发布时间:2024-01-07 16:28:23
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇化学工程与工艺的理解,期待它们能激发您的灵感。
[关键词]荆芥; 一体化; 化学成分; 抗炎
[Abstract]The GC-MS method was adopted to determine the contents of β-myrcene, limonene, menthone, menthofuran, pulegone, β-caryophyllene, 1-octen-3-one and 3-octanone in volatile in Schizonepetae Herba processed by traditional processing and integration processing methods. The efficacies of Schizonepetae Herba with different processing methods were detected based on the inhibition of ear swelling induced by dimethylbenzene in mice. The rationality of the integration processing was expounded based on the comparison of chemical constituents and their pharmacological effects. The results showed that the contents of the eight chemical components in the products processed with the integrated processing method were higher than those processed with the other method. And both of the processing methods could reduce the degree of swelling and the content of TNF-α/IL-1β/IL-6 in mice serum. However, the anti-inflammatory efficacy of the products processed with the integration processing method was superior to that processed with the other method. Compared with the traditional processing method, the integration processing method ensures the quality of decoction pieces, with lower time and labor costs and higher efficiency.
[Key words]Schizonepetae Herba; integration; chemical component; anti-inflammatory
doi:10.4268/cjcmm20161117
荆芥是唇形科植物荆芥Schizonepeta tenuifolia Briq.的干燥地上部分,又名假苏,始载于《神农本草经》[1],为临床常用中药,性温、味辛,以全草入药,具有解表散风、透疹、消疮之功效,主治风寒感冒、咽喉肿痛及多种皮肤病[2-3]。现代药理研究表明荆芥具有抗病毒、解热、抗菌、抗过敏、镇痛、降温等作用[4-7],在解表药中其地位独特而重要[8-9]。挥发油类成分是其抗炎的主要物质基础之一,沸点较低,容易挥发散失,而且对日光及温度较敏感,易于分解变质[10]。2015年版药典中规定荆芥的产地加工方法主要是除杂后干燥成药材,需制成饮片时,将荆芥药材除去杂质后喷淋清水,洗净润透,于50 ℃烘1 h,再经切段干燥即得。综合其加工过程,药材加工成饮片时需水处理及重复干燥,会造成挥发油及其他水溶性成分的损失,且分段加工干燥时间长,效率低下,雨天易霉烂变质、容易被鼠、虫、灰尘等污染,药材含水量、质量难以稳定[11]。为避免分段加工造成的有效成分的流失、降低药材饮片加工的时间及人工成本,本实验室前期探索了荆芥药材、饮片一体化加工工艺,现拟通过比较传统加工饮片与一体化加工饮片有效成分含量与功效的异同,探讨荆芥药材、饮片一体化工艺的可行性与合理性。
1 材料
薄荷酮、胡薄荷酮对照品(中国食品药品检定研究院,批号分别为 111705-201205,111706-201205); 1-辛烯-3-酮、d-柠檬烯、β-石竹烯对照品均购自Tokyo Chemical Industrial公司(日本);β-香叶烯、薄荷呋喃、3-辛酮对照品均购自Sigma-Aldrich公司(奥地利),对照品纯度均大于98%;萘(内标,国药集团化学试剂有限公司,分析纯);正戊烷(内标,国药集团化学试剂有限公司,GC级);乙酸乙酯为色谱纯;阿司匹林购自南京白敬宇制药有限责任公司(批号140601);二甲苯(批号20110410,江苏永华精细化学品有限公司);羧甲基纤维素钠(CMC-Na,批号F20101222,国药集团化学试剂有限公司);小鼠白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)、Elisa试剂盒(南京森贝伽生物科技有限公司,批号分别为SBJ-R0024,SBJ-M0044,SBJ-M0010)。
荆芥于2014年10月采自河北安国,经南京中医药大学吴⒛辖淌诩定为唇形科植物荆芥S.tenuifolia的地上部分。
Agilent 6890N-5975B气相色谱-质谱联用仪、Agilent ChemStation化学工作站软件(美国 Agilent公司);B211D 电子天平(1/10万,赛多利斯科学仪器有限公司)。
ICR小鼠,SPF级,雄性,体重(20±2) g。由浙江省实验动物中心提供,合格证号SCXK(浙)2013-0016。
2 方法
2.1 荆芥挥发油含量及其所含成分的定量测定[12]
2.1.1 GC-MS条件 色谱柱: HP-5MS毛细管柱(30 m×0.25 mm,0.25 μm);进样口温度200 ℃;载气氦气,载气流速1.0 mL・min-1;分流比20∶1;程序升温:初始温度为50 ℃,以10 ℃・min-1升温至90 ℃,保持6 min,再以8 ℃・min-1升温至150 ℃,保持2 min;进样量1 μL;电轰击电离源(EI);电子能量70 eV;四级杆度150 ℃;离子源温度230 ℃;接口温度280 ℃;扫描范围m/z40~400。GC-MS图见图1。
2.1.2 样品制备 一体化加工方法:鲜荆芥除杂后50 ℃干燥5 h,切段(1 cm),40 ℃干燥3 h干燥成饮片。传统加工方法:除去杂质,晒干,制得药材。取药材喷淋清水,洗净,润透,于50 ℃烘1 h,切段(1 cm),40 ℃干燥3 h得饮片。挥发油的提取:取荆芥饮片适量,照《中国药典》2015年版四部 “挥发油提取法”甲法提取挥发油,计算得率。提取的挥发油加入适量无水Na2SO4静置保存。
2.1.3 内标溶液的制备 取萘和正癸烷适量,置100 mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得(每1 mL含萘1.73 mg,正癸烷0.29 mg)。
2.1.4 供试品溶液的制备 取加入适量无水Na2SO4静置1 h后的荆芥挥发油约50 mg,精密称定,置10 mL量瓶中,加乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1 mL置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度。
2.1.5 对照品溶液的制备 精密称取对照品3-辛酮12.47 mg、β-香叶烯10.91 mg、薄荷酮160.35 mg、1-辛烯-3-酮13.64 mg、D-柠檬烯21.18 mg、薄荷呋喃14.07 mg、胡薄荷酮270.42 mg、β-石竹烯12.95 mg,分别置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度,摇匀,即得各待测化合物的对照品溶液。精密量取3-辛酮溶液0.5 mL、β-香叶烯0.3 mL、薄荷酮2 mL、1-辛烯-3-酮0.5 mL、D-柠檬烯1 mL、薄荷呋喃1 mL、胡薄荷酮2 mL、β-石竹烯1 mL置同一10 mL量瓶中,加乙酸乙酯稀释至刻度,摇匀,即得对照品混合溶液。荆芥中8个化合物MS监测数据见表1。
2.1.6 线性关系的考察 分别精密量取对照品混合溶液0.1,0.2,0.4,0.6,0.8,1.0 mL置10 mL量瓶中,分别精密加入内标溶液 1 mL,加乙酸乙酯溶解并稀释至刻度,摇匀。分别吸取上述6份溶液各1 μL,进样,按内标法以峰面积计算。以各待测化合物与内标的峰面积比值(y)为纵坐标,各待测化合物质量浓度(x,mg・L-1)为横坐标,进行线性回归,得回归方程。各化合物线性关系考察结果见表2。
2.1.7 精密度试验 精密量取对照品混合溶液1 mL置10 mL量瓶中,精密加入内标溶液1 mL,加乙酸乙酯稀释至刻度,摇匀,即得精密度试验溶液。连续进样6次,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.4%~2.4%,表明本方法精密度良好,具体结果见表3。
2.1.8 重复性试验 取同一荆芥饮片所得挥发油6份,分别按2.1.4项下方法制备供试品溶液,照上述试验条件进样测定,计算各待测化合物峰面积与内标峰面积的比值,按内标法计算含量,计算RSD,结果为8种化合物的RSD为2.3%~2.9%,表明本方法重复性良好,具体结果见表3。
2.1.9 稳定性试验 取同一份荆芥挥发油供试品溶液,照上述试验条件分别在0,2,4,6,8,12 h进样测定,计算各待测化合物峰面积与内标峰面积的比值,计算RSD,结果为8种化合物的RSD为1.5%~2.3%,表明供试品溶液在12 h内稳定,具体结果见表3。
2.1.10 加样回收试验 取已知待测化合物含量的同一荆芥挥发油约50 mg,共6份,精密称定,置10 mL量瓶中,分别加入薄荷酮对照品溶液和胡薄荷酮对照品溶液各1 mL,加入3-辛酮对照品溶液、β-香叶烯对照品溶液和d-柠檬烯对照品溶液各0.1 mL,加入1-辛烯-3-酮对照品溶液和β-石竹烯对照品溶液各0.3 mL,加入薄荷呋喃对照品溶液0.5 mL,用乙酸乙酯溶解稀释至刻度,摇匀,精密量取该溶液和内标溶液各1 mL置10 mL量瓶中,加乙酸乙酯溶解并稀释至刻度。照上述试验条件进样测定,以各待测化合物与内标的峰面积比值按内标法计算样品含量,再计算加样回收率,结果见表3。
2.1.11 样品测定 分别取3个批次的鲜荆芥,每个批次分为2份,分别按2.1.2项下制备2个加工工艺的样品。取每份样品适量,按2.1.4项下制备供试品溶液。照上述实验条件进行测定,以各待测化合物与内标的峰面积比值按内标法计算待测成分含量,再以含油量换算饮片中各待测成分的含量,取平均值,结果见表4。
2.2 2种工艺产品抗炎作用的比较
2.2.1 分组与给药 取ICR小鼠90只,随机分为空白组、模型组、阳性组、一体化高、中、低剂量组(1.5,3.0,6.0 g・kg-1)、传统高、中、低剂量组(1.5,3.0,6.0 g・kg-1),每组10只。二甲苯致炎前每天上午9:00和下午4:00灌胃给药,连续给药3 d。阳性组给予阿司匹林混悬液,一体化高、中、低剂量组分别给予不同浓度的荆芥一体化工艺产品粉末混悬液,传统高、中、低剂量组分别给予不同浓度的荆芥传统工艺产品粉末混悬液,空白组和模型组给予等体积的0.5% CMC-Na溶液,各组小鼠每次灌胃给药体积均为15 mL・kg-1(体重)。
2.2.2 模型制备与耳肿胀度检测 末次给药1 h后,除空白组外,各组小鼠于左耳正反两面涂抹0.04 mL二甲苯致炎,右耳做对照。1 h后将小鼠脱颈处死,沿耳廓基线剪下两耳,用直径7 mm的打孔器分别在同一部位打下圆耳片,称重,以左右耳片重量之差与右耳的比值为肿胀度。
2.2.3 ELISA法检测荆芥对耳肿胀小鼠血清TNF-α,IL-1β和IL-6含量的影响 二甲苯致炎1 h后眼框取血,血样静置30 min后3 000 r・min-1离心10 min,取上清,ELISA法检测血清中TNF-α, IL-1β和IL-6含量。
2.2.4 数据处理 数据用±s表示,采用SPSS 20.0进行统计学分析,以P
3 结果
3.1 一体化工艺与传统工艺加工产品化学成分的比较
相比传统加工工艺产品,一体化加工工艺产品中挥发油与8个待测成分的含量均有所增加,见表4。
3.2 对二甲苯致耳廓肿胀小鼠肿胀度的影响
与模型组比较,阳性药抑制肿胀作用明显,荆芥一体化工艺和传统工艺产品各剂量均能降低小鼠耳廓肿胀度,高、中剂量作用尤其显著(P
3.3 对二甲苯致耳廓肿胀小鼠的血清中TNF-α,IL-1β,IL-6含量的影响
与空白组比较,模型组小鼠血清中TNF-α,IL-1β,IL-6的含量显著增加(P
4 讨论
现代中医学研究认为,表证症状与炎症这一基本病理过程紧密相连,解表药的抗炎作用是其发挥解表功效的重要药理基础之一,因而研究荆芥抗炎作用及作用机制是研究荆芥的解表作用的重要途径[13]。本实验通过比较小鼠的肿胀度以及血清中TNF-α,IL-1β和IL-6含量,来考察荆芥一体化工艺和传统工艺产品高、中、低3种剂量饮片粉末的抗炎作用。TNF-α作为炎症反应的重要介质,通过增高微血管壁通透性和趋化、增强中性粒细胞与血管内皮细胞的黏附性激活炎性细胞。IL-1β和IL-6介导中性粒细胞等炎性细胞到局部病灶,是炎症性疾病中的重要因素[14]。在本实验中,荆芥一体化工艺产品与传统工艺产品均能降低小鼠血清中TNF-α,IL-1β和IL-6炎症细胞因子的含量,降低小鼠耳廓肿胀度,发挥抗炎作用。
研究表明,挥发油是荆芥的主要药效成分,其药效作用可能是几种成分的加和或协同作用,不同成分组成或主要成分比例有较大差异的荆芥挥发油,药效和急性毒性相差很大[15-16]。前期研究发现,胡薄荷酮、薄荷酮、柠檬烯、3-辛酮、1-辛烯-3-酮、β-香叶烯、β-石竹烯、薄荷呋喃在荆芥挥发油中占有很高的比例,其中胡薄荷酮、薄荷酮和柠檬烯的含量最高,为挥发油的主要药效成分,故本实验选取荆芥挥发油中主要的8种成分作为指标,考察一体化工艺与传统工艺的挥发性成分差异。结果发现,荆芥一体化工艺产品折干后挥发油含油量为1.08%,传统工艺产品折干后挥发油质量分数为0.55%,明显低于一体化工艺产品,所以其胡薄荷酮等8个成分的含量远低于一体化工艺产品。
本课题前期已采用正交实验优化荆芥一体化加工工艺参数(本部分正在申报专利),一体化工艺产品含油量较高是因为只经过一次干燥加工过程,避免了挥发油的流失。挥发油乃热不稳定性成分,重复干燥过程势必会造成其含量的降低。荆芥采收后经产地加工为干燥药材,此时的荆芥叶、穗质地较脆,在包装、运输及饮片加工过程中易脱落造成损失,以致挥发油含量降低。而一体化工艺产品是由荆芥采收后直接切段干燥成饮片,减少荆芥叶、穗在长途运输过程中的脱落损失,保证了饮片质量。此外,传统加工还经过水处理,两个工艺产品的水溶性成分及其他成分是否存在差异还需进一步的研究与探索。
药效研究结果表明,一体化工艺产品的抗炎作用整体上优于传统工艺,结合化学成分比较分析的结果,一体化工艺产品挥发油及其中各个组分的含量均高于传统工艺产品,故推断一体化工艺产品挥发油成分较高与其抗炎效果优于传统工艺产品之间有密切相关性。此外,工业化生产中一体化工艺不仅能够保证饮片质量,更能够提高加工效率,节约时间及人工成本。因此荆芥药材、饮片一体化加工有其一定的可行性及合理性。
[参考文献]
[1] 吴普.神农本草经[M].北京: 人民卫生出版社, 1963: 77.
[2] 赵立子, 魏建和.中药荆芥最新研究进展[J].中国农学通报, 2013, 29(4):39
[3] 中国药典.一部[S].2015:232.
