当前位置: 首页 精选范文 流体力学和化工原理范文

流体力学和化工原理精选(十四篇)

发布时间:2023-12-29 10:35:36

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇流体力学和化工原理,期待它们能激发您的灵感。

流体力学和化工原理

篇1

由于搅拌槽内的流场的流动具有复杂性,目前对搅拌槽等混合设备的设计和经验成分也采用理论计算的方式,在化工领域中,化工工业规模的反应器存在不均匀性等特点,不均匀性随规模扩大而加重,因此,对搅拌槽内部流场进行研究是非常有必要的。虽然许多化学家对化工领域中的搅拌机槽内的流场进行了分析研究,如Harvey等人采用二维模拟计算搅拌槽内流场的流体,但随着技术的不断改革与发展,计算流体力学的引进,改变了以二维模拟的计算方式,计算流体力学的方法不仅可以节约化工研究成本,采用实验手段不能获得的数据,计算流体力学方法也可以获得。Sun等人利用计算流体力学中的湍流模型计算了搅拌槽内的气液两相流动,并且对其进行了三维模拟,通过实验研究表明,计算流体力学的数值模拟能有效的计算搅拌器上部的气体部分,但是,CFD数值模拟也存在一定的缺陷,不能有效模拟搅拌器底部区域。计算流体力学CFD与多普勒激光测速仪LDV有效结合,可以对搅拌装置能更深入的研究,其主要原因是多普勒激光测速仪测量的数据可以准确验证计算流体力学CFD计算的结果,同时多普勒激光测速仪测定特定点的速度也可以作为计算流体力学计算的参考条件。

2.CFD在化学工程换热器中的应用分析

换热器是化学工程中使用最多的设备,通过计算流体力学的计算方式,不仅可以精确、详细的测量换热设备内流场的流动,也可以预测换热器的性能,经济可靠的换热器对化工工业具有重要作用。对于化工中的管壳式换热设备,其内部的几何形状设备结构复杂,利用计算流体力学模拟管壳式换热设备的壳侧流场,进而充分了解管壳式换热设备的壳侧在瞬间变化中的温度场、速度场,CFD的应用有利于分析研究换热器的基本原理和结构构造。

3.CFD在化学反应工程中的应用研究

篇2

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算方法来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

2.1在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验骗差加大。通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

2.2CFD在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

2.3在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

2.4CFD在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

篇3

关键词 工程流体力学 成人教育 教育对象 互动教学

中图分类号:TB126-4 文献标识码:A

流体力学的研究对象包括液体和气体两大物质形态,流体力学的基本任务是建立描述流体运动的基本方程,确定流体经各种通道及绕流不同物体时速度、压强的分布规律,探求能量转换及各种损失的计算方法。在实际工程的许多领域里,流体力学一直起着十分重要的作用。就某种意义而言,也正是在流体力学的研究工作不断取得成就的前提下,才促进了这些工程领域的大力发展。工程流体力学是在阐述流体力学的基本理论基础上,重点阐述和研究流体力学在工程上的应用,工程流体力学广泛应用于动力、水利、机械、化工、石油、土建、冶金、航空、航海、气象、环境等众多领域,是这些领域相关专业的主干技术基础课程。

1教材与教学内容选取

“工程流体力学”教材种类繁多,但是目前为止还没有一本针对能源类本科成人教育《工程流体力学》教材,笔者通过对多种教材的研读,以及往年成教上课的经验,根据各教材所涵盖的基本理论,及描述流体特性表达式推导过程的深度和难度、教材内容的广度,最终选用杨建国等人编著的《工程流体力学》(北京大学出版社,2010年1月第1版)作为成教热能专业的临时教材。

“工程流体力学”的内容繁杂、学科综合性强,流体力学内容很抽象,偏微分方程几乎贯穿全部课程。流体力学欧拉方法的思路与物理及其它力学不同,学生理解、掌握起来有困难。鉴于成人教育对象数学基础和力学基础相对薄弱的特点,在授课中应尽量避免大量的数学公式的推导和微元的受力分析,把第七章相似原理与量纲分析作为自学内容,在讲解动量定理、动能定理和质量守恒定理时,把输运定理作为主要的公式推导工具,着重强调基本概念和基本原理的学习和掌握。

