他背景拼接而成。这种基于对象的视频编码不仅克服了第一代视频编码中高压缩率编码所产生的方块效应,而且使用户可与场景交互,从而既提高了压缩比,又实现了基于内容的交互,为视频编码提供了广阔的发展空间。

(3) 视频编码可分级性技术 。MPEG- 4通过视频对象层(VOL,Video Object Layer)数据结构来实现分级编码。MPEG-4提供了两种基本分级工具,即时域分级(Temporal Scalability)和空域分级(Spatial Scalability),此外还支持时域和空域的混合分级。每一种分级编码都至少有两层VOL,低层称为基本层,高层称为增强层。基本层提供了视频序列的基本信息,增强层提供了视频序列更高的分辨率和细节。

四、结束语

系统综合应用了智能图像处理与识别技术,最佳交通流量算法、智能控制技术、数字图像传输技术、数字图像压缩编解码技术和3G网络通信等技术。所构建的智能交通系统可实现及时准确地掌握所监视路口、路段周围的车辆、行人的流量、交通治安情况等,为指挥人员提供迅速直观的信息从而对交通事故和交通堵塞做出准确判断并及时响应。

参 考 文 献

[1] GB/T17975-2000信息技术. 运动图像及其伴音信息的通用编码

篇2

关键词:轨道交通;运动目标检测;智能视频监控

伴随当今轨道交通行业持续高速发展,传统类型的视频监控系统已经难以满足时下要求,亟需更加智能且高效的视频监控技术。所谓智能视频技术,实质为自动抽取及分析视频源当中的处于核心的关键技术。我们可将摄像机当作是人的双眼,而将智能视频设备及系统当作大脑。智能化的视频技术,实质为利用计算机所具有的对数据实施处理的功能,对视频画面当中的诸多数据实施快速而又准确的分析,在此过程中完成对用户无用信息的滤除,保留关键信息。

1 运动目标检测方法

(1)帧差法。此方法原理就是运用与图像序列相邻的二帧或三帧,将像素时间的差分作为检测的基础环节,通过运用所获取的阈值,在图像中,实现相应运动区域的提取。首先,对于处于相邻状态的帧图像,则将其素值减去,然后,则实施二值化差分。如若环境亮度所存有的变化不大,则与之对应的像素值也会存有较小变化,相比与预先设定的阈值,存在小于后者状况,则可将此处作为背景像素;若像素有改变,可将其标记为由于处于运动状态的物体所致,然后将其设置为前景像素,运用所标记像素,依据其区域范围,在图像当中,就运动目标位置给予确定。(2)光流法。对于光流法的核心任务而言,为对光流场开展更为有效的计算,依据图像所存有序列,凭借时空梯度,详细估算运动场,然后则对运动场变化进行分析,检测及分割运动目标与场景。光流法无需对场景信息事先知晓,便可对运动对象实施检测,并对运动背景情况及时处理,但却由于遮挡、阴影、多光源及噪声多等因素,而严重影响光流场分布的计算结果。

2 目标跟踪算法

2.1 基于区域的跟踪

所谓基于区域的跟踪,实质为利用图像分割或人为选定,获取相应目标模板,而后在序列图像当中,对候选模板与目标模板之间的相似程度进行计算,用相关算法,确定图像目标,完成目标跟踪任务。采用模板匹配,开展与之相适应的跟踪,直接匹配运算图像所持有的外部特征,乃是最为基本的着眼点,其与最初所选择的区域而言,在匹配度方面,则较高,即为目标区域。灰度图像,则可选用以特征与纹理为基础的相关;彩色特性,则可选用以颜色为基础的相关。当前,比较常用的区域跟踪算法,有差方和法等,此些算法可以通过与卡尔曼滤波或线性预测相结合,提升跟踪精度。

2.2 基于特征的跟踪

此种跟踪方法实质上,加入约束来解决,比如,假定处于相邻状态的帧图像特征点,具有不大的变化,并将其作为相应约束条件,构建特征点关系。此算法有两过程,分别为特征点的匹配和提取,通常情况下,可用相关算法。对于采用目标整体开展运算而言,其与基于区域的跟踪算法存有较大不同,其仅采用目标某些局部性特征,或者是某个单独特征。此种算法所具有的优点为,当目标出现被遮挡状况时,只需其中的些许特征有效,便可实施跟踪。运用SUSAN算子,则可从中获取目标角点的信息,而后则根据图像方面所存有的差异,实施匹配,以此宣召特征对应关系。