[4] 钱雯, 单鸣秋, 丁安伟, 等.荆芥的研究进展[J].中国药业, 2010, 19(22): 17.
[5] 张霞, 周, 姚梅悦, 等.荆芥穗提取物体外抗呼吸道合胞病毒有效部位研究[J].山东中医杂志, 2015, 43(3):213.
[6] 何婷, 汤奇, 曾南, 等.荆芥挥发油及其主要成分抗流感病毒作用与机制研究[J].中国中药杂志, 2013, 38 (11):1772.
[7] 何婷, 陈恬, 曾南, 等.荆芥挥发油体外抗甲型流感病毒作用及机制的研究[J].中药药理与临床, 2012, 28 (3):51.
[8] 胡炜.解表药的作用机理探讨[J].浙江中医杂志, 2013, 48(10):771.
[9] 邹文俊, 雷载权, 张廷模.解表用药规律探讨[J].成都中医药大学学报, 2001, 24(1):7.
[10] 权美平.荆芥挥发油药理作用的研究进展[J].现代食品科技, 2013, 29 (6):1459.
[11] 陈艺文, 于生, 丁安伟, 等.荆芥不同干燥加工方法药材质量变化研究[J].广州化工, 2010, 38(5):102.
[12] Yu Sheng, Chen Yiwen, Zhang Li, et al.Quantitative comparative analysis of the bio-active and toxic constituents of leaves and spikes of Schizonepetae tenuifolia at different harvesting times[J].Int J Mol Sci, 2012, 12:6635.
[13] 陆茵, 张大方.中药药理学[M].北京: 人民卫生出版社, 2012:55.
[14] 李佳曦, 汪受传, 徐建亚, 等.白藜芦醇对RSV感染BALB/c小鼠肺泡灌洗液TNF-α,IL-1β,IL-6表达的调控趋势[J].中国中药杂志, 2012, 37(10):1451.
【关键词】绿色化工工程;化工工业;节能;促进作用
引言:对于化工来说,其是促进社会和物质文明发展的关键,并且为人类做出了非常大的贡献。与此同时,环境污染问题也日益严重,这样就需要采取相应的措施进行解决。而绿色化学工程与工艺是利用科学有效的方法和材料等进行处理,不仅大大提升了生产的利用效率,还很好的解决了存在的污染问题,因此,其对化工节能就有很大的促进意义。
1.绿色化学工程与工艺概述
1.1 绿色化学工程与工艺的重要性
目前很多我们生活中需要用到的物品都有赖化工生产流程,传统的化学工程与工艺中往往对于绿色化学不重视,生产过程中只是注重结果,短期内或许能收获相应的产品及利益,但从长远来看,很多化工生产工艺流程在生产过程中对环境造成很多污染,有的污染对环境的破坏是不可逆的,后果可想而知。随着人们环保意识的加强,近年来绿色化学工程与工艺越来越被人们提倡,这样的方式采用一种更科学更自然的方式实现化工生产,仍然能通过有效途径得到最后的目标产品,但大大降低了生产工艺对于环境的污染与破坏,同时很好的促进了化学工艺的节能,也实现了可持续发展的要义。
1.2 绿色化学工程与工艺的基本原则
绿色化学化工在世界范围内的原则相对一体,主要涵盖下列几方面。(1)在反应过程的源头上减少甚至根除废弃物的产生,而不是在废弃物产生之后再对其进行净化处理。(2)产品进行设计时,尽量做到原料利用率最大化。(3)产品进行分析时,在考虑生产效率的同时使原料和产品的毒性降低。(4)对于析出剂和溶剂等辅助物,尽量少用或选择使用无害产品。(5)减少生产过程中能量的损耗及其对环境的影响。(6)除了考虑经济和技术的因素,生产原料尽量选择可回收的加工原料。(7)尽量避免生产过程中产生不必要的化学衍生物。
2.化工企业节能减排的措施
通常情况下,大型化工企业在生产过程中往往会消耗大量的煤炭、石油和一些化工原材料,最终排放出大量的“三废”,也只有通过不断循环市场经济,才能够促进化工企业在国内市场的发展,并取得一定的市场优势。而目前化工企业应该在节能环保的基础上促进经济发展,其方法主要有以下几点:(1)加大化工污染这方面的技术、资金投入力度,对污染问题进行全面的控制。(2)针对化工生产项目使用先进的节能减排生产工艺,控制好化工原料,进而从源头上对污染问题进行防控。(3)创建绿色的化工生产链条,实现节能减排技术集中化处理。(4)全面提高企业职工的绿色减排意识,从自身出发做好环境保护工作。
3.绿色化学工程与工艺的合理开发
3.1 绿色化学原料的合理运用
在化工生产工艺及具体流程中,化学生产原料是起着决定性作用的主要因素,在传统化学工程中,所用原料大部分为不可再生能源。采用这些原料不但大大提高国家不可再生能源的消耗,同时还导致污染物的排放量大大增加,加重生态环境污染程度。将绿色化学原料作为化工生产材料是绿色化学工程重要研发内容之一。在化工生产过程中,可使用绿色化学物质、自然物质等无染污、可再生的化学原料。典型的绿色化学原料主要有芦苇、苞米杆、纤维植物等。将这些作为原料投入到化工生产过程中,可使其转化为酮、醇、酸类等多种化学品。在整个转化反应过程中,这些原料仅会产生一定量的氢气,而不会有任何一种有害、有毒的物质产生。
3.2 提高化学反应的选择性
在化学工程的物质反应中,化学反应作为必不可少的重要组成部分存在。所有化学原料的转化均是需要化学反应才能得以实现。在化工生产过程中,合理选择有效的化学反应形式可有效促进化学工程生产效率及质量得到提高[2]。对化学反应产生影响的因素有很多种,反应原料、环境、时间、特点等均会对化学反应产生不同程度的影响。在化学生产过程中应用最为普遍的反应形式为氧化反应。在氧化反应过程中会有大量的热产生,所有化学原料均会在热的催化作用下发生变质,因此会大大降低化学品的生产质量。在绿色化学工程中,应用新型的反应形式,这种新型反应形式为烃类氧化反应。这种反应形式的应用不仅可促进催化物反应催化能力得到提高,同时还可有效促进生产物同分异构反应时间增加。
3.3 使用无毒无害催化原料
从目前的现状来看,伴随着化工行业的不断发展,合理运用化学反应成为了化工行业健康稳定发展的关键,而在进行化学反应的时候,催化剂的使用是非常关键的,既可以对反应速度进行加快,也可以对反应时间进行缩短,那么在进行化工生产中,要想确保绿色化工工程和工艺得到快速的发展,就要使用没有毒害的催化原材料。同时现在我国有关部门对催化原材料的选择和应用已经给予了高度重视,并且催化剂的开发、研究和制作在不断增多,从而就促使在进行化学反应的时候,催化原材料有了很大的改善。此外,使用没有毒害的催化原材料还能够大大提高化学反应的效率,对能源消耗含量进行降低,也能够很大程度减少环境的污染。
4.绿色化学工程与工艺对化学工业节能的促进作用
加强对绿色化学工程与工艺的研究是化学工程的一次全新探索与实践创新,绿色化学工程工艺研究能够将废弃物的科滋控制在合理的范围之内,实现化学工程的规划化发展,与此同时也可以改善人民群众生活环境,对构建环境友好型社会具有重要的现实意义。
4.1 清洁生产技术的合理应用
清洁生产技术的合理应用具有超高的价值,对化学原料进行无公害化的处理,以期最终达到合格生产的目的。清洁生产技术的使用可促使原料等到有效的利用,提升原料的使用效率,清洁生产技术最为常见技术例如脱硫技术等,化学生产加工不可避免将会产生一定废气,为了进一步降低废气对于空气质量的污染,就需要进行脱硫处理。此外,除了清洁生产技术的研发外,当前自然发电技术也被赋予了更多的重视,在环境污染日趋恶劣下,自然发电技术受到的关注,利用风能等自然资源发电,可在生物工程中降低污染,并提高环境质量,以期实现资源有效利用。
4.2 生物技术的有机结合
在可持m发展理念推进下,生物技术也不断得以升级,生物技术也可理解成为生物工程,其中包括生物化工以及仿生学两部分。生物技术利用生物科技进行生产与加工,如常见的生物酶技术,生物酶是一种具有催化作用的有机物,该种有机物可具有超高应用价值,加之其污染系数较小,故此被广泛的应用到各领域之中。例如纺织领域,通过氧化还原酶的作用促使衣物处于仿旧状态等。生物技术的使用符合绿色化学工程工艺的要求,因此将生物技术与绿色化学工程工艺相互结合,可进一步的深人落实化学工程节能理念,并改变传统化学生产工艺模式,共同打造绿色环保社会。
4.3 环境友好型产品的加工生产
绿色化学工程与工艺的主要发展目的之一即为为社会生产处环境友好型产品,如清洁汽油、磷洗衣粉等无毒无害产品。通过绿色化学工程可以生产出与社会、自然环境发展相符合的友好型产品。绿色化学工程生产的出现在很大程度上起到了保护环境的作用。在社会生产、生活中,人们的购买的产品均为绿色产品,不仅有效保证了人们身体健康,同时也可促进社会健康、和谐发展。因此,在化工生产过程中,如能够促进绿色化学工程与工艺对的优势得到充分发挥,可有效降低生态环境的染污,促进国家自然环境和社会经济得到可持续发展,对国家的长远发展及社会的进步具有重要意义。
结语
通过上文对绿色化学工程和工艺技术进行系统分析可知,绿色化学工程对促进化学工业节能发展起到了重要助推作用,是实现化学工业节能减排发展目标的重要手段。现阶段,开发和应用绿色化学工艺,已成为现代化学工业的发展趋势和前沿技术,是建设环境友好型社会,实现可持续发展的关键。
参考文献
[1]于贺.论绿色化学工程与工艺对化学工业节能的促进作用[J].科技与企业,2013,05:132.
[2]刘冠辰.浅析绿色化学工程与工艺对化学工业节能减排的促进作用[J].科技创新与应用,2015,34:107-108.
【关键词】化学工艺学 教学改革 石油化工
【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2012)16-0001-02
广东石油化工学院坐落于中国南方最大的石油生产基地——广东省茂名市,为华南地区唯一一所石油化工特色院校。学校的化学工程与工艺专业是国家级特色专业建设点,毕业生遍布全国各地的石油化工行业,就业具有很强的针对性,深受用人单位欢迎。广东石油化工学院化学工程与工艺专业人才培养的目标是为社会输送具备化学工程与工艺基本理论、基本知识和基本技能,具有较强工程实践能力、良好的创新意识和较高综合工程素质的人才。毕业生能在石油炼制、石油化工、能源、环保、材料等部门从事工程设计、技术开发、生产管理等方面的工作。化学工艺学作为该专业一门重要的专业课,是基础化学、化工热力学、化学反应工程、化工原理等课程的综合应用。通过该课程的学习,要求学生掌握化工生产的基本原理、主要化工产品的生产方法、工艺流程等。在化学工艺学课程教学中,应注重强化学生的工程意识和基础知识的实际应用能力。
一 结合石油化工特色,创建课程群
从人才培养的角度看,石油化工高校培养的毕业生应具有较强的工程实践能力、良好的创新意识和较高的综合工程素质,以适应石油炼制或石油化工等相关行业的人才需求。毕业生不但要懂得某一专业的基础理论,还要具有某一岗位所需要的生产操作和组织能力,并能在现场进行技术操作和改进,解决生产实际问题。因此,广东石油化工学院石油化工专业所培养的人才具有基层性、实用性和技术性,这是本专业区别于其他普通高校教育的一大特色。根据本专业的特点和学生的基础及接受能力,以培养学生的综合实践操作能力和创新能力为主线,可将石油炼制工程、石油化工产品分析技术、石油产品应用技术与开发、石油储运基础等课程创建一个课程群,围绕本专业人才培养目标,对各课程的主要内容进行精选优化,调整化学工艺学的教学内容。可从这些主干课程中选择一些典型的石化产品,作为化学工艺学的教学案例,分析这些石化产品的生产方法、工艺流程、工艺参数、条件影响等。这种处理方式对课程群里面其他的课程教学可起到辅助和巩固的作用。
二 优化和更新化学工艺学的教学内容
根据教学大纲对教学内容进行处理,把各章节内容按照了解、掌握、应用、设计等不同要求作详细的定位。例如,对于工业生产中已经不采用的生产方法,只要求学生了解某种工业过程可能有多种生产方法即可;对需掌握的内容,可以要求学生对各种生产方法进行比较,分析其适用范围、效果、操作条件、能耗等,从技术经济的角度选择生产方法。学生不仅要掌握教材介绍的几种基本化工产品的生产,而且其生产--方法要会应用,能够举一反三,要能设计出一些简单的生产工艺。例如,在讲授合成氨时,可以先引入哈伯法合成氨工艺的历史及哈伯本人的一些简介,既可以提起学生对合成氨工艺的学习兴趣,又可以了解一些名人的事迹。当学生有了兴趣之后,可以从不同的原料角度,引入不同的生产工艺,如以煤为原料,以天然气为原料,以重油为原料的合成氨工艺,其各自的工段均有所不同,可以在讲授完后让学生总结各不同原料合成氨工艺的异同,这样学生学完之后印象深刻,可以吃透这部分内容。
另外,在组织化学工艺学教学内容时,应着重突出石油化工特色。在第一次化学工艺学讲授过程中,让大家认识到本门课程的针对性、重要性及实用性。在第一章“绪论”部分组织讲授材料的时候,可以结合茂名炼油产业链,围绕几个关键词如石油化工、石油炼制、乙烯工业、茂名乙烯、石化工业区等展开内容学习。例如,乙烯工业是指以石油馏分为原料裂解生产乙烯为主,同时生产丙烯、丁烯、芳烃等产品的生产过程。乙烯是石油化工的基本有机原料,目前约有75%的石油化工产品由乙烯生产。乙烯主要用来生产聚乙烯、聚氯乙烯、苯乙烯等多种重要的有机化工产品,乙烯产量已成为衡量一个国家石油化工工业发展水平的标志。再如,对乙烯产品结构的介绍(塑料类、合成橡胶类、液体化工类);对长三角、珠三角、环渤海湾大型炼化一体化企业集群及沿长江产业带分布的介绍等,这些内容可以让学生清晰地认识未来的就业方向、就业区域和就业前景。在这种情况下,学生会充分认识到化学工艺学这门课程的针对性和重要性,在后面的时间里自然会重视这门课程的学习,因为这些内容的学习与他们未来的就业息息相关。
围绕本专业人才培养目标,针对毕业生的就业特点,广东石油化工学院的化学工艺学这门课应该调整教学内容,注重重点内容的凝练。其重点内容应围绕乙烯工业展开。
如以茂名石化乙烯为例,学习乙烯生产原理、工艺技术、产品应用等基本知识;以茂名石化工业区为例,学习乙烯下游产业链、产品应用等基本知识。
乙烯生产原理主要包括乙烯生产过程中的化学反应规律、反应机理、热力学及动力学分析,乙烯生产的工艺参数和操作指标(如原料性质及评价、裂解温度、烃分压、停留时间、裂解深度等)及乙烯生产的工艺过程等。
三 适当引入双语教学
[关键词]工程教育;专业认证;分离工程;教学改革
1工程教育专业认证背景
我国的工程教育专业认证由中国工程教育专业认证协会组织实施,始于1993年土建类专业评估,2006年正式在多个专业领域实施,迄今己走过9年的发展历程,其目的是:构建工程教育的质量监控体系,推进工程教育改革,进一步提高工程教育质量;建立与工程师制度相衔接的工程教育专业认证体系,促进工程教育与工业界的联系,增强工程教育人才培养对产业发展的适应性;促进中国工程教育的国际互认,提升我国工程技术人才的国际竞争力。
2结合毕业生十项毕业要求中的主要三项,提出课堂教学改革具体措施
结合专业认证标准,我校化学工程与工艺专业培养方案中明确规定了本专业学生毕业时应达到十项毕业要求。《分离工程》课程作为专业基础课程,在化工热力学和化工传递过程知识的基础上,采用理论与实践密切结合的方式,详细阐述各类分离过程(精馏、吸收、解吸、萃取、膜分离、吸附、浸取、结晶和干燥等)的物理化学原理、设计计算方法、工业应用、主要设备、数学模型和计算机应用软件,并展示分离过程学科的发展历史和主要进展。本文针对《分离工程》课程贡献于毕业生十项毕业要求中的主要三项,分别展开讨论。
2.1掌握扎实的化学工程基础知识和本专业的基本理论知识,具有系统的工程实践学习经历,了解本专业的前沿发展现状和趋势