2授课目标及教学方法

2.1 明确教育目标的职业性和教育内容的实用性

成人教育是以提高社会从业人员的履职能力和适应职业变化能力为目标的教育,其教育内容与职业需求联系紧密,以补充、改善成人的职业知识和技能为目的,实用性较强。

对于成人教育一定要明确教育目标的特点,做到有的放矢,才能起到事半功倍的效果。成人教育对象(以下称为“成人”学生)的特点可以归结为以下几点:

(1)“成人”学生职业性强;

(2)“成人”学生都有固定的工作岗位,有着丰富的实践经验,在某些方面的认识和能力要强于授课老师;

(3)“成人”学生专业基础课,例如数学和物理等的基础知识比较薄弱,很难理解深度较高、难以理解的原理和公式推导;

(4)“成人”学生渴望获取知识,尤其是能帮助其解释工作中遇到的实际问题的理论知识。

总之,授课内容的实用性是教学的关键问题之一,授课内容实用“成人”学生才爱听,效果才好。

3教学手段和教学方法

3.1加强理论知识的讲授

成人教育的对象多数为参加工作多年和未受过正规高等教育的成年人,即“成人”学生,他们又有着丰富的实践经验。从笔者实际函授授课的经验来看, “成人”学生专业基础课尤以高等数学的基础最为薄弱,然而流体力学的主要工具就是数学。

3.2采用导学+启发式方法授课

实行“导学式”教学模式。即,贯彻“学生为主体、教师为主导”的教学理念,在教学中实行启发式教学,充分发挥现代教育技术在提高教学效率和教学质量方面的重要作用。所谓互动式教学,是在教学中教与学双方交流、沟通、协商、探讨,在彼此倾听、彼此接纳、彼此坦诚的基础上,通过理性说服甚至辩论,不同观点碰撞交融,激发教学双方的主动性,拓展创造性思维,以达到提高教学效果的一种教学方式。这种讲课的方式,不是老师一个人讲,而是启发学生思考。

“工程流体力学”基础理论讲解比较枯燥,为了提高教学效果,经常在课堂上提出问题和例题,鼓励学生积极回答,激发学生的主观能动性,从而加深理解。在教学中要把握“成人”学生的独特特点:那就是有自己固定的工作岗位,有着丰富的工作经验,对设备的结构和运行了如指掌,对设备处于非常规运行时有自己的处理方法,但是为什么这么处理他们并不清楚。

4结语

针对热能与动力工程专业“成人”学生的特点,对“工程流体力学”的教学进行了探讨,使课程更适合“成人”学生的特点,扩大了他们的知识面,增强了其主动思考的能力。在今后的教学过程中要进一步探索新的教学方法和手段,不断提高自身的综合素质和专业理论知识,立足学校特色优势,继续努力进行“工程流体力学”课程的建设和探索,以期积累更多的经验和取得更大的成绩。

参考文献

[1]陈卓如等.工程流体力学[M].北京:高等教学出版社,2006.

[2]杨建国,张兆营等.工程流体力学[M].北京:北京大学出版社,2010.

[3]孙恒朱,鸿梅,舒丹.“启发―联想式”教学方法在流体力学教学中的应用[J]. 中国电力教育.2010,(5).

[4]黄裕华.成人教育要突出“成教化”特色[J].福建信息技术教育,2005,(7).