2.3 基于模型的跟踪

上述两种方法均为基于二维平面的跟踪,因均对运动目标完整信息均未用到,则对其实施精确描述,同样无法实现。如若对目标相应三维模型予以构建,以先验信息的方式,采用三维模型,实现跟踪目标的目的,则会实现跟踪鲁棒性大幅提升。基于模型的跟踪方法,其理念为,采用先验知识,依序列,就三维模型参数予以确定,由于目标为瞬时运动,因此,能够对多项参数予以获取。由VISATRAM可知,可通过简化三维模型的方式,着手于长方体模型,实施车辆的相应跟踪,基于运动状态下,获取车辆信息,如尺寸及速度等。跟踪人体时,则有三方式,即三维模型、二维模型及线图模型,而在现实运用当中,采用三维模型的较多。此方法能够对目标的三维运动轨迹进行精确分析,即便处于运动状态的目标在姿态方面存有变化,或者是存有部分遮挡状况,也可实施有效跟踪。缺点为运动分析的精度由几何模型精度所决定,且在跟踪算法方面,需花费大量的运算时间。所以,基于模型的跟踪,对于特定类型或少量的目标跟踪较为适宜,比如某种车型的跟踪、脸部跟踪及人体跟踪等。

3 轨道交通智能视频监控技术应用

(1)视频移动侦测。所谓视频移动侦测实质就是在复杂的背景环境中,对单个或者多个目标的相应运动特征、运动方向及运动情况实施精确化的识别及侦测。所具有的相应安全规则包含有多种类型,如运动方向异常报警、尾随检测及报警等。报警能够对多事项及多区域实施监控报警,如乘客非法进入隧道、非授权工作人员进入其他工作区及非地铁工作人员进入工作区等;对于绊线报警而言,其在高架线路区域及地面线路区域能够实现越界报警,另外,还可对于那些非工作人员侵入地铁限界,及时予以监控;对于尾随检测而言,其对于犯罪嫌疑分子对于某些特定目标具体的尾随行为开展综合化分析,对监控管理人员进行提示,对所发现的异常状况进行提示。其中,最为适用于地铁环境的是报警及绊线报警,能够为地铁特定限界内所存有的安全提供保证,还能够将颜色改变及环境光线变化等予以排除,对特定目标进行有效识别,避免出现误判报警状况。此外,绊线报警对于发现乘客不慎从站台摔入轨道状况能够及时报警,能够做到迅速制动列车,更好的抢救乘客。(2)智能录像控制。根据公安录像、灾害录像及运营日常录像之间所存有的差异性,需要依据不同需要,对录像规则实施分别定制,达到录像空间有效节省的目的。针对无人值守机房而言,则需与门禁系统及画面变化相结合,开展灾害发现时或有人时的触发录像操作;当发生灾害时,则可对重点灾害区域,实施触发录像操作;在白天运营期间内,进行常规形式的录像,夜间停运后,则进行触发录像。(3)运动目标跟踪。即对目标进行有效表达,并在视频中,就与目标模板作为类似的候选目标区相应位置进行寻找的过程。在轨道交通智能视频分析过程中,运动目标跟踪要求,对跟踪算法进行锁定,这对环境与目标自身变化,在适应性方面较强,另外,还能够对目标实际变形当中对于跟踪所造成的实质性影响进行锁定。在轨道交通监控过程中,促使摄像机可对物体进行自动跟踪,如若物体超出此摄像机所具有的最大监控范围时,则会对物体所在区域的设置的摄像机予以自动通知,使其继续实施追踪。依据运动目标的相似性度量及表达,可将运动目标跟踪算法进行分类划分,即基于模型的跟踪、基于特征的跟踪、基于区域的跟踪及基于主动轮廓的跟踪。运用相应搜索算法,估计假设未来时刻目标位置状态,能够实现目标搜索范围的缩小。其中最为常用的方法便是对运动体下一帧可能出现位置实施预测,并在相关区域内,就最优点进行寻找。