按照该项要求,我们在授课中,一方面强调基础理论知识的学习,对复杂及多样性的分离技术按原理进行分类,如:通过加入分离媒介生成两相的分离为平衡分离,如精馏、吸收等;不需要加入分离媒介,以压差、浓度差、电位差等为推动力的分离过程为速率分离,如膜分离;对多组分精馏计算由浅入深展开,由假定理想情况下的简捷法计算入手,建模用MESH方程开展严格法计算,为解决实际工业应用问题奠定了理论基础。并强调本专业知识和化工原理、化工热力学、化工设备等其他专业基础知识的对立统一,如在介绍最小回流比知识点时,要注意比较多元精馏与化工原理中介绍的二元精馏中最小回流比的异同点,二元精馏中最小回流比下,进料板上下出现一个恒浓区,可通过作图法求解;而多元精馏体系中最小回流比下出现了两个恒浓区,且恒浓区出现的位置视待分离组分性质的不同而不同,通常利用Under-wood(恩德伍德)方程求解;再比如在介绍相平衡常数的求解时,要结合化工热力学课程中活度系数法及逸度系数法,进一步巩固两种求解方法的优缺点。另一方面结合行业发展前沿趋势,介绍新兴分离技术在工业中的应用。如泡沫分离技术,它根据表面吸附的原理,借鼓泡使溶液内的表面活性物质聚集在气液界面(气泡的表面)上浮至溶液主体上方形成泡沫层,将泡沫层和液相主体分开,就可达到浓缩表面活性物质和净化液相主体的目的。近年来,在染料、皮革、石油化工工业污水中降低化学耗氧量、色素、有机化合物等,在浓度为ppm级的大量稀溶液中回收贵金属、稀有金属或除去有害物质等工业领域得以应用。还有近年来崛起的一种新兴膜分离技术:液膜分离,即以液膜为分离介质、以浓度差为推动力的一种膜分离过程。由于其分离选择性高、通量大而受到关注,在烃类混合物的分离、废水的处理及生物医学上如液膜人工肝、人工肺、人工肾等领域得到应用。在工程实践方面,我们分别组织学生参观了中国石化集团安庆石油化工总厂及中盐安徽红四方股份有限公司,并结合课程内容,重点介绍炼油工艺中的常减压蒸馏装置及原料气净化处理过程中的吸收装置。如吸收设备中喷雾塔、调料塔、板式塔的选择,填料塔中各种填料如鲍尔环、脉冲填料、网孔栅格的选择,塔高的计算等,在实践中强化理论知识的学习,并将课本中的公式及知识应用到工厂案例中去。
2.2具备设计和实施工程试验的能力,并能够对试验结果进行分析;具有综合运用所学化工专业理论和技术手段分析
并解决化学工程问题的基本能力主要包括以下几个方面的内容:能独立完成实验方案的设计、能正确地操作实验装置,安全地开展实验、能正确地采集、整理实验数据,对实验结果进行关联、分析、解释,并且掌握工程实践、科学研究与工程设计的基本方法,能够将所学课程有机联系起来,对化学工程基本问题,加以分析并予以解决。针对该项要求,我们在课程教学中,将课程和专业实验相结合。如在介绍反应精馏章节时,以催化反应精馏制甲缩醛为例,该实验为典型的工程与工艺结合的专业实验,以甲醇和甲醛为反应原料,浓硫酸为催化剂,在常压下通过反应精馏法制备甲缩醛。教学过程中,我们引导学生先思考传统合成、分离工艺,找出问题,寻求改进后的工艺流程。传统工艺采用先反应再利用精馏技术分离,存在反应转化率低、未反应的稀甲醛回收困难、稀甲醛的浓缩产生甲酸严重腐蚀设备等问题。为解决传统工艺存在的问题,引导学生结合本章节内容,采用反应精馏工艺。新工艺的优点:1.甲缩醛氧化所得甲醛与水的摩尔比为:醛/水=3,可直接作为三聚甲醛的原料,不必浓缩。2.甲缩醛的合成可在较低温度(44~80℃)下进行,避免了甲酸生成,解决了设备腐蚀问题。新工艺的关键技术:甲缩醛的合成与分离。实验过程中既需要考察反应工程影响因素如温度效应、浓度效应及其他工程因素,同时要考察精馏技术影响因素如回流比、塔顶采出率及塔釜加热量等。综合考虑后,结合实验装置,确定拟考察的工艺参数,且采用正交设计来制定本实验的方案,则根据实验涉及的影响因子,并假设每个因子取两个水平,可得到如下实验条件表,如表1所示。最后整理实验数据,规范作图。
2.3掌握基本的创新方法,具有追求创新的态度和意识;具有综合运用理论和技术手段设计系统和过程的能力
该项要求可分解为以下指标点:运用所学知识,初步设计化工操作单元、设备及工艺过程;在各化工设计、毕业设计环节中体现创新意识。结合该指标点,我们鼓励学生利用课余和节假日时间开展大学生科研实践训练、创新性实验计划、学科竞赛等课外实践与创新活动,引导学生“在学习中研究、在研究中学习”,激发学生的创新思维和创新意识,提升本科生的创新实践能力。我们将课程教学与本科生毕业设计相结合,并利用课程设计环节综合应用所学知识点,统筹分离工程课程与其他专业基础课程,并在分离工程的课程教学中以往年毕业设计内容为案例加以剖析。如结合毕业设计课题“乙烯裂解气脱甲烷系统的工艺设计”,涉及到脱甲烷精馏塔的计算,这是典型多组分精馏塔计算的一个案例。首先确定关键组分是甲烷和乙烯,其中轻关键组分是甲烷,重关键组分是乙烯。塔顶分离出来的甲烷轻馏分应使其中的乙烯含量尽可能的低,以保证乙烯的回收率。而塔釜产品则应是甲烷含量尽可能低,以确保乙烯产品的质量。我们利用AspenPlus过程模拟软件高效地完成了工艺计算及参数的优化。采用DSTWU模块开展简捷法物料衡算、能量衡算,所得回流比与理论板数关系曲线如下图1所示;并将简捷法计算结果作为初值代入RadFrac模块进行严格法计算,并进行灵敏度分析,横坐标为混合进料位置,纵坐标为塔顶甲烷的纯度(摩尔分率),得到关系曲线如图2所示。通过该设计案例的开展,一方面使得学生们统筹所学多组分精馏知识点去思索如何解决工业上的实际问题,另一方面在分析实际工业案例时,又强化了同学们对多组分精馏简捷法计算及严格法计算的理解和综合应用。
3结束语
分离工程课程在教学过程中,我们以化学工程与工艺本科专业认证为导向,在对“工程教育专业认证标准”进行认真分析的基础上,以工程实际为切入口,把分离技术的理论与方法融入应用实例,将分离工程基础理论与化工工程实践有机结合,进一步突出了分离工程的课程特点及实用性,而且根据现代化工的发展方向及时调整、更新课程内容,加强化工新型分离技术分析,让学生更坚实地掌握分离工程的基本理论,进一步提高教学效果。
[参考文献]
[1]刘家祺.分离过程[M].北京:化学工业出版社,2006.
[2]J.D.Seader.SeparationProcessPrinciples[M].北京:化学工业出版社,2002.
[3]李晓.工程素质贯穿式培养的化工工程教育模式的探索与实践[J].化工高等教育,2012(3):18-20.
关键词:工程认证;精细化工;教学改革;实践能力;教学理念
一、我国工程教育认证的发展历程
为了提高我国高等工程教育质量,构建我国高等工程教育质量保障体系,进一步深化高等工程教育改革,建立高校工程专业与社会企业所需人才培养的双赢机制,规范与注册工程师制度相衔接的高等工程教育专业认证体系,促进工程教育国际化,实现国际互认,提升我国高等工程教育国际竞争力,教育部于2006年正式启动高等工程教育专业认证试点工作。10年来,我国工程教育专业认证工作逐渐在全国相关高校中得到了重视和积极开展。2013年6月,国际工程联盟大会在韩国召开,大会表决通过中国为《华盛顿协议》预备会员,成为该协议组织第21个成员。《华盛顿协议》是世界上最具影响力的国际本科工程学位互认协议,1989年由美国、英国、加拿大、爱尔兰、澳大利亚、新西兰6个国家的工程专业团体发起成立,旨在建立共同认可的工程教育认证体系。该协议提出的工程专业教育标准和工程师职业能力标准,是国际工程界对工科毕业生和工程师职业能力公认的权威要求。截至2013年8月,中国工程教育专业认证协会已对我国高校的373个专业点开展了认证工作,之后经过3年的不懈努力,我国工程教育专业认证协会分别受理了137个专业的2014年认证申请(其中105个专业通过认证)、156个专业的2015年认证申请和200个专业的2016年认证申请,我国工程教育水平得到了长足而显著的提高,其质量获得国际社会的一致认可。可喜的是,2016年6月,《华盛顿协议》全票通过中国科协代表我国由《华盛顿协议》预备会员转正,成为该协议第18个正式成员,表明我国工程教育专业认证与国际实质等效,标志着我国工程教育质量实现了国际化互认。
二、工程教育认证背景下我校精细化工工艺课程教学改革的必要性
华侨大学地处海峡西岸经济区的心脏地带,为了更好地服务于地方区域经济的发展,为企业人才市场输送合格的工程类专业人才,工程教育专业认证已列为我校提高办学质量的主要举措之一,校领导高度重视。与此同时,随着福建省沿海四大石化基地和重大项目的加速推进,带动了合成材料、有机化工和精细化工等配套开发,石化产业集群效应显现,化工类专业人才需求增大[1]。为了培养合格的化工工程师,我校化工学院积极申请化学工程与工艺专业的工程教育专业认证。2016年2月,中国工程教育认证协会正式受理了我校化工学院化学工程与工艺专业工程教育认证的申请,这是我校第一个被受理的工科专业,得到了校、院两级领导的高度重视和全系教师及其他相关院系的大力支持和配合。中国工程教育认证标准是基于产出的教育评价,满足华盛顿协议互认要求。基于学习产出的教育模式(OBE)最早出现于美国和澳大利亚的基础教育改革,是以预期学习产出为中心来组织、实施和评价教育的结构模式[2,3]。国内部分高校实施基于OBE教育理念的人才培养模式的综合改革,规范教学活动,树立教学标准意识,建立教学质量标准,最终取得了显著的效果,并顺利通过我国工程教育认证。众所周知,《精细化工工艺》是化学工程与工艺(精细化工方向)专业的主干专业课之一,该课程具有工程性、应用性和综合性等特点。在我校化学工程与工艺专业开展工程教育认证的背景下,基于“以学生为本,以学生学习产出为导向”的教育理念和思路开展精细化工工艺课程教学改革势在必行。
三、工程教育认证背景下精细化工工艺课程教学改革的几点思考
CDIO工程教育模式是近年来国际工程教育改革的最新成果,它以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程。CDIO培养大纲将工科专业毕业生的能力分为工程基础知识、个人能力、认识团队能力和工程系统能力四个层面,大纲要求以综合的培养方式使学生在这四个层面达到预定目标[4,5]。为了使学生在学习精细化工工艺课程过程中达成这个目标,必须同时从教学的两个主体———学生和教师入手,转变教育理念,改革教学方式方法,以符合我国工程教育认证标准。
(一)学生工程实践能力的培养
精细化工工艺是一门实践和理论并重的课程,在培养高素质的精细化工工程技术人才过程中,精细化学品开发、设计及合成的实验与实践起着重要作用。对于学生而言,借鉴CDIO成功的教育经验,在工程教育认证背景下精细化工工艺课程教学改革过程,一定要特别注重和加强学生工程实践能力的培养。
1.加强校企合作。根据《中国工程教育质量报告》的调查,工业界认为高校培养工程专业人才过程中存在通用能力评价高,工程能力培养不足;传统优势明显,紧跟时代需求不足;工业界参与深度和规范化不足等问题。因此,在精细化工工艺课堂教学过程中积极邀请精细化工相关企业高级工程师走入课堂参与教学,有利于学生深入了解所学知识在将来所要从事的精细化工行业中的实践应用。
2.搭建校内精细化工实践平台。实践平台是大学生进行实践活动的阵地,校内可以通过设立实验示范中心、学科重点实验室、科研成果转化平台以及本科生课外科创活动平台等举措,不断提高学生的精细化学工程实践能力和创造力。
3.设立精细化学品制作工坊。根据精细化工工艺课程需求开设特色实验室,对课程中所学主要精细化学品种类及其典型产品的制备工艺开展实验,比如手工肥皂、洗涤剂和胶黏剂等常规精细化学品的制作。与此同时,增加综合型、设计型实验的比例和深度,充分调动学生对精细化工工艺的学习积极性。比如在手工肥皂制作过程中设计透明多彩的新型多功能肥皂,培养学生的创新意识、动手操作能力和团队合作精神,提高学生的工程实践能力和创造力,让学生以主动的、实践的、课程之间有机联系的方式学习精细化工工艺这门专业主干课程。另外,精细化工工艺特色实验室在全校范围内也可以共享实验资源和设备,这不仅可以增加学校对实验室的经费投入,而且可以显著提高精细化工专业的知名度,大大增加学生对本专业的认可度和归属感。
4.建立多元化考核标准。传统工科教学的突出问题是理论知识学习比重远大于工程能力培养比重,这是单一笔试考核模式导致的必然结果。基于工程教育认证中所要求的学习产出的教育模式,将学生在精细化工工艺课程学习过程中参加课外精细化工实践平台和精细化学品制作工坊等活动的表现形成可量化的考核标准,与传统考核标准进行有机结合,建立以加强学生工程实践能力培养为目标的多元化课程考核标准。
(二)教师课程教学理念的转变
基于OBE工程教育模式,工程教育认证将推动工科教学由“经验型”转向“科学型”、由“内容为本型”转向“学生为本型”。这就要求高校教师彻底摈弃传统的“教无定法”的教学理念,而是基于学习结果的教育模式,形成一种规范、团队、持续改进的教学方式,实现教学行为及活动的标准化与规范化,从而达到工程教育认证标准,持续为工业界输送合格的化工工程师人才。
1.建立课程目标与毕业要求的对应关系,规范和细化教学大纲及内容。《精细化工工艺》是一门介绍精细化工产品生产原理与工艺的专业课程,其课程知识体系非常零散且庞大,规范地组织教学内容和选择教学方法对于有效实现预期学习结果至关重要。精细化工工艺课程的教学目标:一是让学生能够根据市场需求的不断变化,设计新型精细化工产品;二是让学生运用精细有机合成化学及工艺学理论,根据精细化学品的功能特点及研究目的,选择适宜的研究路线,设计可行的有机合成单元反应实验方案;三是让学生熟悉与精细化工行业相关的产品技术标准、知识产权、法律法规、产业政策及发展现状和趋势,能识别、分析精细化工新产品、新技术、新工艺的开发和应用对社会、健康、安全、法律以及文化的潜在影响,深刻理解精细化工在国民经济中的重要地位和作用。以上课程目标分别对应于我国工程教育认证标准中化学工程与工艺专业学生应达到的十二条毕业要求中“设计/开发解决方案”、“研究”和“工程与社会”等方面的能力要求。在对学生学习结果有了清晰的认识后,教师通过细化教学大纲来规范教学内容和控制教学进度,从而保证课程目标的达成。
2.整合教学资源,避免课程间教学内容的低水平重复。对于化学工程与工艺专业(精细化工方向)的学生而言,在开设《精细化工工艺》课程的同时,还开设了《精细化学品》和《高分子化工工艺》等相关课程。过去,这些课程在教学内容上存在部分重复,比如有机合成反应基础知识的介绍,学生对此也提出了意见和看法。OBE工程教育模式客观上要求整合各类教学资源,明确不同课程对达成毕业要求指标点(预期学习结果)的贡献及程度。这就需要各专业教师之间进行有效地交流与合作,协调相关课程的教学大纲及内容,避免教学资源的浪费。
3.建立课程教学质量跟踪调查及反馈机制,形成持续改进的教学理念。工程教育认证要求建立毕业生质量跟踪调查机制,形成科学有效的毕业生评价体系,为学校更好地培养工程人才提供重要依据。显而易见,毕业生质量与课程教学质量紧密相关,只有建立后者的跟踪调查及反馈机制,才能保障前者的水平。除了校院两级对精细化工工艺课程教学主要环节进行质量监控外,教师一方面于课程教学结束后在所授班级召开座谈会,听取学生对所学课程内容及授课方式、进度等方面的看法和意见,教师对所提问题与学生进行交流并提供合理化建议;另一方面,针对从事精细化工行业的毕业生进行跟踪调查,灵活运用现代通讯及联络工具、调查问卷等多种形式,开展关于学生在校期间所学精细化工工艺课程对其职业发展的影响以及其对该门课程设置、教学内容及方法等方面的建议和意见的调查,另外还可以展开毕业生所在单位对所需精细化工工程人才知识架构要求的调研。授课教师对以上信息收集整理后进行归纳总结,形成反馈整改意见,并在下一次的课程教学过程中有效体现,形成良性互动循环,促进精细化工工艺课程教学质量的持续改进。
作者:甘林火 单位:华侨大学
参考文献:
[1]甘林火.精细化工工艺课程教学的探索[J].广州化工,2015,43(5):220-221.