篇4

关键词:过程装备与控制工程;力学课程;内容优化;教学方法

作者简介:孙铜生(1981-),男,安徽天长人,安徽工程大学机械与汽车工程学院,副教授。(安徽 芜湖 241000)

基金项目:本文系安徽工程大学教学研究项目“过程装备与控制工程专业力学基础课程教学研究与探索”(项目编号:2011xjy32)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2014)14-0110-02

我国的过程装备与控制工程专业始建于20世纪50年代,前身为化工设备与机械专业,由于其应用于加工制造流程性材料产品即过程工业中,且随着自动控制技术在化工机械中得到越来越广泛的应用,1998年经过教育部批准更名为过程装备与控制工程。该专业目标是培养从事过程装备与控制工程领域的工程设计、安装、检修与科研的应用型高级专门人才,专业基础课及专业主干课主要有:理论力学、材料力学、机械设计、机械原理、电工技术、电子技术、工程流体力学、工程热力学、化工原理、流体机械、化工设备设计、化工容器设计、过程装备控制技术、过程装备制造与检测、控制工程基础等,可见力学类课程在专业学习中起着重要的作用。

一、力学课程在过程装备与控制工程专业中的地位

过程装备根据制造方法不同可分为两类:一类以焊接为主要的制造手段,如塔器、换热器、锅炉等,称为过程设备;另一类以机械加工为主要的制造手段,如压缩机、离心机、泵等,称为过程机器。[1]过程设备一般都承受高温、高压,承压部件的设计与制造是过程设备的关键问题,故过程设备又是压力容器,压力容器又分为低压容器(0.1MPa≤p<1.6MPa)、中压容器(1.6MPa≤p<10MPa)、高压容器(10MPa≤p<100MPa)、超高压容器(p≥100MPa)。为了过程装备能够正常工作,需要其具有一定强度、刚度及稳定性,如果装备的结构设计不合理或选材不当,就不能保证装备的正常及安全运行,同时还要满足经济性要求,这就对理论力学及材料力学提出了更高的要求。过程装备中既有以流体能量为原动力的动力机械如蒸汽轮机、内燃机等,又有以流体作为工作介质的工作机械比如泵、各种塔器、换热器、压缩机等,这些过程装备都是以流体静力学、运动学及动力学为基础的,故工程流体力学对过程装备的设计尤为重要。过程装备的主要目的是为了获得产品,从原材料到产品要经历一系列物理的或化学的反应,这些反应伴随着能量的转换,特别是热能与机械能的转换,而工程热力学的研究内容就是能量的转换规律、提高能量转化效率的途径及能源利用的经济性,故工程热力学是过程装备与控制工程专业的一门基础性课程。可见,力学类课程可为学生学习专业知识和从事本专业的科研、生产工作奠定必备的理论基础。

二、力学课程教学问题及内容优化

1.课程存在的问题

通过对开设过程装备与控制工程专业的部分院校走访及对各力学教材的分析,发现目前专业力学课程存在的主要问题有:

(1)基础课程和专业课程的衔接不好。比如在工程流体力学里讲述了流体动力学方程式及管中流动等,而在流体机械中这些基础知识重复出现;工程热力学中的压气机热力过程及制冷循环在流体机械中也有重复;理论力学中的摩擦在机械设计中也有相关内容,材料力学中的平板弯曲分析理论与过程设备设计中有关内容重复等;工程流体力学中的流体静力学基本方程式、流体在管中流体的连续方程式和能量方程式、流体粘性和牛顿定律、层流及湍流、流体流动的沿程阻力及局部阻力等内容均在化工原理中出现。

(2)力学课程之间也存在内容交叉。比如工程流体力学和工程热力学中都有关于气体和蒸汽的流动、定熵和绝热气流的基本方程式的章节,工程流体力学中的流体状态参数和工程热力学的工质状态参数内容重复;理论力学中的动量矩定理在工程流体力学中重复出现。

综上可见,目前力学基础课停留于教学计划中的自身建设,课程规划缺乏有机协调,课程结构需要进一步优化,避免重复建设和教学资源的浪费。

2.课程内容优化

由于理论力学是学习材料力学的基础,可将将理论力学和材料力学合并为工程力学,工程流体力学及工程热力学单独开设,将专业课中所需要的理论知识全部归并到力学课程中进行讲解,力学课程中的交叉内容按照先上课程先安排的规则进行调整,优化后的主要教学内容有:

(1)工程力学。[2]平面汇交力系;平面力偶系;平面一般力系;空间力系;点的运动及合成运动;钢体的基本运动和平面运动;质点的运动微分方程;刚体转动的微分方程;质点及质点系的动能定理;刚体的惯性力系;动量定理与动量矩定理;虚位移法;轴向拉伸与压缩;剪切的计算;圆轴的扭转;梁的弯曲内力、弯曲应力及弯曲变形的计算;第一、二、三、四强度理论;组合变形及强度计算;压杆稳定性计算。

(2)工程流体力学。[3]流体的基本参数及粘性;流体平衡的微分方程式;重力场中的流体平衡及流体的相对平衡;流体静压强的计算与测量;流体运动的连续方程式;流体运动的微分方程式;伯努利方程式;层流及湍流;管路的沿程阻力及局部阻力计算;薄壁孔出口流;厚壁孔出口流;平面缝隙流体;环形缝隙流动。

(3)工程热力学。[4]热力系统与热力学状态;功和热的概念;热力学第一定律;开口和闭口系统能量方程式;气体和蒸汽的比热容、热力学能、焓和熵;气体和蒸汽的基本热力过程;热力学第二定律;卡诺循环与卡诺定理;孤立系统熵增原理;压气机的热力过程;制冷循环;气体动力循环;蒸汽动力装置循环;实际气体性质及热力学表达式。

三、力学课程教学方法探索

1.理解记忆教学法

教学中发现学生学习过程中存在以下两个问题:

(1)部分同学觉得力学课程太难,书上随便哪一页都可以看到公式,一本书学下来接触的公式基本上都在几百个,便放弃了课程学习。

(2)部分同学认为既然力学就是公式的组合,那么平时上课不需要听讲,考试前把公式背一遍就可以了。其实这两种态度都是不可取的,力学课的公式虽多,但大多数公式都是基于一些基本的定理推导来的,只要理解这些定理的实质就能灵活应用,大多数的公式都可以通过简单的推理得来,所以在教学中要特别注意基本定理的讲解。比如工程热力学课程内容基本是建立在热力学第一定律和第二定律的基础上,在进行热力学第一定律讲解时,首先应从能量守恒原理讲起,能量不生不灭,热力系统存储能量的增量等于进入系统能量与离开系统能量的差值,而热力系统又分为开口系统和闭口系统,因此第一定律表达式有两种形式,难点在于开口系统表达式的推导,只要逐次分析进入系统的能量的组成、离开系统的能量组成及系统储存能量组成并用表达式表示,那么开口系统能量表达式就不难理解了。再如,工程力学中讲解如何提高梁抗弯能力的措施时,结合梁弯曲时的正应力强度条件。因此,不难理解如下措施:第一,选用合理的截面:由正应力强度条件可知,梁的抗弯能力还取决于抗弯截面系数。而材料的重量又取决于梁的截面积,因此可把抗弯截面系数除梁截面积作为一个衡量指标,以达到既提高强度,又节省材料的目的。第二,采用变截面梁:从正应力强度条件可以看出,横力弯曲时,梁的弯矩是随截面位置而变化的,位置不同弯矩的大小不同,在某个截面处弯矩最大,若设计成等截面的梁,只有最大弯矩所在截面处正应力达到许用应力值,材料强度得不到充分发挥。为了减少材料消耗、减轻重量,可把梁制成截面随截面位置变化的变截面梁。第三,适当布置载荷和支座位置:从正应力强度条件可以看出,在抗弯截面模量不变的情况下,最大弯矩越小,梁的承载能力越高,应合理地安排梁的支承及加载方式以降低最大弯矩值。

2.工程实践教学法

力学课程主要任务在于:通过对课程的学习,可提高学生力学基础理论水平,培养学生分析和处理问题的抽象能力和逻辑思维能力,为学生从事过程装备本专业的设计工作奠定必备的理论基础,同时可训练学生在实际工程中的理论联系实际的能力。因此在力学课程讲解过程中,要注重将力学知识和工程实例结合起来进行讲解。[5,6]一方面可以加深同学们对课程的认识,训练并提高从事设备设计工作的实践能力;另一方面可激发同学们的学习兴趣,从枯燥的公式推理中解脱出来,提高学习效率。例如,在进行逆向卡诺循环讲解时,逆向卡诺循环又分为制冷循环和热泵循环,通过理解记忆教学法推出制冷系数和供暖系数分别为:

(1)

(2)

这里,q1为工质向高温热源的放热量,q2为工质从低温热源的吸热量,T1为高温热源温度,T2为低温热源温度。这四个参数在理解时往往会混淆,为什么会从低温热源吸热向高温热源放热?为什么在同一个循环下会有制冷和供暖两种效应?为什么制冷系数用从低温热源的吸热量除循环净功而供暖系数却用向高温热源的放热量除循环净功呢?这里就可以引入空调的实例,夏天时把模式调到制冷上,空调就会吹出凉风,冬天时把模式调到供暖时,空调就会吹出暖风。夏天,室外比室内温度高,室外就是高温热源,室内是低温热源,制冷的原因就在于把室内(低温热源)的热量排向室外(高温热源),这就实现了从低温热源吸热向高温热源放热,同时室内制冷效果就在于从室内吸收的热量的多少,因此制冷系数把q2作为分子。冬天,室内比室外的温度高,室外就是低温热源,室内是高温热源,供暖的原因在于把室外(低温热源)的热量排向了室内(低温热源),同样实现了从低温热源吸热向高温热源放热,室内供暖的效果在于从室外吸收的热量的多少,所以供暖系数把q1作为分子。

3.知识串联教学法

过程装备的设计过程中往往需要把所学力学课程的知识进行综合,在一门力学授课课程中不能与其他力学课程独立,要注意将力学课程知识进行衔接,使同学们对力学课程形成一个整体思维,以便在今后能灵活应用并有机结合力学基本原理来解决工程实际问题。

例如,在工程流体力学中讲解流体静压强的方向性时,可将其与工程力学中的空间汇交力系知识进行串联,先分别把作用在微元四面体上的力向三个坐标方向进行投影,写出表面力方程为:

(3)

而微元体上的质量力为:

(4)

再根据空间汇交力系的平衡方程,表面力和质量力的合力在三个坐标方向的投影都为零,从而可得出在三个坐标方向的压强相等,也即流体静压强无方向性的结论。

四、结束语

力学课程在过程装备与控制工程专业建设中要引起足够重视,教学内容优化可避免重复教学,使学生在有限的课堂中能学习更多的专业知识,在教学过程中要不断探索教学方法,提高教学效果,营造良好的教学气氛,全面提高学生的综合素质。

参考文献:

[1]邹广华,刘强.过程装备制造与检测[M].北京:化学工业出版社,

2012.

[2]北京科技大学,东北大学.工程力学[M].北京:高等教育出版社,2010.

[3]张也影.流体力学[M].北京:高等教育出版社,2005.

[4]沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2010.

篇5

一、流体力学课堂的教学方法

流体力学是工程技术专业的基础课程,其课程性质决定了其课堂教学的内容理论性知识多、记忆量大,比较枯燥。学生在进行学习的过程中,容易产生乏味感和懈怠感,导致流体力学的课堂效果不佳,学生对知识点的掌握情况不好等问题。在课堂上学生无法做到全神贯注地学习和理解,也就使学生无法做到对知识点的有效掌握,就会使学生的学习兴趣下降。特别是流体力学与其他学科和行业都有一定的联系,学生在学习过程中如果不能理解所学的知识点,对其在其他相关学科中的学习也有一定的阻碍。由于流体力学是一门基础性学科,学生在进行学习时,其基本的任务是要将流体力学的理论知识与重点深入地理解和掌握,但学生往往忽视了基础知识以及理论知识的重要性,过分地关注在例如方程推导等内容上,使学生的学习出现断层,无法做到整体的理解和掌握。针对这些问题,教师可以在课堂中进行一定的改革和变化。首先,教师可以在每日上课前对本次课程所要讲解的内容进行引导。通过精彩的引言,将本次课程所讲的内容与前后知识点相结合,使学生能够得到具有极大吸引力以及趣味性的课堂形式。在进行讲解过程中可以将流体力学知识与生活中的自然现象以及科学原理进行阐释,从生活中带入,使学生产生共鸣,进而做到有效的学习。而在课堂结束后,为了保证学生的学习效果,检查学生的记忆效果,则可以为学生进行别致的课后作业,在课后作业的帮助下,使学生能够有效地记忆知识点和概念,使学生能够改善知识点掌握不良的情况,为学生在其他学科的学习中增添助力。而教师在教学过程中,对学生的引导也十分重要。学生在学习过程中,容易出现学习内容理解偏颇、学习方法不当以及学习的重点掌握不明等问题,这时教师应对学生进行积极有效的引导,特别是在概念的记忆方面,引导学生以记忆概念为主的学习方法,防止学生过分追求解题而导致的知识点记忆断层。教师在每章节的教学后,应对学生进行一定的复习教学与指导,帮助学生明确每一章节的重要内容,并对学生的知识理解做到有效的掌握和补充。