4 结束语

智能视频监控是当前一种新型的智能视频分析技术,通过改造轨道交通监控系统,促进对内部异常行为进行智能识别,自动发现,及时报警,减轻人员压力,促进了检测准确度的提升。

参考文献

篇3

 

我国智能交通科技创新发展历程

 

2000年,我国成立了“全国智能运输系统协调指导小组及办公室”,并开展了智能交通系统发展战略和标准规范的相关研究,形成了《中国智能运输系统体系框架》、《中国智能交通系统标准体系》等重要成果,明确了我国智能交通系统建设发展的总体技术方向。

 

“十五”期间,针对我国智能交通系统发展的迫切需求,国家科技计划对智能交通系统共性关键技术研究进行了立项支持,在北京、上海、广州等全国十二个城市进行了ITS示范工程建设。通过ITS规戈叭车载信息装置、交通信息采集、专用短程通信、汽车安全辅助、交通共用信息平台等方面的关键技术攻关、关键产品的开发和示范应用,促进了以智能化交通管理为主的我国城市智能交通体系建设,为智能交通系统发展奠定了基础。

 

“十一五”期间,面向综合交通运输一体化发展趋势和我国智能交通发展中的重大技术问题,以“提高交通运输的效率和安全”为指导思想,国家科技计划对综合交通运输和服务的网络优化与配置、智能化交通控制、综合交通信息采集、处理及协同服务、交通安全等重点技术方向进行了持续立项研究支持,攻克了城市交通控制、交通诱导、电子收费、新一代空中交通管理等智能交通系统关键技术,形成了大批具有自主知识产权的智能交通科技创新成果。

 

面向2008北京奥运会、2010上海世博会、2010广州亚运会等重大活动的交通需求,“十一五”期间启动实施了“国家综合智能交通技术集成应用示范”科技支撑计划项目,支持建设了“北京奥运智能交通集成系统”、“上海世博智能交通技术综合集成系统”、“广州亚运智能交通综合信息平台系统”、“远洋船舶及战略物资运输在线监控系统”等,为大型国际活动提供了智能化交通管理和出行服务技术支撑,取得了显著的成果,智能交通科技在一系列重大国际活动的交通保障中发挥了重要的作用。

 

针对严峻的道路交通安全形势,2008年,科技部、公安部和交通部联合开展了国家道路交通安全行动计划,国家科技计划部署了“重特大道路交通事故综合预防、处置集成技术开发与示范应用”支撑计划项目,跨部委联合、多单位协同攻关、研究与示范紧密结合,对公路安全保障、高速公路安全控制、营运车辆运行安全、全民交通行为安全提升、路网安全态势监测、交通安全执法等交通安全重点关键技术进行了攻关研究和示范应用,为提高我国道路交通安全水平产生了深远的影响。

 

我国在推进智能化交通管理技术发展的同时,也十分重视推动智能化交通服务技术的发展,对事关民生的公共交通、公众便捷出行、交通安全等技术开展了研究和应用。过去的十年中,公共交通管理运营智能化、快速公交、公交信号优先、出租车智能化运营、交通信息智能化服务等面向民生的智能交通技术得到大力发展和广泛应用,方便了公众交通出行。国家科技计划支持的“国家高速公路联网不停车收费和服务系统”,建设了京津冀和长三角区域国家高速公路联网不停车收费示范工程,通过科技攻关和示范工程形成了比较完整的技术体系和标准规范体系,取得了良好的实施效果。成为我国第一个有统一标准、在全国范围大面积应用并实现产业化的智能交通项目。

 

进入“十二五”,我国智能交通科技创新围绕综合交通运输系统效能与服务提升、智能化交通管控、车路协同与安全三条主线,在“863”计划、科技支撑计划等国家科技项目中,相继部署了“大城市区域交通协同联动控制关键技术”、“智能车路协同关键技术研究”、“交通状态感知与交互处理关键技术”、“综合交通枢纽智能管控关键技术”、“环境友好型智能交通控制技术”、“多模式地面公交网络高效协同控制大城市交通主动防控关键技术及示范”、“城市道路交通智能联网联控技术集成及示范”等一系列项目,对我国智能交通系统建设发展中的关键技术进行研究,创新成果将对我国智能交通系统建设发展提供强有力的技术支撑。