[2]顾佩华,胡文龙,林鹏,等.基于“学习产出”(OBE)的工程教育模式——汕头大学的实践与探索[J].高等工程教育研究,2015,(1):27-37.
[3]赵卫红,王彦斌.基于“OBE”理念的精细化工专业实验课程建设[J].亚太教育,2015,(7):85.
关键词:卓越工程师;创新创业;重点实验室;仿真平台;校企合作
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)15-0121-03
2015年6月11日,中国高校创新创业教育联盟成立大会暨首届全国创新创业教育论坛在清华大学举行。教育部副部长林蕙青、中国高等教育学会会长瞿振元和清华大学校长邱勇出会并致辞。在首届全国创新创业教育论坛上,清华大学、北京大学、浙江大学、中南大学等高校的<已д呔汀按葱麓匆到逃模式,创新创业人才培养”的核心问题作了主题发言,来自全国137所高校的代表交流了各高校对大学生创新创业教育模式的探索和创新创业人才培养的做法。大学生创新创业能力的培养一直都是大学教育的重要研究课题,实施好、开展好大学生创新创业项目也成为了高等学校教育教学工作的重要组成部分,通过创新创业项目提升个人创新意识,增强自身实践能力更是广大同学的迫切需求。
创新创业项目的开展,创新精神是灵魂,专业技术是基础,政策、资金扶持是保障。从以上三点来看,国家教育部“卓越工程师教育培养计划”试点班(以下简称“卓越班”)的学生较之其他大学生有着突出的优势。选拔进入“卓越班”的学生对工程技术有着较为浓厚的兴趣和较强的创新意识,有更多的实践机会检验和应用所学的专业知识,并且得到了重点培养,理应在创新创业项目中崭露头角,为其他同学做出示范、形成榜样。广西大学化学工程与工艺专业是教育部“卓越工程师教育培养计划”(以下简称“卓越计划”)入选专业,该专业从2012级学生开始选拔有志于工程技术研究、综合能力突出的学让组建试点班,并依托资源,利用优势,在大学生创新创业能力的培养上有了初步探索。
一、科学选拔学生,重点配备师资
广西大学化学化工学院制定了精密、科学的方案,从能源化工与制药类2012级开始选拔优秀学生进入化学工程与工艺专业“卓越班”。学院采取课程成绩和面试成绩相结合,兼顾学生兴趣方向、创新意识、动手能力和专业水平的选拔方式,成立了以王立升教授、周立亚教授、陈小鹏教授、粟海峰教授、王琳琳教授五位专家为成员的评审小组。首先依据学生的加权平均成绩和专业排名确定入围人选,再对入围学生进行逐一面试,通过考察他们对“卓越计划”的理解,对工程技术的兴趣和化工专业基础知识掌握的扎实程度以及实验操作技能,最终从能源化工与制药类200位学生中选拔出33人进入化学工程与工艺专业“卓越班”。
对于“卓越班”,学院重点配备了师资。聘请广西教学名师、博士生导师陈小鹏教授担任班主任,邀请童张法教授、王琳琳教授、廖丹葵教授、黎铉海教授按照工程问题、工程案例和工程项目的教学内容为“卓越班”学生加授《化工热力学》、《色谱分析》、《化工设计》的相关知识,培养学生们的工程意识,拓宽他们专业领域的知识面。同时邀请广西梧州日成林产化工股份有限公司总经理、教授级高级工程师李前先生等一批工程技术应用专家担任“卓越班”创新创业项目的校外辅导教师。
学院科学的选拔方式和师资配备确保了“卓越班”的质量,是其创新创业计划项目得以高质、高效开展的基础。
二、依托重点实验室和仿真平台助推创新创业项目开展
广西大学化学化工学院现拥有“广西石化资源加工及过程强化技术自治区重点实验室”,并正积极申报国家级虚拟仿真实验教学示范中心。重点实验室和仿真平台为“卓越班”学生开展创新创业项目提供了优越的实验条件。
在重点实验室,“卓越班”的学生更早地接触并操作了一批高精尖的设备,利用气相色谱分析仪、高效液相色谱仪、气―质联用仪分析物质的成分,利用改进的Ellis平衡釜测定气液相平衡数据。对于如何进样、如何检测、如何分析以及设备的构型、构造都有了全面的了解,为日后利用精密仪器开展创新实验进行了先行演练。
“卓越班”的学生在对专业理论知识和相关工艺流程有了全面的认识后到模拟仿真教学中心进行仿真训练,仿真平台有品牌机的硬件支撑和我院自行研发的“化工单元操作”的软件支持,让学生们在十分逼真的环境中获得对工艺路线的深度理解和对实际操作技能的熟练掌握。学生们在学习了机械制图、化工仪表及其自动化、化工原理、化工分离工程相关章节的课程后进行液位控制、离心泵、换热器、精馏塔等单元仿真训练,在学习精细有机合成及其工艺学、石油炼制工程、香料工艺学的理论课程后进行合成氨生产工艺仿真、催化裂化冶炼技术仿真、桂花浸膏提取工艺仿真等多项仿真训练。在仿真训练中,学生们学会了开停车规程、故障的分析与处理,强化了对单元操作、化学反应工程、传递工程、化工系统工程、过程动态学及控制的认识及对工艺流程的理解。由于化工行业具有易燃易爆、高温高压等不安全因素和连续化、高技术操作的生产特征,仿真训练便是工科学生真正进入企业实习的预热。通过仿真平台的操作训练,同学们初步树立起生产的连续性、设备的维护等工程意识和从生产实际考虑问题的思维方式,为创新创业项目的高质量开展奠定了实践基础。
三、校企合作――做新、做强创新创业项目
化学工程师的任务是把化学家在实验室的研究成果“放大”为可以获取经济效益的商业化生产工艺,“放大”便是化学工程技术的核心问题。工科学生尤其是“卓越计划”的学生只有在企业全面、系统、深入地学习“放大”过程,才会真正树立起工程意识和工艺创新理念,才能真正提升解决实际问题的技术水平,才能真正锻炼出创新创业能力。
广西大学化学化工学院与柳州化工控股有限公司、广西梧州日成林产化工股份有限公司等一批知名企业不断拓展校企合作,为“卓越班”校企联合培养搭建平台,让“卓越班”学生的创新创业能力在“学以致用、以用促学、学用相长”的培养模式下得到大幅度提升,把创新创业项目做新、做强。
(一)项目化
对于生产实习,学生到企业大都是毫无目的、走马观花式地观摩见习。实习就是用手机拍下企业的技术资料和工艺路线,回校后抄过完事的过程,根本没有达到实习的目的。针对这种现象,广西大学化学化工学院对于“卓越班”的学生提出了“带着项目下工厂”的要求。例如胡静和王洋团队的创新创业项目的课题是相平衡数据的精密测定及关联,在到广西农垦明阳生化集团股份有限公司实习时他们便专门就酒精精馏的相平衡问题与厂方技术人员展开深入交流,依靠学到的成熟工艺推演、创新,并依托广西梧州日成林产化工股份有限公司的实验室和中试车间开展创新实验;再例如罗涛团队的研究项目是矿物资源的开发利用,在到中国铝业广西分公司实习时,该团队便具体了解了铝矿的开采技术和氧化铝的最新生产工艺,以期为日后项目开展提供参考;还例如王晓惠等同学积极报名参加“全国化工设计大赛”,在去南宁统一糖业明阳糖厂实习时她们便向厂方重点学习了厂区布置、管道布置和设备选型的知识,为设计大赛积累经验。
“带着项目下工厂”的要求让同学们明确了课题方向,有了针对性的学习重点,让大家基于问题去学习,基于项目去学习,基于案例去学习,敦促大家延伸企业成熟的技术工艺增加训练计划项目的创新点,利用企业的试验条件把实验室成果转化为生产工艺,“真刀真枪”地做创新创业项目。
(二)基地化
做新、做强大学生创新创业项目必须借助一定的物质中介,必须有一个保证双向多边活动得以展开和深入的载体。实习基地便是这个物质中介或载体。广西大学化学化工学院在柳州化工控股有限公司、广西梧州日成林产化工股份有限公司、中检集团广西分公司、防城港海洋局、桂林集琦生化有限公司等企事业单位设立实习基地,动员和组织“卓越班”的学生在寒假和暑假去深入实习。
实习基地为学生提供了一个认识企业、参与生产的窗口,使学生所学的理论知识不再是纸上谈兵,他们对于书本上知识的认识不再是枯燥的文字而是一个鲜活的生产过程;实践基地为学生开创了一条拓展视野、培育创新精神的渠道,让他们了解了多种化学品生产的现状,对现行工艺的优缺点有了自己的思考,更加明晰了新工艺、新方法对于利润提升、环境保护的重大意义;实习基地为学生们创造了一个检验理论知识、提升创业能力的平台,企业的每一次技术改造、产业升级都是“二次创业”的过程,在实习基地有幸参与其中看到所学知识应用于工程实践和商业运作是提升创业能力最快捷的方式。
(三)长期化
利用校企联合培养的优势做新、做强创新创业项目,充足的实践时间是保证。只有确保企业实践活动“长期化”开展,学生们才能把自身融入到企业产品研发、工业生产、运销经营及行政管理的实际环境中,这才是对创新创业能力的高质量培育。只有坚持了企业实践活动“长期化”,学生们到企业的实习效果才能避免浅尝辄止、水过地皮湿。
与广西大学化学化工学院建立密切合作关系的广西梧州日成林产化工股份有限公司、中检集团广西分公司、桂林集琦生化有限公司等企业为“卓越班”的学生提供了时长超过一个半月的实习机会,让大家学习在工厂,工作在工厂,生活在工厂,真正感受工业生产的氛围,切实提高实践能力。
(四)成果与建议
广西大学化学化工学院化学工程与工艺专业“卓越班”的学生在卓越工程师教育培养模式下的创新创业项目得到了高质量的开展,“卓越班”现有三支团队在“国家级大学生创新创业训练计划”项目中获得立项。在“广西高校大学生创新创业项目”的申报和立项中,化学化工学院排名前五的团队三支来自“卓越班”。截至目前,多数项目已取得了阶段性研究成果,多人在《高校化工学报》等核心期刊发表研究文章;2012级创新创业项目将于今年8月结题,研究成果将以专业论文和专利形式呈现。
教育部于2011年1月向各省、自治区、直辖市的教育行政部门和各高等学校下发了《教育部关于实施卓越工程师教育培养计划的若干意见》,2013年11月又联合中国工程院下发了《卓越工程师教育培养计划通用标准》。《意见》和《标准》都要求入选“卓越计划”的各高等学校“优先保证卓越计划所需优秀生源,在工程硕士推免政策上向卓越计划倾斜”。对于“卓越计划”的学生,坚固树立其创新意识,扎实培养其创新能力,贯通培养是最为有效的途径。“本―硕”贯通培养、“硕―博”贯通培养、“本―硕―博”贯通培养能让学生在持续性培养模式下最大限度地夯实理论基础,提升实践水平,培育创新能力。在贯通培养模式方面,北京理工大学等部分高水平大学已经做出了有益探索,将这种培养推广到“卓越计划”的其他入选高校,将整体提高“卓越计划”的培养成效。
国家实施“卓越计划”的目的在于培养造就一大批创新能力强、适应经济社会发展需要的高质量多类型的工程技术人才,为国家走新型工业化发展道路、建设创新型国家和人才强国战略服务。创新意识和创新能力的提升是创新人才培养的重点,“卓越计划”和“大学生创新创业项目”都是基于这一点出发,为大学生创新创业能力培养铺就了一条全方位、多层次的“绿色通道”。“卓越计划”是手段,“大学生创新创业项目”是载体,两者相互促进、相得益彰。“卓越计划”为“大学生创新创业项目”的高质量开展汇集了优势,“大学生创新创业项目”为“卓越计划”的培养效果提供了检验平台,并使“卓越计划”学生的实践技能得到了锻炼和发挥。因此,重点在“卓越班”中开展“大学生创新创业项目”是必要选择。
参考文献:
[1]李晶.卓越工程师师资培养的探索[J].广东化工,2014,41(05):186,192.