二、多媒体教学与传统教学相结合

多媒体教学作为当前较为先进的教学方式,对丰富教学内容,增添教学形式都有重要的地位和作用。多媒体教学目前也成为流体力学教学过程中重要的教学形式之一。多媒体教学与传统教学不同的地方在于,教师不需要在课堂上利用板书进行教学内容的展示和讲解,在教学过程中,能够加快教师的教学进度,使学生能够轻松地完成繁重的教学任务,并通过多媒体教学形式,在较为复杂且理解性较强的知识点的学习过程中,能够通过动画、图像、视频以及声音等内容进行辅讲解,使学生更好地理解所要掌握的内容。但多媒体教学也存在着一定的缺陷,例如在多媒体教学的模式下,教师不需要通过板书进行讲解和推导,学生理解和记忆的时间短,无法保证所有学生都能够做到对所讲知识有效地理解和掌握,而多媒体教学在师生互动方面也存在一定的缺陷,学生与教师的互动减少,教师则无法通过学生的反馈调整教学的进度和速度,使学生在高压高速的课堂氛围下进行学习,长时间就会造成学生注意力不集中,教学效果大打折扣。可见,多媒体教学与传统教学,在教学过程中缺一不可。可以通过对二者的结合,将多媒体教学与传统教学的优势与劣势互补,以做到最有效最积极的课堂教学形式和效果。

三、结语

篇6

关键词:工程流体力学;计算流体力学;CFD软件及源程序;教学研究

中图分类号:G6420;TU 文献标志码:A 文章编号:10052909(2015)05015404

一、工程流体力学与CFD软件、源程序

计算流体力学(Computational Fluid Dynamics,简称CFD)软件通过计算机数值计算和图像显示后处理,对包含流体流动和有热传导等相关物理现象作出系统的分析。目前,CFD 技术已经广泛应用到航空、航天、气象、船舶、水利、化工、建筑、机械、汽车、海洋、体育、环境等领域,取得了令人瞩目的成就。在现代科学技术高度发展的今天,计算技术已被引入到流体力学领域,使以前因计算过于复杂而影响进一步探讨的流体力学问题逐步得以解决,计算流体力学已经成为研究流体力学的重要方法[1-3]。常用的CFD计算软件有FLUENT 、CFX、Phoenix等。FLUENT 软件是目前常用的一套高性能的数值软件,是专门针对流体工程数值计算与仿真需求而开发的一种流体数值仿真软件。

工程流体力学课程教学内容主要分为流体静力学、流体动力学、相似和量纲分析、管中流动、孔口出流和缝隙流动等[4]。其中,管中流动主要研究圆管中的层流及紊流、管路中的沿程阻力、管路中的局部阻力及管路计算等,涉及到一系列的概念和理论公式,学生理解起来有点枯燥、困难[4-5]。通过利用FLUENT软件和源程序进行数值模拟这一环节,变枯燥的理论公式计算为生动的计算机数值求解,既提高了学生的学习兴趣,同时也使学生有了更多的感性认识和理性认识,增强学生解决实际问题的能力。在流体力学课程教学中, 有意识地穿插计算数学、Fortran语言编程、CFD知识,有助于学生理解流体力学公式及方程,