 

我国智能交通科技创新成就

 

十几年来,我国智能交通科技创新取得了丰硕的成果,突破了大批核心关键技术,组织实施了多项具有重大影响的智能交通系统示范工程建设。科技引领和推动我国智能交通系统的建设和发展后来居上,成为世界智能交通系统发展格局中的重要构成,发展成就为世界瞩目,部分自主创新科技成果和应用跻身世界先进水平。在我国智能交通系统建设和发展的实践中,国家科技计划的实施,结合实际应用需求,在城市交通运行智能化监测、道路交通信息采集处理、重大活动交通运行组织保障、大容量快速公交、区域联网不停车收费等技术领域形成了许多具有国际先进水平的智能交通科技创新成果。

 

(1)交通信息化水平显著提升,交通状态综合检测、网络化电子收费等核心关键技术取得突破并广泛应用。建成了全国机动车和驾驶员管理信息系统、全国铁路联网售票系统;综合交通信息采集、处理及协同服务技术取得突破;交通综合监测技术与设备广泛应用,基于移动终端的状态获取和集成应用技术达到国际先进水平;网络化电子收费(ETC)技术实现了跨越式发展,已在全国26个省市推广应用。

 

(2)城市智能交通技术综合集成与应用总体达到国际先进水平。结合重大应用需求,攻克了大批关键技术,建设了示范工程,形成一批行业技术规范和国家标准,对重大国际活动交通保障作用突出,推动我国智能交通技术应用水平取得显著提升。北京奥运会、上海世博会和广州亚运会交通保障对智能交通技术进行了大范围集成应用;科技支撑全国城市“畅通工程建设”;公交智能化、BRT形成了成套技术装备;公交一卡通实现了城市间联网通用。

 

⑶新一代空中交通管理技术取得重大技术突破,建立了我国新一代空中交通管理系统核心技术框架。突破了高精度航空导航、协同式航空综合监视、空管运行控制和民航空管信息服务平台等关键技术,核心装备和关键系统实现自主研制,达到国际同期先进水平。中国民航新一代空中交通服务平台已经在空管、航空公司等部门获得了成功应用,在提升空域利用、减少延误等方面成效明显,为我国从民航大国向民航强国迈进奠定了技术基础。

 

(4)智能汽车技术取得重要突破,部分成果达到国际先进水平。无人驾驶智能汽车实现了实际道路运行测试,达到国际先进水平。汽车驾驶辅助技术领域赶上了国际研发进程,驾驶人行为监控预警技术研究跻身国际先进行列。

 

(5)智能交通支撑道路交通安全水平提升。人因安全研究显著提升了交通安全执法科技能力和监管水平,安全执法与安全保障技术及应用,提高了道路交通安全总体水平。攻克了一批交通基础设施安全相关的关键技术,形成了适合我国公路交通特点的基础设施安全技术体系。建成了以交通事故快速救援为核心的一体化交通应急保障系统,为交通应急指挥和管理能力提升提供了核心技术支撑。

 

(6)科技创新推动我国智能交通产业发展初具规模。智能交通领域项目建设主要技术和设备多数为我国企业自主创新产品。城市智能交通系统建设市场逐年提升,2013年度主要项目市场规模超过200亿元。高速公路收费、通信、监控系统以及公路交通信息化和智能化项目市场规模近百亿元。智能交通领域的上市企业近10家。

 

目前,我国智能交通科技支撑体系基本建立,智能交通标准体系不断完善,智能交通已经成为我国交通运输现代化发展的重要构成。自主创新、产学研结合、智能交通科技创新培育和推动了我国智能交通产业的形成和发展,智能交通产业已成为我国高新技术产业的重要内容和新的经济増长点。智能交通产业的发展,带动了信息、通信、传感等高技术领域新技术成果的应用,促进了信息服务、现代物流等现代服务业的提升和发展。

 

智能交通科技创新发展趋势

 

适应我国社会经济发展的要求,顺应国际高新技术发展趋势,智能交通科技创新发展面临新的挑战和要求,也呈现出新的发展趋势。

 