[2]吴彩金,韩虹,周苏敏.化工仿真实验室建设与教学实践探索[J].高校实验室工作研究,2010,(02):62-64.
[3]康蕾,彭桂莲.化工仿真在工学结合《化工单元操作》课程中的应用[J].广东化工,2012,39(09):220.
关键词:双语教学;洁净煤技术;多媒体课件
中图分类号:TP37 文献标志码:A 文章编号:1674-9324(2012)03-0181-02
随着世界经济发展大潮的到来,近几年我国的经济发展速度惊人,而维持经济快速发展则需要一大批专业技术人才。这样的复合型、创新型、国际型高级人才就要求既要精通本专业知识,又要擅长本专业外语。为了培养这样高层次的人才,学校在课程设置时大学里的双语教学就显得尤其重要了。对于化学工程的学生们,特别是煤化工方向相关专业的学生,同样面临着专业国际化的改革与创新问题。《洁净煤技术》课程是我校化学工程与工艺专业、应用化学专业及矿业专业的必修课程,建立《洁净煤技术》双语课程体系对于专业课程建设有着非常重要及深远的意义。但是在教学过程中采用双语教学模式,就使学生的学习难度加大,不容易接收更多的信息内容。如何在有限的课堂教学学时里,完成这一繁重的教学任务并取得良好的教学效果,是双语教学教师们应一致积极思考和探索的问题。多媒体教学是高校近年来兴起的一种辅助教学手段,它形象、直观且信息量大,能缓解双语教学引起的授课时间紧张的问题。但要想达到这样的教学效果,双语教学教师必须精心编制、设计多媒体课件,尽量使课件内容形象、生动,并且能够配合自己的实际教学,更容易为学生所接受。下面就结合本人在《洁净煤技术》双语教学多媒体课件编制设计过程的做法和实际的教学经验,简单谈几点体会。
一、充分做好准备工作
1.把握教材方向,重点鲜明,精选教学内容。由于本课程工程技术性强,知识点非常多,主要包括煤炭加工、煤炭转化、煤炭高效燃烧、后处理及现代煤化工先进技术等几个方面,在有限的学时里,不可能做到面面俱到,而且采用双语教学,势必要对教学内容进行更合理的安排,做到重点突出,并具有连贯性。目前,尚无《洁净煤技术》双语课程本科的适用教材。在本教研室教师长期教学的摸索及在学院经费的支持下,自编出版了校内讲义,保证学生在课堂上对该课程中的工程技术知识的掌握及应用。例如煤炭气化、煤炭液化、煤气、烟气除尘、脱硫等章节,结合实际的工艺及设备侧重工程概念,而对机理不做过多强调(因在其他课程中已有详细介绍)。
2.针对学生的英语水平和对课程的熟悉程度制作多媒体课件的内容。双语多媒体课件,版面内容应以英文为主,这样可以让学生在听课的同时掌握大量英文专业词汇。在此之前,首先要做好调研,看学生能否适应这种教学模式。按照学生英语基础水平的条件在学生中实施双语教学。在此课程开设前,化学工程与工艺、应用化学专业都应开设专业的英语课程,而且在大一、大二阶段进行过两年的英语强化教学,这无疑都给双语教学课程的开设奠定了基础,但因为有个别同学英语水平不够好,而考虑到绝大部分学生的接受能力,在制作双语多媒体课件时,要以中英文对照的形式列出每一知识点的术语,并让学生们提前预习,这样会取得更好的教学效果。另外,还可以采用与板书相结合的方式,将生疏的一些术语罗列在黑板上,以便学生们对照。
二、多媒体课件的形式和结构
1.课件设计应符合本课程的特点――工程性强。《洁净煤技术》课程内容工程性很强,需要有大量的图形、计算,学生在课下自学或复习时,往往比较吃力,有很多地方自己不容易搞明白。通过采用多媒体课件的特殊动画功能,让工艺中的物料、能量线等都动起来,并定义多层次动态图像,使图像与推导过程、机理模型等有机结合起来,按照推导的顺序依次展现,来将《洁净煤技术》课程中的工程概念演绎得层次分明、直观易接受、生动、说服力强。而且很多比较复杂的工艺等能根据需要反复播放,加深在课程体系的重要性。例如,在讲解到煤气化工艺时,可以先将工艺设备设置一个图层,让学生首先了解到该工艺中需要用到的装置,然后再将物料线附加到该图中,构成了工艺流程图,能量线的加入又有助于学生更深层次地了解该工艺的能量平衡和工艺的原理,最后将工艺的核心设备――气化炉的结构链接出来,这样循序渐进的将整个工艺及设计的思想、设备的结构等知识点渗透到学生思维中,将复杂的、庞大的知识点分解,并强化吸收。
2.整体风格应简洁――层次分明,重点突出。风格简洁的课件,不但能增强教学效果,而且还能够激发学生的学习兴趣,所以课件的制作从背景、图形曲线的色彩、文字的字体等都要力求简约,这样做出的课件画面层次感强,符合学生的视觉心理和逻辑思维,这样就使学生更容易接收课堂教学内容,可以实现更好的学习效果。
3.合理使用超链接设计。正确、合理使用超链接功能,可以启发学生的联想思维,可以实现教学信息的灵活获取,可以使教学内容重现,更适合于不同层次水平的学生的学习需要,能做到因材施教。因此,在多媒体课件的设计中,既要注重教师的教学过程,也要重视学生的认知结构。多媒体课件要改变简单的演示型模式,从而使多媒体课件真正成为学生探索和发现学习的认知工具。超链接的应用大致有两种情况,一种是“总述―分支”,例如,在讲解到烟气脱硫这一章节时,前面要将整个脱硫方法进行分类,在每一种方法中都要介绍这种方法脱硫的机理,这时,就可以采用超链接的方法先总述,再逐一介绍分支,然后再回到根目录的方法,当然超链接的使用还可以应用到另外一种情况下,就是利用超链接去引导学生思考,将前后知识点进行串联,例如,在讲解到煤直接液化产物的特点时,要结合液化的基本原理和工艺过程来理解,这时,我们就要将课件再链接回到前面这两个知识点所在的位置来进行解释了。
4.课件的设计也要注重师生互动。在制作课件时,一定要留有让学生思考的空间,例如,我要提出某一个问题时,切忌将答案直接与问题一起出现在幻灯片中,可以利用动画设计,让问题与答案具有一定的时差性,这是进行师生互动的前提,这样安排,可以使整个课堂气氛极其活跃,还可以激发学生自主思考的积极性。
三、《洁净煤技术》多媒体课件的设计实践性结论
双语课件的建设和教学实践,一定要理解对本科专业双语教学的内涵,了解本课程的知识体系、科技前沿,并用一些实用性的方法,取得良好的教学效果。通过对《洁净煤技术》双语教学课件的建设及操作过程,我的体会主要有以下几点:第一,双语教学的多媒体课件制作的内容及形式结构,必须针对本课程的特点、难易程度和授课对象的接收能力进行设计,力求重点突出、简洁直观,比如使用表格、图形图层等方式,充分将课程以最易接受的方式传达给学生,激发学生们的学习兴趣。第二,双语教学的课件形式的安排应该与结构体系和界面功能设计相融合,例如采用简单清晰的背景再配以动画、超链接等工具的使用,充分体现课件内容体系与多功能、多情景教学方法的相互协调、有机融合;第三,多媒体教学要与传统教学的模式相结合,扬长避短、相互补充,使多媒体双语教学达到良好的教学效果。
参考文献:
【文章编号】0450-9889(2017)06C-0078-02
高分子材料是化工产品的一个分支,是目前发展最快、应用前景最广且最具生命力的一类化工产品;高分子行业的迅猛发展,急需大量复合型人才。而大多数高校高分子材料专业的人才培养侧重在材料的合成等偏理论方面,对高分子材料加工成型为终极产品的工艺环节关注的程度不高。广西大学化学工程与工艺专业在化工材料加工工艺方面开设了系统的专业课程群,为“高分子材料成型与工艺”课程的设置打下了坚实的理论基础。然而,广西大学化学工程与工艺专业没有开设过高分子物理、高分子化学、高分子材料、聚合物加工原理、高分子材料基础等高分子基础或专业基础课程,且该专业作为一个覆盖范围广泛的交叉的专业,开设的专业课程很多,所有的专业课程学时都高度压缩。在高分子材料理论知识缺乏、课程学时数少、无配套实验的背景下,本文从教学内容、教学方法、创新能力培养等方面对“高分子材料成型与工艺”课程教学改革进行探索。
一、教材的选用
广西大学化学化工学院“高分子材料成型与工艺”课程刚开设时,选用的教材是史玉升等编著的《高分子材料成型工艺》,学生通过学习可以掌握高分子材料的制备、性能、成型、评价及应用,全面系统地了解高分子材料成型技术的最新知识。教学过程中,学生反映这本教材的难度太大,因为“高分子材料成型与工艺”是一门专业技术课程,需在完成化工热力学、化工原理、物理化学、有机化学、无机化学、分析化学、高分子物理和化学、高分子材料、聚合物加工原理、高分子材料基础等基础理论课和专业基础课程后,对学生进行综合训练。
“高分子材料成型与工艺”课程是在大三第一学期开设的专业课,此时学生已经修完化工热力学、化工原理、物理化学、有机化学、无机化学、分析化学等基础理论课,然而基本没有学过高分子物理、高分子化学、高分子材料、聚合物加工原理、高分子材料基础等专业基础课,高分子材料方面的基础较差,加上这本教材讲述的理论知识较少,所以学起来较吃力。根据学生的反映,学院及时更换了教材,采用周达飞等主编的《高分子材料成型加工》“九五”重点教材,该教材高度概括了高分子材料的最基础的知识,对加工成型影响很大的高分子流变学基础知识进行较全面深入的介绍,全面介绍了高分子材料成型加工最常用的基本工艺,也兼顾了新技术和新方法,难度适中,得到学生好评。
二、教学内容的改革
高分子材料成型技术涉及化学、材料、材料加工、机械等多种学科,“高分子材料成型与工艺”课程是一门专业技术课程,需要广泛的理论知识基础。化学工程与工艺专业的学生基本无高分子材料理论基础知识,学习起来的确难度很大。非高分子材料专业的“高分子材料成型与工艺”课程要以“高分子材料―成型加工―制品性能”这条主线展开教学内容,重点掌握三者的关系,强调成型加工对制品性能的重要性,这是本课程的主题思想,也是高分子材料的工程特征;选用“九五”重?c教材《高分子材料成型加工》,充分利用国内外重要专业期刊了解行业最新动态,不断更新及补充教学内容,确保教学内容的先进性;在教学内容安排上,以高分子材料成型加工的大工程观点为着眼点,以宽专业为目标,概况高分子材料理论基础和概念(详细的内容指定参考范围让学生利用课外时间自学),从高分子材料的加工原理出发,着重对成型加工工艺进行讨论。从高分子材料的成型加工的共性出发,对模压、挤出、注塑及压延四大成型技术及工艺进行重点讲授,然后讲授塑料、橡胶及复合材料的成型特点和区别,对于一些新的成型方法,以及教材中未涉及而在一些科技文献中见报道的新的成型方法及工艺,教师建立了QQ群这样的交流平台,并将高分子领域权威的一些微信公众号分享到平台上,经常转发高分子材料国际国内的重要进展到平台,引导学生关注,激发学生的学习积极性,让学生以兴趣为导向自动组成兴趣学习小组的方式进行自学。笔者首先通过课内课外结合强化高分子理论基础与概念,对成型加工影响最大的流变性在课堂上进行详细介绍,而其他性能如稳定性、电性能、光性能等材料性能则作为课外学习内容,在有限的学时内,节选核心内容,把高分子材料合成、性能、加工及相互间的影响规律简要完整地介绍。比如教材中同一种成型方法按不同的应用体系分成很多小结,而教学过程中每种成型工艺仅以一种材料为代表来讲,但不同章节会选不同的材料体系来进行,比如讲橡胶的压延,那么注塑可能选塑料,而挤出可能选复合材料,这样来兼顾各类高分子材料的成型。
三、教学方法的改革
教学方法是影响教学目标是否能够实现、实现的程度和效率的关键。非高分子材料专业的“高分子材料成型与工艺”课程教学存在两个难点:一是许多内容涉及高分子加工机械、设备结构及操作过程,这要求有实际感性认识和直观性;二是该课程的理论性和实践性都很强,如何在教学过程中实现理论与实际的结合,用理论来解释生产中的实际问题,或以具体实例来说明理论,促使学生真正掌握知识。针对这些问题,“高分子材料成型与工艺”课程在教学过程中对教学方法、教学手段进行了改革。
(一)现代化教学与传统教学相结合。“高分子材料成型与工艺”课程中许多内容涉及高分子加工机械、设备结构及操作过程,这要求有实际感性认识和直观性,同时,该课程的理论性和实践性都很强。笔者根据所选用教材,利用PowerPoint加入声音、图像、动画、视频等各种多媒体信息,并根据需要设计各种演示效果,将抽象、生涩难懂的知识形象生动地展示给学生,激起学生学习的兴趣、吸引他们的注意力,大大加深学生对知识的理解和印象。由于化学化工学院缺乏相应的高分子材料成型教学设备,教学小组联系外界资源制作了几个基本成型工艺的微课,同时广泛收集案例、动画演示及成型录像,不断补充到授课内容中,让学生对高分子成型工艺及设备等有更直观的认识,对课件内容进行更新和完善,丰富课堂内容,加大课堂信息量,使学生获得对高分子材料成型加工的理性和感性双重认识,使教学达到事半功倍的效果。
同时,教师也要注意吸取传统教学中讲解的优点,将教师的语言、激情和应变能力体现在多媒体教学中,并用眼神、情感、心灵与学生沟通,必要时还要进行板书,让学生彻底把握一些关键问题。
(二)采用“任务驱动”教学法和启发式互动式教学。与传统的以教师为主体的“填鸭式”“灌输式”教学方式不同,笔者在部分知识点的授课中尝试采用“任务驱动”教学法,从传统教学的讲授、灌输和教师主宰课堂,转变为组织和引导;从单纯讲解转变为与学生进行适当的交流和探讨。笔者在讲述“高分子材料配方设计”这一章内容时,并没有按照书本来进行,而是布置了一道思考题“设计食品袋的配方”,让学生通过自学课本内容与上网查找相关知识等来完成这一思考题,并在学生完成后让他们用PPT来展示成果,通过讨论的形式与学生探讨了配方设计中的一些原则与内容。
启发式互动式教学强调先让学生积极思考,再进行适时启发;教师不仅要加强自身专业素养和知识积累,而且更重要的是建立师生互动的教学过程,并营造良好的课堂教学氛围,实现教学相长;教师注意自己角色的转变,良好的学习情境可使学生了解学习任务的必要性和与学习任务相关的学习信息,从而激发学习意愿和浓厚的学习兴趣;在教学过程中,对于重要的知识点,通过案例教学,与学生共同分析和讨论,启发学生进行思考,培养学生的创新能力。
关键词:石油化工工艺;教学改革;实践教学
中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2013)37-0040-02
一、引言
《石油化工工艺学》是继基础课和专业基础课之后,化学工程与工艺专业主干专业课程之一。其主要任务是从石油化工生产工艺角度出发,运用化工过程的基本原理,阐明石油化工工艺的基本概念和基本理论,介绍典型工艺的生产方法与工艺原理、典型流程与关键设备、工艺条件与节能降耗分析。与化工专业其他课程相比,该课程具有明显的特殊性:综合性强,知识点多;课程内容广泛,新工艺多;应用性强,理论与实际紧密结合。所以刚刚完成基础课和专业基础课学习、缺乏工程概念和实践经验的大学生,要面对以原油蒸馏、催化裂解、催化重整等工业化装置为研究对象的非理想的、动态的、复杂多样的生产实际问题,以及大量的新概念、新工艺等,会感到无所适从,甚至厌烦、畏惧。目前,《石油化工工艺学》仍以课堂教学为主。虽有少学时的实践教学,但企业从确保生产稳定、安全等方面考虑,不允许实习学生动手操作。另外,传统的“一块黑板,一支粉笔”的教学方法根本不能让学生对复杂的实际工艺过程真正理解、掌握,更不要说现场实际控制操作了。所以该课程教学效果较差,急需改革。针对该课程的特点及教学现状,为了确保教学质量,提高教学效果,我们进行了教学改革探索。
二、强化课堂教学
《石油化工工艺学》以课堂教学为主。为了提高教学质量,培养学生兴趣和学习的积极性、主动性,更好地实现理论与实践的有机结合,首先应以教学手段的改革强化课堂教学。一方面引入了多媒体教学手段,借助多媒体的声光交互、动静结合的特点给学生全新的视觉感受,极大地提高学生的学习兴趣;以图片、声像资料和动画方式展示一些设备和生产工艺流程,解释一些抽象的原理,展现一些复杂工艺流程中单元操作的实现过程等,直观、形象,能帮助学生深入理解、开阔视野、增加兴趣,使其在有限的时间内容易接受,实现了高效且良好的教学效果[1]。另一方面应借助学校开通的网络教学平台,丰富课堂教学内容,在教学过程中根据需要及时地向学生介绍最新工艺、与课程相关的国内外研究动态、企业生产现状等,并对社会行业发展和人材结构需求等信息进行传递。除此之外,网络教学平台还可以实现师生的互动,使老师及时了解学生的困惑和对课程的掌握情况,以便课堂教学中有的放矢。这些教学手段的实施都大大地提高了教学质量和教学效果。其次以教学方法的改革强化课堂教学。传统的“满堂灌”教学方法,已无法满足要求,需要采用多种教学方法并用。譬如启发引导式[2]、讨论式、情境教学式[3]、工程案例式[4,5]等。该方法既能增加师生之间的教学互动,又能激发学生的好奇心、学习兴趣和求知、探索精神;既培养学生将基础理论应用到专业课中的学习方法,又提高学生对实际问题的综合分析能力和解决能力。这些教学方法的改革活跃了课堂氛围,实现了师生的共同参与,改善了教学效果,提高了教学质量。
三、加强实践教学
石油加工过程错综复杂。虽然课堂教学中运用多种教学方法,既注重了知识的交叉和融合,又注重了知识领域的拓宽和工程案例的结合,但是学生没有实践经验,缺乏综合分析的能力和将理论知识应用到实际工程问题的意识,所以必须加强实践教学环节。认识实习、专业综合实验、顶岗实习等多种实践类教学手段,不仅仅是理论教学的补充和完善,更是学生实践能力培养与训练的重要教学环节。首先使学生通过认识实习对石油化工工艺主要工艺的生产有一定的概念和认识,然后通过课堂教学,在具备“必须、够用”理论知识的基础上,通过专业综合实验、顶岗实习等实践环节,循序渐进的分层实训,使学生逐步将石油化工工艺关键理论与生产实际融为一体,这不仅为操作技能的训练和形成提供了强有力的支撑,而且建立了工程意识、理论与实践相结合的意识,具备了在实践中学习的能力、综合应用知识分析和解决实际问题的能力以及人际交往与团队协作精神[6]。
四、培养工程思维能力
尽管先修课程如《化工原理》等已引入“工程”概念,且在教学中从教学方法、手段、实践等多个环节也引导学生建立工程意识,但还需要学生进一步在实践中自己主动的、习惯性的去强化工程意识,培养工程思维能力。譬如,学生自编工艺[7],让学生自选课题,用分析与综合的方法根据工程实际生产编制工艺并组织讨论;请实习基地的外聘企业专家定期进入学校,走上讲台,开设应用技术讲座、工程案例分析;学生自制剪辑并配有录音的工厂装置图片、工艺图片,以及一些现场教学录像;老师和学生走进企业,现场教学;深入车间,顶岗实习等,这些都可以在实践中培养并强化工程意识,使学生逐渐地学会从工程观念的角度考虑每一个生产环节,配置合理的流程,实现生产的最优化。
五、改革教学模块
根据专业、课程特点和教学目标,整个教学过程由原来的“满堂灌”和专业实验两个模块改为五个模块:认识实习模块、理论教学模块、专业综合实验模块、现场教学模块和顶岗实习模块。认识实习模块使学生近距离接触生产流程、设备等,建立感官认识和概念,并产生好奇、兴趣和探索的欲望;理论教学模块是指学生学习理论知识,并在老师的引导下应用理论知识去分析工程中的实际问题,结合企业的装置图片、讲解和现场教学录像等建立工程观念、分析并解决实际问题;专业综合实验模块是指学生可以自由选题,根据认识实习和理论教学所掌握的知识,通过分析和综合考虑自编工艺,在指导教师的指导下独立完成。这不仅使学生获得了学有所用的成就感,而且培养了学生综合思维能力、动手能力和分析解决实际问题的能力;现场教学模块既使学生巩固了理论知识,又系统化的深入认识了工艺流程、设备等,还强化了学生的工程观念及综合分析能力;顶岗实习模块则是针对生产实际中的某个工段或车间进行更深入和细致的学习与研究,包括流程、设备、操作条件的调试、简单故障的排除等,最终实现理论和实践的统一,并使学生能应用工程观念、理论知识去综合分析和解决实际生产问题,具备一定的动手操作技能和排除故障的能力。
通过这些模块的训练和学习,毕业后的学生不仅具有扎实的专业理论知识,且具有一定的现场操作技能和水准,缩短了工作后的“再教育”过程,基本可以实现“零距离”上岗。
六、结语
总之,改革后的《石油化工工艺学》课程,在五大教学模块中通过分层教学、强化课堂教学、加强实践教学训练、培养工程思维能力,不仅确保了教学质量,取得了良好的教学效果,而且还有效地提高了学生综合运用理论知识分析、解决实际问题的能力,基本实现“零距离”上岗。
参考文献:
[1]温得英.多媒体课件教学的利与弊[J].信息与教学探索,2008,(9):164-165.
[2]王虹,李翠清,靳海波,等.基于工程素质教育的石油加工工艺学课程改革与实践[J].化工高等教育,2010,27(4):47-49.
[3]田伟军.情境教学法在煤化工工艺课程中的应用[J].考试周刊,2009,(4):179-180.
[4]罗学海,王晓梅.工程案例教学法在工科课堂中的应用探讨[J].湖北成人教育学院学报,2007,13(5):98-99.
[5]贾绍义,夏清,吴松海,等.工程案例教学法在化工原理课程教学中的应用[J].化工高等教育,2010,(3):78-81,96.
[6]王要令,赵振新,马步伟.《煤化工工艺学》课程教学改革探索[J].科技信息,2010,(22):2.
[7]王健祥.《有机化工工艺学》课程教学初探[J].泰州职业技术学校学报,2002,2(3):54-56.
一、“以学为主”的多样化课堂教学
龚克指出,[5]大学教育区别于基础教育的标志之一,应是从以教为主转变为以学为主。改进以“管灌”为主的培养模式,激发学生的主动求知欲是真正提高教育质量的关键。在化学反应工程课程的双语教学中,我们也在逐渐转变观念,采用多种多样的课堂教学方法,改变完全以教师为中心的讲授式教学为多种教学方法并用,以提高学生学习的主动性为目的,着力提高课堂教学效果。下面拟对主要采用的几种教学方法进行介绍。
1•讲授式教学:即教师系统地向学生传授科学知识。由于本课程采用双语教学,学生在学习中往往花费较大精力在理解语言、语法上,反而忽视了课程知识,导致学习效果不够理想。[6]针对这一问题,我们在教学中改变传统的灌输式教学,采用多种形象、生动的手段,如大量的图示、动画,以图文并茂的方式进行讲解,避开学生在语言方面的障碍,使其注意力转移到课程知识的学习,引导学生不要过多关注语言、语法,强调英语语言以“用”为目的,提高学生对知识的接受效果。课堂上经常设问,激发学生克服语言障碍从课本中寻找答案的兴趣。教学中重视双语应用实效,根据学生接受知识的程度,逐渐提高英文讲授和表述的比例;鼓励学生多运用英文,从看例题、做习题开始,到逐渐习惯用英文写作业和考试答卷。
2•互动式教学:即授课过程中教学双方经常进行交流互动。例如在教学中,教师提供工业反应器范例,由学生自行发现反应器的设计特点并主动质疑,然后全班讨论或小组讨论,继而选出学生代表,用英语表达自己对该反应器设计特点的认识和分析原理,最后教师作总结或纠正要点。教师经常选出教材中较为生动的典型章节或例题,提出问题,由学生自行阅读课本,让学生带着兴趣学习,引导学生猜读不熟悉的单词;以学习课程知识为重点,让学生自行讨论阅读的内容,最后教师强调这部分内容中的关键概念和原理。每次课结束,教师都布置任务给学生,要求学生总结本次课程的内容。下次课上首先抽出几位同学对前一次课的内容进行提纲挈领的回顾,由此督促学生课下自主复习,及时回顾,保证知识的连贯性,达到温故而知新的目的。这些互动式教学方法促使学生自主阅读教材,并运用英语语言表达自己对课程内容认知,取得了很好的教学效果。
3•感知式教学:教学中利用各种方式让学生直接感知实际的反应器。我们认为,仅给学生讲授理论知识,往往很难达到预想的效果,而直接感知对化学反应工程教学具有非常重要的作用。由于反应器是化工工艺过程的核心设备,我校有大量的科研力量投入在反应器设计中,已开发的反应器包括催化裂化、催化裂解两段提升管反应器及渣油加氢裂化悬浮床反应器等。此外,各科研组用于科学研究的反应器多种多样,如固定床反应器、流化床反应器、釜式反应器等。在教学过程中,课程组教师创造各种条件,让学生进入实验室参观实际反应装置,不能参观实物的,则以生动的照片、图片来展示,将反应器的特点直观地展示给学生,让学生将抽象的理论与实物建立起联系,显著提高教学的实效。
4•训练式教学:即教学注重学生对所学知识的反复实际训练。目前推进的“卓越工程师培养计划”中,很注重培养学生的工程设计能力,在化学工程与工艺专业随后的课程中有专门培养工程设计能力的化工设计课程,其中不可避免地涉及化学反应器的设计。由此,在课堂教学中,我们除了让学生就每个知识点进行反复训练,还设计题目,让学生就多个知识点甚至整个知识体系进行训练;并设法找到工业实际反应器的数据,例如石油化工过程中涉及的油品催化裂化流化床反应器、乙苯脱氢制苯乙烯固定床反应器、邻二甲苯制苯酐反应器等,让学生身临其境地进行反应器计算或设计的训练。在教学中,针对具体的教学内容,我们分别采用不同的教学方法,激励学生充分发挥主动性,并尽力使课程理论与工程实际相结合,取得了较为满意的教学效果。
二、理论教学与实践教学充分融合
近年来由于校院两级投入的加大,我们的实验和实践教学条件取得了较大的发展。化学反应工程课程组教师,充分抓住各实践教学环节的机会,将本课程中的理论融入实践教学之中。
目前,针对本课程所设置的教学实验有五个,包括:多釜串联反应器停留时间分布测定实验、固定床及流化床的流动特性实验、管式反应器内的烃类裂解反应实验、苯酐合成反应过程实验以及乙苯脱氢制苯乙烯实验,以强化学生对非理想流动、流体流动示踪方法、停留时间分布、实际反应器形式以及转化率、选择性、反应器换热方式等的认识。这些教学实验,为本课程的实践性教学提供了良好的支撑。进行相关实验时,我们进一步强化学生所学的理论知识,重温重要的概念,使学生在实验过程中切实认识真正的反应器,并运用所学理论知识进行反应器的操控和数据的处理。
我校拥有良好的实践和实习教学条件。化学工程与工艺专业的学生均要经历认识实习和生产实习等实践环节。化学反应工程课程组教师充分利用这些实践环节,引导学生把课程的相关理论知识与现场实践相结合。例如在实习中,我们给学生下达任务,了解相关工业反应器的形式,认识其特点,了解其中所发生反应的类型和特点,调研并取得反应器进出物料组成和流量数据,以此进行物料衡算,计算目的产物的收率、选择性等,使学生对反应工程所学内容有一个回顾,体会到本门课程所学知识在实际工作中的作用,激发学习兴趣,实现理论与工程实际的紧密结合。
我校专为化工专业建成了一个仿真计算实验室,安装了常减压、催化裂化、加氢精制等典型的炼油装置仿真软件。在配合实习教学的同时,它们可以进一步深化学生对化工反应器的认识。仿真实验室还安装了化工设计模拟软件,为化工设计实践提供了良好条件。承担化学反应工程课程的教师,也参与化工设计实践的指导,从中进一步强化有关反应器设计理论的应用,使抽象的理论体现于具体的工程设计中,让学生体会到学有所用。很多学生在化工设计总结中感慨地表示:以前学了那么多理论,不知道有什么用,通过化工设计,又将以前的理论知识回顾了一遍,设计出一套实际的装置,收获很大,很有成就感!目前,我国推进的“卓越工程师培养计划”注重提升学生的工程实践能力和创新能力,[5]本课程理论教学与实践教学充分融合的教学方案无疑正好吻合了“卓越工程师培养计划”的总体思路,也是我们进一步努力的方向。
三、教学与科研相结合
科研在高等教育中具有十分重要的地位,要培养创新型人才,建设一支合格的教师队伍,必须把科学研究作为提高教师素质的关键环节。教学工作是教师的天职,而科研对教师学术水平的提高有着积极的促进作用。国内外经验证明,没有高质量的科学研究,就不可能建立一支高水平的师资队伍。没有高水平的师资队伍,同样也不可能有高水平的教学质量和科学研究。科研是提高教师综合素质和教学能力的第一促进力。
我校化学反应工程课程组教师均具有较强的科研背景,在炼油工艺和催化领域取得了大量的研究成果,掌握着该领域的最新进展,所承担的科研任务大多与化学反应工程课程知识有着紧密的联系。例如,催化裂化两段提升管反应器就是利用化学反应工程的知识所开发出的新型反应器。已开发的多产丙烯(TMP)技术的中心环节也与非均相催化反应动力学和反应器设计直接相关。教师在科学研究中进行自我完善与发展,通过科研工作促进自我知识结构的更新、知识体系的充实、对知识前沿的把握和对学科知识的理解,为教学内容和教学方法的改革奠定了“能动性”基础。
有深厚的科研背景,可以保证教师授课中知识传授的准确性与知识重点的掌握,同时教学中教师会自然而然地把科研中获取的生动案例结合进来,实现将科研成果向教学内容的转化。将科研成果融入课堂教学,一方面能有力促使学生掌握较宽的化学反应工程基础知识,学习化学反应工程的研究方法与思路,了解化学反应工程最新进展及发展方向,另一方面也激励学生提高创新思维的能力,加强工程观点、提高分析工程问题和解决工程问题的能力。以下即是科研成果向教学转化的两个实例:
实例1,利用两段提升管催化裂化技术的科研成果,课上给学生讲授两段提升管反应器的设计思路,从反应动力学特性、反应器流动特性等多角度进行案例剖析讲解,使学生在理解理论知识的同时,接触到工业实际反应器设计案例,抓住学生的兴趣点,大大提高教学效果。
实例2,我们利用科研中对反应器流动行为示踪研究的经验,生动形象地将非常抽象、难懂的非理想流动现象和概念介绍给学生,并利用图片、动画给学生演示非理想流动示踪研究的过程,使学生产生浓厚的学习兴趣。
教师们在科研工作中积淀的经典案例和对学科前沿的把握,使学生感同身受地体会到知识的力量,增强了对工程技术科学的崇尚意识,有效地激发了探索和研究的热情。
关键词:化工安全 实践教学
中图分类号:G642.0 文献标识码:C DOI:10.3969/j.issn.1672-8181.2013.19.145
1 前言
众所周知,化工原料及产品多是易燃、易爆、有毒、有腐蚀性的物质,这些性质就决定了其在生产、贮存和运输过程中存在极大危险性[1]。为迎合安全生产的需要,《化工安全技术》应运而生,该课程是理论与实践相融合的产物,其内容不断受到社会科学发展与教育理念更新的冲击。要想使毕业生更好服务于化工,其授课内容就要不断更新,与时俱进。
2 化工安全技术的特点
2.1 知识内容的综合性
本课程既包括化工生产的基础知识,又涉及到安全的分析及管理。这就要求学生能综合利用所学的各科的基础知识,分析解决化工生产过程中的实际安全生产的问题[2]。
2.2 生产过程的复杂性
化工生产过程复杂,涉及到的安全问题广泛,既有动力学引发的安全问题,如机械伤害;也有热力学引发的安全问题,如烫伤事故;还有其他类型安全隐患等,这都需要学生掌握相关的基础知识并能解决实际问题。
2.3 教学手段的创新性
随着经济的发展,新技术、新工艺的不断涌现给化工生产带来重大变革同时,也给在新的生产条件下如何安全生产提出了新的挑战。这就要求任课教师能结合实际,提出一些新的思想及新思路,致力培养学生理论联系实践的创新能力[3]。
3 化工安全技术教授过程中存在的问题
目前的化工安全技术课教学存在以下问题:就学生自身而言,很多学生有“衣来伸手,饭来张口”的思想, 老师讲授多少学多少,课下也不思考,导致动手能力以及分析问题能力相对薄弱。就教师的教学而言,以刘景良主编的《化工安全技术》为例,总共十章,内容多,若采用单一的教学方法,如板书,万一授课者语言重复繁琐、无吸引力,就容易使学生产生厌倦情绪和神经疲劳。所以,化工安全技术课程采用新的教学模式至关重要,才能从根本上提高课堂效率,让学生对高危行业的安全隐患有着较充分的认识, 为以后工作打下坚实的安全基础。
4 多媒体技术在化工安全技术教授过程中应用举例
多媒体的优点:集声、像、图、文为一体,可使教材中复杂的结构示意图呈现立体动画效果,增强视觉效果,可充分体现多媒体教学的生动形象性[4]。
4.1 《化工安全技术》概述介绍
本章节内容是《化工安全技术》这门课的开始,内容涵盖多、笼统,没有突出的重点,为了让学生更加直观、生动地了解化工安全,光借助板书书写是不可能实现的,这就要借助多媒体,去展现更加丰富的视频资料及图片资料,也可以更好地吸引学生的注意力,激发学生的学习兴趣。譬如,很多学生都感觉化工事故离自己很远,授课过程中我们就可结合化工事故视频,给学生极大的视觉冲击,让学生先对化工产生丝丝畏惧感,才能使学生真正的知道化工事故的危险性。
4.2 消防安全知识介绍
本节内容主要介绍各种灭火剂的种类、灭火原理及灭火器材的使用。对于常见的灭火剂:水、泡沫灭火剂、二氧化碳、卤代烷烃及干粉的灭火原理、优缺点、使用范围可借助板书简要写出。而对于对应的干粉灭火器、二氧化碳灭火器、泡沫灭火器、卤代烷烃灭火器等外观、内部结构、使用方法,就要借助多媒体了,可以用PPT给出设备外部及内部结构图片,再结合相应设备的操作视频就可以让学生直观的了解及学习灭火器的使用。我们讲解灭火器的相关知识的目的还是让学生能够分清火源的种类,选择合适的灭火器材,以及灭火器材的使用方法。所以,在本章节授课结束后,结合本校的安全实训室中的灭火器材,让学生进行实际操作,这样才能从根本上提高课堂效率。
4.3 心肺复苏知识介绍
这部分内容主要包括人工呼吸与胸外按压法两种急救方法。讲解过程中首先要强调在人工呼吸开始前的注意事项及操作要点,这部分内容把要点板书展示出来,结合多媒体中的视频资料,让学生更直观地了解所强调的要点,比如被救护人员嘴中有异物先及时清理,然后下巴尖和地面垂直,头下不要垫枕头或其他物品,嘴巴张开,保证呼吸顺畅,随后进行人工呼吸。对于人工呼吸的频率当然也要结合视频的操作重点给学生强调。
接着就要讲解胸外按压法,这部分内容重点是强调按压时救护人员的手的姿势、按压位置、按压姿势、按压频率,要想把这要点都让学生掌握,光靠板书是不行的,就要结合多媒体给出正确姿势的图片,顺道再把错误姿势图片展现出来,最好把错误姿势图片做好特殊标记,给学生以视觉冲击,加深理解。等要点讲解完,借助视频资料,系统的展示下人工呼吸与胸外按压法完整的操作,然后继续借助安全实训室的实训器材,让学生亲身体验人工呼吸与胸外按压具体过程。
当然,在教学过程中我们要充分认识到学生既是学习的受体也是学习的主体,一位教师的教学质量的好坏,他们是有最直观的感受,也最有发言权。所以,要想从根本上提高课堂效率,师生之间良好的互动是必不可少的,只有通过与同学的交流了解教学过程中的不足之处,才能更好地逐渐弥补自身在教学过程中存在的缺陷,有效的提高教学质量。
5 结束语
在教学实践中,教学方法的选择要根据学生的实际情况灵活选用,不管选择哪种教学方法,或者几种综合利用,都是以提高教学质量为目的的。以上都是笔者在从事化工安全技术的教学过程中总结的一些经验,由于教学技术的发展、科学技术的进步,其教学方法还有很多改进之处,仍需不断努力。
参考文献:
[1]刘景良主编.化工安全技术[M].化学工业出版社,2008.
[2]赵雪娥,李惠萍.影视资源在《燃烧与爆炸理论》课程中的应用[J].科技创新导报,2010.
[3]王凯全.化工安全工程学[M].中国石化出版社,2007.
[4]何克抗.多媒体课件及网络课程在教学中的应用[J].中国大学教学,2007,(5):74-81.
作者简介:民(1984-),男,汉族,山东郓城人,主要从事化工类专业课教学,兰州石化职业技术学院应用化学工程系,甘肃兰州 730060
鲁凤,兰州石化职业技术学院应用化学工程系,甘肃兰州 730060
Abstract: Based on the characteristics of Coal Chemical Technology course, and combined with the author's teaching experience, this article discusses on how to make students understand, recognize and apply the professional course. The author's teaching experience is stated in this article in hope of getting more improvements and support in the future teaching.
关键词: 煤化工工艺学;教学;体会
Key words: coal chemical technology;teaching;experience
中图分类号:G642.3 文献标识码:A 文章编号:1006-4311(2014)02-0238-02
0 引言
《煤化工工艺学》是煤化工专业的专业必修课,煤化工专业在我校是属于化学工程与工艺专业的一个方向。为了顺应国家大力发展煤化工产业的大战略,培养煤化工专业的应用型人才迫在眉睫。而只有学懂《煤化工工艺学》,才能基本了解煤化工专业的实质内涵。《煤化工工艺学》课程的主要内容包含:煤的低温干馏、炼焦、炼焦化学产品的回收与精制、煤的气化、煤的液化、煤的碳素化、煤化工生产的污染与防治,内容涉猎了煤的绝大部分转化原理、工艺及其方法。通过本书的学习,可以使学生获得专业基本知识,具备在专业生产第一线工作的基本能力。所以教授好这门课程,并且使学生获得必要的收效显得尤为重要。
《煤化工工艺学》是一门以应用为主的专业技术课,学生学起来比较抽象难懂,因此比较科学而易懂的讲授方法,才能够与学生引起共鸣,达到较好的收效。这门课程的基础课是《煤化学》、《有机化学》、《化工原理》、《物理化学》等,作者本人讲授《化工原理》和《煤化学》课程多年,同时结合自己多年的生产实践经验,在驾驭这门课程方面谈一下自己的教学体会。
1 合理分配课时,顺应人才需求
我校引用的《煤化工工艺学》教材是大连理工大学郭树才老师编写的,建议课时80学时。而我校在教学计划中规定课时是128学时,大三下80学时,大四上48学时,因此在分配教学内容时,笔者将煤的低温干馏、炼焦、焦化产品回收与精制三大部分放在大三下的80学时里,把煤的气化、煤的液化、煤的碳素化、煤化工生产的污染与防治放在大四上。这样分配的优点在于:大三下的内容主要是传统煤化工的精髓,学生利用较多的学时理解、消化、吸收;大四上的内容主要是新型煤化工的知识,并且是传统煤化工与石油化工的交汇。从我校的特色办学里可知,我校的煤化工专业既保留了煤化工专业的特色,又吸收了石油加工专业的营养,具有大化工的优势。同时,由于国内现在煤化工的开发利用重点在煤气化、煤液化以及煤制天然气等方面,所以把新型煤化工知识放在这个学期学习,可以使参加应聘的同学很容易回忆起所学过的东西,面试时更有自信。
2 内容详略有当,紧跟学科前沿
郭树才老师的《煤化工工艺学》是按照80学时的课程来设计的,我们拆开来讲解,如果只理解课本上的知识远远不能满足教学需求,因此,必须依托课本,适度引进《炼焦工艺学》、《煤化学产品工艺学》、《煤炭气化工程》、《煤炭直接液化》、《煤炭间接液化》、《煤基醇醚燃料》、《煤化工过程中的污染与控制》等相关教学内容,才能达到既使课堂内容饱满,又使学生了解学科前沿,了解新装置、新技术、新工艺的发展动态,具有对新装备、新技术、新工艺、新方法理解、运用和掌握的初步能力。
比如在第一章,煤炭的低温干馏内容里,实质重点是煤的低温干馏和中温干馏的基本原理、工艺过程、主要设备以及主要技术,为第二章煤的高温干馏做足了铺垫。在讲解的过程中,笔者就结合国内的央企大唐国际比较成熟的“褐煤提质工艺”,以及《煤化学》教材中讲到的相关煤的基本性质与工艺性质来做适当重点讲解,这样,既使学生回顾起来《煤化学》课本上的基本重点知识,又使学生了解了煤低温干馏工艺的风向标,既满足了学生的专业好奇,又为未来就业打下良好基础。在第二章炼焦内容里,大量引进《炼焦工艺学》的基本原理、工艺过程、国内外主要焦炉类型、焦化工艺等的主要内容,同时也结合国内鞍山焦耐院与化六院开发并且使用的各类大型焦炉,展开评价,既使学生把握了煤的高温干馏的基本知识,也使学生认识到了煤焦化的瓶颈以及突破的入口,为未来煤高温干馏的技术研发打下深厚的基础。在第三章炼焦化学产品回收与精制一章,除了详细讲解煤气净化过程中如何提取并且回收重要的化学产品,同时也就目前比较看好的苯加氢工艺,以及煤焦油加氢工艺做了必要的阐述。使学生了解了课本知识的同时,也较好的把握了国内煤化工专业动态,为自己选择专业方向做好了准备。在第四章以后的煤炭气化、煤炭液化等新型煤化工知识方面,更是结合国内现在的煤化工产业动态,在讲解气化原理、气化设备、气化工艺的同时,结合本人对欧洲煤化工技术的考察,把学生引进以煤气化为基础的碳一化工领域,使学生对未来煤化工发展的大战略有了初步的思考,并对就业有了更深刻的认识。在煤化工产业的背后,实质是大量的能耗、大量的污染,如何解决,必须要使学生了解污染产生的主要环节,污染物的主要类型,针对不同性质的污染如何在生产的初、中、末,采用必要的技术消除。因此,学生在学习知识的同时,也知道了自己的专业不仅可以去煤化工行业去就业,也可以去环保、能源动力方面去就业,拓展了思维,开阔了眼界。
3 教学方法灵活,学科联系紧密,学生互动加强
在《煤化工工艺学》的教学过程中,如果仅仅是循规蹈矩地一味去讲解,学生会觉得枯燥、晦涩、难以进入模型。因此,教学方法的灵活多变可以促进学生的理解。
首先采用比拟的授课方式,为学生建立立体的图形,使学生对设备及工艺加深认识。比如在讲解煤加工的设备时,我们习惯称“炉子”,使学生与家庭里常见的火炉联系起来,建立形象化的模型,然后,把模型拆开来,逐一再理顺,大家就对设备有了直观的认识。然后又把“炉子”与化工生产中的“反应器”联系起来,大家就知道了在不同的领域,设备的叫法有所不同,但是原理基本相似;再就是在焦炉的认识过程中,我把学生坐的桌子和椅子分别形象地比拟成“炭化室”和“燃烧室”,使大家直观地对焦炉建立起了立体的印象,然后再把成焦过程中模型分解开来画在黑板上,大家就很直观地对“单向供热”、“成层结焦”有了更深刻的体会。其次采用相关专业课的知识关联,强化了专业理论的理解,同时也强化了相关专业课的应用。比如在学习《煤化工工艺学》之初,先复习《煤化学》相关知识重点,使大家为不同煤化度和不同性质、不同产地的煤种如何应用,对号入座;在讲到焦炉燃烧系统及烟囱的流体流动时,我们及时地与《化工原理》课程的精髓之流体流动和传热对接,把各个环节流体流动的性质分析到位,同时把如何废气循环和节能关键点抛给学生,使学生带着问题去思考,培养大学生分析问题和解决问题的能力;还有在讲解炼焦化学产品的回收与精制过程中,及时与《化工原理》里吸收及萃取的单元操作联系起来,使学生在学习本专业课的同时,把握了专业基础课如何应用的方法,既促进了本专业的理解,也促进了其他课程的学习,一举两得。再次,利用复杂的工艺流程路线图,强化训练,启发学生快速识别并分解工艺路线。教会学生如何去理清复杂的化产回收工艺流程图,然后再自己去设计工艺加工步骤,既可以快速地理清工艺,又可以把机械制图及AUT CAD用到实处。在工艺学的学习过程中,不仅仅是学会原理、工艺,认识设备,识别流程,更重要的还有如何去设计、开发,因此,组织学生讨论,带着问题去学习思考,利用相关知识去引导学生自己动手,写专业小论文,进行相关工艺设计,工艺计算以及工艺设想,掌握专业领域内工艺与设备的基本设计能力,很值得去推广。
参考文献:
[1]赵振新.《煤化工工艺学》的教学法思考[J].化工时刊,2012(07).