日益严重的城市交通拥堵、居高不下的道路交通安全事故、通待提升的综合交通服务水平,是智能交通科技创新发展始终面对的挑战。我国社会城镇化进程的加速和智慧城市建设,要求我们必须谨慎思考未来城市交通模式,构建综合交通体系,倡导绿色出行理念。

 

未来我国智能交通的科技创新发展将重点围绕以下方面:

 

综合交通运输协同与效能提升;以服务为导向,注重ITS的公众服务和综合应用服务;不断采用新技术提高交通管理和服务的智能化水平;重视道路交通安全保障和安全水平的提升;关注交通环境改善和交通的可持续发展;车路协同系统受到普遍关注。具体技术方面,新技术环境下交通信息精确感知与动态交互、交通需求辨识与交通态势分析、动态交通仿真与智能化决策支持、交通运行智能化控制与节能减排、人车路协同主动安全与智能驾驶、综合交通系统网络优化与协同服务、公路智能运输与综合服务、大型综合枢纽协同运营与高效服务、智能化综合交通信息服务等都将成为创新发展的重要方向。

篇4

关键词:智能交通系统(ITS) 对策研究 交通信息化

中图分类号:C35 文献标识码: A

一、什么是智能交通系统(ITS)

智能交通系统(ITS)的英文全称是Intelligent Transportation System,是在比较成熟的交通基础设施之上,将先进的信息技术、数据通信传输技术、电子传感技术及计算机技术合成运用而建立的综合交通运输管理系统。最初由美国在20世纪90年代提出并得到迅速发展,也是我国未来交通系统的发展方向。智能交通系统(ITS)可以提高现行交通系统的有效性和可控性,能有效减少事故、降低污染物的排放,从而建立一个高效、便捷、环保的综合智能交通体系。

二、我国智能交通发展的现状

我国从上世纪90年代开始重视并逐步开展智能交通系统(ITS)的研究,随着信息技术和计算机控制技术的的快速发展,我国加快了对智能交通关键技术的研究步伐。科技部从96年开始组织了一系列智能交通技术国际交流和合作,从而促进国内智能交通技术的研究和开发。

目前,中国的智能交通系统建设还处于初级阶段,在智能交通的规划上面应优先实施投资少,收益高的项目,比如:城市绿色交通通道、公共汽车有线通道(BRT)、地铁和公共汽车的智慧卡收费和收费数据库互联、城市交通监控与管理等。

三、目前我国智能交通存在的主要问题

(一)、我国产业链、技术创新、研发严重脱轨

以前我国智能交通研发没有形成产业链,由国家资助研究的智能交通领域项目没有产业化,更不要谈应用了。而西方发达国家却早已形成了智能交通系统相关产业链,并规模化生产。目前,我国智能交通企业群体虽然数量众多,多达2000多家,但只是局限于系统集成,而且技术含量不高。在技术创新、规模、品牌和未来主导方向等方面的企业相对缺乏。这是“十二五”期间国家重点扶持和亟待解决的问题。

(二)、智能车路协同技术和智能车载系统的研究才刚刚起步

目前国内智能车载系统还处在初期发展阶段,主要从国外引进应用系统。智能车路协同技术的研究也是刚刚开始,对环境的感知技术,尤其是在高速状态下对远距离环境的感知和传感器在网络化条件下对环境信息的感知尚缺乏有效手段。我国在基于多传感器集成复杂驾驶环境感知技术、以安全和舒适度为目标的具有增强“感官”性能的辅助安全驾驶技术、综合性车载信息服务平台技术、以及基于网络的三维全景导航技术等方面与国外同行还存在很大的差距。

(三)、智能化交通控制技术基本上依赖进口

目前国内城市交通控制系统产品几乎完全从国外进口,典型产品包括SCOOT、SCATS以及RHODES系统。经过实际应用这些系统并不适合中国特有的交通模式。特别是我国大城市交通网络极为复杂、车多人多,需要符合本地实际需要的智能化交通控制技术体系。只有建立起符合中国国情的智能化交通体系,才能真正有效缓解城市交通拥堵,改善交通环境。

四、中国智能交通发展战略研究

(一)、大力培养和引进智能交通技术人员

目前,我国智能交通技术人才缺编严重,亟需大量相关技术人才。能否建立起相关人才体系,是保证我国智能交通建设发展壮大的关键。因此,我们要以相关高校及科研单位为依托,及时向国外同行开展技术交流活动,通过开展相关重点科目的研究,为我国智能交通系统培养高质量的智能交通专业人才。

(二)、积极推动智能交通技术产业化

要想更好的发展一项技术,重要的途径就是将其产业化,智能交通技术的发展也不外乎如此。我国要逐步建立相关新技术推广转化机制和专利保护机制,建立便于智能交通科研成果转化平台,使其能够尽快转化为经济和社会效益。要尽快把目前已经成熟的、具有强大市场潜力的智能交通新技术加快推广应用,化技术为成果得以实际应用。

(三)、针对智能交通成立相关技术管理机构,建立健全行业标准规范,有效整合行业资源

目前,我国智能交通技术的研究开发还没有全国统一的领导机构,而国外却早已成立。如日本的VERTISITS、美国的 America及欧洲的ERTICO组织,负责统一制定本国智能交通的发展战略及行业技术标准。通过相关机构,加强智能交通发展上的宏观调控,整合优势资源,减少局部冲突和资金浪费。我国综合运输体制建设已逐见成效,但相关政府管理智能还各自为政,各种运输方式、各地政府管理智能还不够明确,在某些方面还存在土政策、图标准。这些因素非常不利于智能交通系统的发展。因此我国要尽快建立国家级智能交通系统管理机构,领导推进全国智能交通系统的协调发展。

综上所述,随着我国工业化与城市化进程的快速发展,我国路网结构日趋强大完善。智能交通技术的实施给我国日益严重的交通压力带来了希望。智能交通技术的应用将进一步增强道路安全、提高运行效率同时降低交通给环境带来的负面影响。智能交通技术的蓬勃发展也将促进相关行业进行产业升级,带动相关产业发展,优化国家产业布局,促进经济和社会发展。

参考文献:

[1]. 潘 琪,智能交通;促进城市交通可持续发展的最佳途径-杨兆升教授访谈录[J].综合运输,2010(7):85-89.

[2] 严新平,吴超仲,中国智能运输系统发展现状与趋势[J].交通企业管理,2001(11):57-59.

[3] 陈超,吕植勇,付珊珊,彭琪.国内外车路协同发展现状综述[J].交通信息与安全,2011,1(29);102-105.

[4] 李清泉,熊伟,李宇光.智能道路系统的体系框架及关键技术研究[J].交通运输系统工程与信息,2008,(1):40-48.

篇5

我国城市飞速发展,经济也飞速发展。目前,基本家家有车,但是也面临着出行路上面临着交通拥堵的问题。由此可见,物联网与智能交通相结合将会成为以后智能发展的趋势。这样看来车辆通信网络领域的发展有着非常广泛的前景。本文主要对物联网技术的优势与在智能交通系统中的应用进行讨论,旨在进一步提高城市与人民的生活水平。

【关键词】物联网 智能交通 车辆通信网络

1 物联网技术的智能化优势

随着我国现代化,城市化进程越来越快的发展,面临的城市化所出现的问题也随之而来,而城市交通问题是现代化城市转变的一重大问题。而物联网技术的广泛应用,是加快城市现代化的推进器,是城市的现代化,智能化的全面建设的重要组成部分!现代城市智能化也是运用在城市的方方面面。物联网技术的智能交通系统运用在车辆通信网络中,是将多种科学技术,多种专业柔合起来,进行的交通系统车辆通信网络的升级,当然物联网技术的智能交通系统运用到车辆通信网络也是必然结果,随着智能交通系统的发展,物联网技术的智能交通系统运用于车辆通信网络已经成为城市智能系统的关键环节之一!

交通管理系统的现代化,智能化,能使得生活的方方面面从单一的,封闭式的机械,信息方式转变成链条式,从优处理问题,能以最小的代价做出最优的处理,最适合人类生活方式的处理结果。告别以往单一的信息环境,形成新一代的信息处理技术,具有知识高度密集,成长潜力很大,带动力强的特点,能明显提高人们的生活质量和生活水平,促进人们生活方式的转变,是推进城市现代化建设的主力军!因此物联网技术智能交通系统的结合,对交通环境也会有很大的提升!物联网技术运用于智能交通系统中的车辆通信网络更是大大提高了通信的实时性,广泛性,智能化和快速性!使车辆通信网络更加大范围的为车辆和车主服务!