关键词:水处理理论与技术;课程体系;教学模式;教学方法
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)43-0092-02
《水处理理论与技术》课程是武汉大学水质科学与技术专业、能源化学工程专业重要的必修课。通过本课程的学习,使学生掌握水处理的基本原理,熟悉水处理工艺单元、设备、系统的基本知识,培养学生具有设计、计算水处理工程中的设备、工艺系统的基本能力,为将来从事本专业的工程设计、科研及运行管理奠定必要的理论和应用基础。
一、课程的性质和要求
《水处理理论与技术》课程主要包含水处理的基本原理和应用技术,涉及化学反应、化工传质、流体力学和机械设备等多学科的专业知识。通过本课程的学习,使学生掌握水处理的基础理论知识,以及工艺设计和计算方法,了解水处理在电力、煤炭等能源行业的应用知识,初步具备将各种水处理单元技术组合成水处理系统的能力。
二、课程现状
1.传统教材单一,教学内容陈旧。全国高校同类课程参考教材主要是许保玖主编的《给水处理理论》(中国建筑工业出版社,2000年),许保玖、龙腾锐主编的《当代给水与废水处理原理》(第二版,高等教育出版社,2003年)。这些教材都是水处理领域经典的教学参考书,都很好地阐述了水处理的基本理论和基础知识,但是教材出版年代比较久远,不能满足新形势下水处理技术不断发展的需求,不能及时更新拓展教学内容。
2.教学方式落后。水处理设备及构筑物的工作原理和结构复杂,依靠传统课程讲解及板书的教学方式获得的信息很抽象,学生难以理解,而且教学方式过于单一,学生较难理解工作原理和设备运行情况。学生的创造性和积极性难以被激发出来,导致教学效果欠缺[1]。
3.考核与评价方式片面。传统的考核方式通常以单一的期末闭卷考试为主,这种单一以分数高低评价学生成绩的考核方式不能适应《国家中长期教育改革和发展规划纲要》的要求,也不利于学生的全面综合发展。
三、课程体系的建设
1.教材的选择与建设。考虑本专业是以电力行业为办学特色以及将来学生就业方向,选择了周柏青、陈志和主编的热力发电厂水处理(上册,第四版,中国电力出版社,2009年)及李培元、周柏青主编的发电厂水处理及水质控制(第一版,中国电力出版社,2012年)作为主教材[2,3]。并参考国外大学的原版教材,把最前沿的理论和知识融入教学中,让学生从Water research,Desalination等著名期刊上搜寻最新的水处理技术文献,掌握最新最前沿的理论与基础知识,从而激发学生的学习兴趣。
2.理论课程与实验课程。《水处理理论与技术》的理论课程,共3学分54学时,包括水质概述、水的混凝处理、沉淀与澄清、过滤、离子交换除盐、凝结水精处理、循环冷却水处理7章内容。《水处理理论与技术》的实验课程18学时,包括混凝实验、树脂RH―Na交换平衡等温线的测定、循环冷却水阻垢剂的快速筛选、水处理药剂缓蚀性能的测定四个教学实验。
3.教学大纲的修订与教学内容的调整优化。在新大纲中对原教学体系和内容进行了调整和充实。如将絮凝反应池中新的设计理念、新型过滤材料、凝结水精处理新型过滤技术等,在教学内容中得到补充和完善。在教学过程中,将授课内容分为基本和重点两类。对于重点内容,对书本中的知识重新设置并对相关知识加以补充,例如重点内容阳离子与阴离子之间的关系、含盐量与溶解固体之间的关系、硬度与碱度的关系、pH值与碳酸化合物之间的关系、pH值与硅酸化合物之间的关系。同时还注重培养学生综合运用知识的能力,例如在讲工程应用时以电厂水处理各个工段的处理方法和工艺为例,重点讲述基本原理在工艺流程上的应用。
随着发电厂高参数、大容量机组的增加,凝结水处理技术越来越广泛得到应用[4],增加了凝结水处理系统混床树脂的分离,混床运行中出现的异常情况、可能原因及处理方法等内容。循环冷却水处理增加了盐量平衡与水质变化,补充水量的计算。此外,课堂教学内容的调整与优化还包括当今国内外先进的水处理技术和工艺,并与传统技术与工艺进行对比,使学生真正掌握水处理技术的精华,启发学生思维,培养学生的创新意识。
四、教学模式的改革
1.开展引导式、启发式、举例式教学。开展了引导式、启发式、举例式相结合的教学方法。本课程内容广、名词概念多,传统的教学方式使学生不能及时理解和掌握知识。在教学过程中应以学生为主体,调动学生参与到课堂教学,发挥学习的主动性和积极性。在讲授时要突出重点,启发和引导学生提出问题,和学生共同探讨;鼓励学生积极查阅国内外文献,寻找答案。此外,教师在课前将课件上传班级QQ群,使学生提前预习和课后复习。教学方法的改革对于提高教学质量、改进教学效果、培养学生分析与解决能力均有很大促进。
2.利用多媒体、板书、视频相结合进行教学。“水处理理论与技术”课程有许多工艺流程图、设备及构筑物结构图等,传统的教学方法是教师现场绘制或展示挂图等,缺乏生动性和灵活性。本课程以文字、图片、三维动画和视频录像为基础,精心制作课程PPT,将水处理工艺的各个流程以现场照片、视频和电脑制作的单元处理过程的动画再加上文字说明展示给学生,为学生提供生动形象、丰富多彩的知识,使学生更容易理解并掌握水处理设备、构筑物和工艺系统的工作原理,为今后在工作中能够合理选择和设计水处理工程打下良好的基础。
3.专家讲座。定期聘请水处理工程领域的专家学者给学生进行讲座,能够使学生把课本上的理论知识与实际工程联系起来,有助于提升学生对知识的掌握并拓展视野。通过专家讲座,让学生了解国内外水处理领域的新工艺、新材料和新方法,发展趋势及应用特点和适用性,对培养学生深入探索的精神具有显著的作用。
4.讨论课。将全班学生分成7个小组,每小组3~4人,每个小组对不同论题进行论述,要求查阅国内外最新文献并制作PPT。每小组推出代表上台讲述5~8分钟。陈述完毕后,其他同学和教师对其论题进行提问,由该小组成员负责回答。讨论结束后,教师概括其主要内容,评价该组同学的陈述情况,并提出建议。通过开展讨论式课堂教学,极大调动了学生的主观能动性,取得了很好的效果。
五、结束语
根据笔者近几年在《水处理理论与技术》实际教学过程中的实践与体会,本文对该课程的教学内容和教学模式进行了探索,着重对课程体系的建设、教学方法和教学手段的改革,构建有利于培养电力、煤炭等领域的水处理技术研究和管理人才的教学新体系。在教学过程中运用多样化教学方法调动学生的学习积极性和创造性,取得了良好的教学效果。通过多元化考核体系的建立,能更全面、科学地评价学生的综合素质,从而培养出符合国家需求的高素质专业技术人才。
参考文献:
[1]杨国红.水质工程学多样化教学方法探讨与实践[J].技术与创新管理,2013,34(6):595-597.
[2]李培元,周柏青.发电厂水处理及水质控制[M].第一版.北京:中国电力出版社,2012.
[3]周柏青,陈志和.热力发电厂水处理(上册)[M].第四版.北京:中国电力出版社,2009.
[4]牛微,毕孝国.“火力发电厂水质净化”课程内容的优化研究[J].课程教材改革,2013,(264):65-66.
The Class Teaching Innovation and Exploration for the "Theory and Technology of Water Treatment"
ZENG Yu-bin,ZHOU Bo-qing,LIU Guang-rong
(School of Power and Mechanical Engineering,Wuhan University,Wuhan,Hubei 430072,China)
【Key words】Application; Chemical engineering principles; Technological process; Teaching research
2014年7月,黄山学院被安徽省教育厅、财政厅确定为地方应用型高水平大学建设单位。围绕学校的办学定位,化学化工学院的人才培养目标是高素质应用型、技能型人才,为达成这一目标必须加强应用型课程的建设,着力培养学生的实践能力和创造能力。化工原理实验教学对于工科学生工程素养及创新能力的培养具有重要作用。[1]化工原理实验同基础化学实验课程不同,具有明显的工程特点。[2]化工原理实验课作为化工原理课程体系中的重要教学环节,基本任务是使学生深入理解并巩固化工原理课程的基本内容和理论,掌握一定的实际操作技能,锻炼解决工程实际问题的能力,并通过对实验现象和过程数据的观察、采集、处理、分析、讨论,锻炼独立思考和解决工程问题的能力。[2,3] 化工原理实验是我校化学化工学院化学工程与工艺、应用化学、制药工程和材料科学与工程专业学生工程实践能力的重要基础课程。本文为提高学生工程实践能力和创新意识,就化工原理实验的教学进行探讨。
1 本院化工原理实验课程概况
本院化工原理实验共有36学时,其中理论课3学时,实践33学时。理论课主要将化工原理实验与其他基础实验课的区别介绍清楚,介绍化工原理预习实验要求,操作要求,安全要求和实验报告要求,化工原理装置控制软件和数据处理软件的使用。
实践实验包括10个,其中包括流体流动阻力的测定,离心泵特性曲线的测定,水蒸汽给热系数的测定,洞道干燥实验,液-液萃取实验,填料塔吸收体积系数的测定,恒压过滤实验,板式塔(填料塔)精馏实验,流化床干燥实验,膜分离实验。每个实验均有6套设备,均为浙江中控设备有限公司生产。
2 培养学生主动学习的能力
2.1 学生分组
化工原理实验所用设备体积庞大,占地面积广,很难做到一人一套实验设备。[4]因此我们将学生可以分为12人一大组,每2-3人一套设备。以确保每位同学都能有动手的机会,同时还培养工程操作中的团队精神。
2.2 课前预习
学生可以通过预习分析实验原理、实验装置、设计实验步骤,真正地理解实验,做到脱离实验教材顺利做实验,以备在实验中发现异常现象,检验数据的合理性,提高实验效果,增强学生的设计能力。[5]因此课前预习非常重要。以吸收实验为例,学生应熟悉实验采用水吸收空气和二氧化碳混合气体中的二氧化碳,在进塔混合气体流量和组成均不变的情况下,通过加大水量,测定进出塔气体组成。学生应掌握吸收的原理、应熟悉随着水量的加大,吸收效果会越来越好,出塔气体组成会随着水量的加大而减小。学生还应熟悉流程图中的各个设备。对本实验要采集的原始数据,如空气的温度、吸收剂水的温度、混合气体的流量和单位、吸收剂水的流量、进塔气体组成、出塔气体组成,进行列表。水流量由0.3m3/h增加到0.4m3/h,再增加到0.5m3/h。
2.3 熟悉工艺流程,提问并讲解
工艺流程的熟悉可以有助于学生了解和掌握实验中可能遇到的安全隐患和处理方法,而且在熟悉工艺的过程中通过提问激发学生思考问题的能力。让学生从理清化工原理管路开始学习工艺流程的控制,为以后走上工作岗位,熟悉车间流程、设计车间流程打下较好的基础。以吸收实验为例,学生对吸收实验工艺流程分析完后,以提问的形式开始详细讲解,比如混合罐的作用是什么?混合气体沿着哪条管道从塔的哪里进入吸收塔,又从塔的哪里出吸收塔?气体进塔前的管道为什么设置成倒U型结构?水从哪里进入吸收塔,又从哪里出吸收塔?液封的作用是什么?液封旁边的两个阀门该怎样控制?出塔气体的阀门为什么不能全开?通过这些问题的提问和解答将整个的吸收装置的每一条管路介绍清楚。
2.4 动手操作和数据处理
为培养学生主动学习的能力,教师对实验的每一个项目只强调该实验项目存在的安全隐患和实验过程中应该注意的问题,让学生在操作中发现问题,提出问题并解决问题。以吸收实验为例,操作前教师讲解钢瓶的使用和需要注意的问题,以免发生危险,还需讲解塔底液封的安全性。在实验过程中学生按照预习过程中自己设计的实验步骤进行操作,手动调节气体流量和液体流量,学习各种阀门的调节。当学生在操作过程中遇到问题,应让学生先自己思考,试着自己解决问题。若实验中没有问题出现,可以制造些实验故障让学生解决。如把出塔?馓宸?门开大,学生在使用气相色谱测定二氧化碳含量时有可能测定不出来,让学生自己解决问题。实验过程中学生根据预习设计在一定范围内采集数据。实验结束后,学生采用数据处理软件进行数据分析,得出实验图表进行分析。特别要求学生找出实验结果数据中变化的规律。
3 化工原理实验考核
化工原理实验总成绩包括提问成绩占20%,操作成绩占40%,实验报告成绩占40%。
提问成绩是在讲解过程中根据每位学生的回答情况给出相应的分数。
操作成绩是根据每位学生在实验过程中的实际操作能力和组员相互间的合作能力。
实验报告要求:每个实验主要包括8项内容,一是,实验目的;二是,实验原理;三是,实验装置,要求必须手绘,不得打印粘贴;四是,实验步骤,要求必须按照实验实际操作步骤写;五是,粘贴实验表格和图;六是,计算示例;七是,实验结果分析与讨论;八是,思考题。这八项内容整体考察学生对装置实验的掌握程度、绘图能力以及数据处理能力,缺一不可。