2 物联网技术的智能交通系统的实用性

我国城市化进程不断加快,市民日常生活的中的家庭车辆也是不断增多,因此交通堵塞,交通事故处理,交通通行问题责成了交通部门的一重大问题,不过有了智能交通系统的通信网络就能还原对环境场景还原,进行建模和仿真处理,进行分辨每条路段的车辆通行状况,交通事故的发生来进行交通管理,和通行路段的最佳路线,解决日常交通通行堵塞问题,和行车最车路线,优化交通管理系统,根据实际情况,进行分化管理,形成一个隐形的、巨大的交通网,笼罩在整个城市,乃至全国的一个交通网,为车辆通行带来巨大的方便,使通行更加顺畅,也节省了大量人力,物力,为人们工作和生活带来质的提高,智能交通系统是将信息技术,数据通信技术,传感器技术计算机技术以及电子控制技术等多种科学技术运用于交通管理系统。智能交通系统还包括:先进交通信息服务系统、先进的交通管理系统、紧急救援系统、电子收费系统、车辆控制系统、公共交通系统等多种先进车辆通信网络而车辆通信网络系统的不断升级,会使得未来智能交通系统将会不断完。

3 智能交通系统中的车辆通信网络

在中国,上世纪八十年代就开始对城市交通管理开始入手,运用高科技手段来发现城市交通系统,至今已经进行了很多次交通系统的升级,而现今的智能交通系统中的通信网络,则是在本世纪10年才刚刚开始批准进行道路宽带通信的关键技术的研究。是将先进的科学技术在交通运输,服务控制和车辆制造的有效的,合理的运用,从而形成了一种提高效率,保障安全,节约资源的综合交通系统的车辆通信网络。车辆通信网络就是在汽车上装载的移动通信设备,为行驶中的车辆提供一种高速率的无线接入方式,构建成一个以车辆为载体的巨大的无线物联网,形成车辆内部的车辆系统部件、车辆与车辆之间、车辆与路边基站之间的通信网络。车辆通信网络对于高速公路领域有着较大的针对性,能在恶劣的气候复杂的地理环境中进行移动无线监控,而车辆的行驶记录也能传播到车辆通信管理系统中,对于不合理,不合法的行驶过程给予提示,万一出现事故也能通过GPS定位传送到警方,以最快的速度解决交通事故!加强了智能交通系统管理的实时性,减少交通事故中人员伤亡率和公共设施的损坏率。而且车辆通信网络的出现不仅仅能减少交通事故的发生,还能减少对环境污染的尾气排放问题,能通过车辆通信网络提高交通运输效率,缓解交通阻塞,减少交通事故,提高路网通过的速度,降低能源消耗,减少尾气排放,以此减轻车辆对环境的污染!车辆通信网络在智能交通系统和交通管理系统中是不可缺失的一项科学技术。

4 总结

车辆通信网络作为智能交通领域的一个新兴的研究方向,能够把出行与城市建设紧密相连,形成了以车,基站,交通系统,城市建设的一个相辅相成的一个无形大网中,在提高行车的安全,减少交通事故的发生和提升驾驶效率有重要的应用价值。因此智能交通系统与车辆通信网络相结合,是未来交通网的发展趋势,更有助于城市现代化的建设与发展,有利于改善不合理的交通环境,方便广大群众的出行方式,使得更加的便捷舒适。物联网技术的智能交通系统的车辆通信网络将会不断成长,不断完善,是未来交通系统的发展趋势,即保证了车辆通行的问题和减少交通事故的发生,也同时减少尾气排放的环境问题,应该广范围推行,适应城市现代化的发展!为我国生活水平提高和舒适环境的便捷做出了贡献。

参考文献

[1]李蕾.物联网技术在智能交通系统的应用研究[J].太原城市职业技术学院学报,2012(02):152-153.

[2]夏文龙.车联网移动云通信网络系统的设计与关键技术研究[D].广州:广东工业大学,2014.