也可以加强学生对其他学科知识的理解和掌握,达到多学科之间的融会贯通, 触类旁通。为此,笔者对科研成果中相关源源程序、部分开源程序和CFD 软件在工程流体力学课程教学中的应用做了一些探索与实践。

二、 教学案例

(一) 圆管中的层流及紊流教学实例

在工程流体力学教学中,管中流动是主要章节的内容,涉及的理论和公式多,不易理解。圆管流动有层流和紊流两种流动状况。雷诺数是判别流体流动状态的准则数。为加深学生对流速分布和压强分布规律的理解,在教学中可安排课外作业,设置用FLUENT软件来模拟研究三维圆管的层流和紊流流动状况,作出验证分析。

图1为圆管流动入口和出口边界截面的流速分布图(l=2m, d=0.1m)。取流动充分发展部分,离入流边界x/D=1.6的截面其流速分布如图2所示。可以看出流速沿半径Y方向成抛物线分布,与书中理论公式相符,如式(1)所示。通过数值模拟,学生对圆管内流动速度分布有了更深刻的认识。

由图3可以看出圆管内部压强分布从管口处向延伸方向逐渐减小,可知流速相应增大,符合流速大、压强小的流动定律,也符合圆管流动压降的原理。另外从入口处的压强分布可以看出,在圆管任何截面上,其压强分布也不是均匀的,也有分层现象。\

图 3 圆管内部压强分布

图4为圆管轴线上的速度分布。由图可以看出,在圆管的轴上,进口段流速分布变化较大,从进口流速v1=0.005m/s急剧上升到最大流速umax=0.00 848m/s。层流入口段长度有经验公式可以算的,即

L≈0.058 dRe (2)

可算得入口段长度约为1.18m,由图4显示效果可以看出,流速在离入口1.1m到1.2m之间,即入口段长度约为1.1~1.2m,符合书中理论计算结果。

图 4 圆管轴线上速度分布

图5为圆管内部x轴方向不同截面的流速分布,可看出流速在截面上从入口到出口的变化。水流在圆管内部的流速分层很明显,靠近壁面处流速接近于零。

图 5 主流方向截面流速分布图

图6为圆管紊流充分发展段某一截面的流速分布图。从图中可以看出在紊流充分发展段,截面流速散点图最高处几乎为一条直线,说明圆管内大多数流体流速趋于稳定,而是更加平滑。紊流过流断面的流速对数分布比层流的抛物面分布均匀得多,这在理论上符合紊流流速的对数分布律,即:

uu=1Klny+C(3)

图6 Y方向中心轴线的流速分布

(二)管路中的沿程阻力教学实例

在流体力学教学内容管中流动一章的教学实践中,笔者利用前期研发的程序[6]设置了以半扩散角为4o、扩散度为3.92的锥形渐扩管路内的不可压缩流动数值模拟算例,旨在将对接科研成果的教学模式用于辅助工程流体力学课程教学实践。已知条件:锥形渐扩管路前接管直径为30 mm,后续管直径为50 mm,总长度为70 mm。管内流动介质为空气,进口速度为1m/s。 网格模型如图7所示。

图7 锥形渐扩管路系统内流场网格模型

数值计算结果如图8所示。从图中可清晰看出,在突然扩大段,压力逐渐增大,表现扩压效果,但中心线上的速度呈下降趋,若扩散角增大时,在渐扩段会出现局部回流区,这是造成局部能量损失的重要原因。

图8 锥形渐扩管路内压力场

局部阻力误差分析:对于锥形渐扩管的局部阻力,可以用包达定理的形式表示:

hζ=ku1-u222g(4)

其中,k为经验系数。由式可知,锥形渐扩管局部阻力损失理论计算公式为:

hz = ku1 - u2 22g = k1 - A1 A2 2×u21 2g = k1 - A2 A1 2×u22 2g(5)

其中A1为渐扩管上游横截面积,A2为渐扩管下游横截面积(m2),u1为渐扩管上游平均流速(理论值),u2为渐扩管下游平均流速(理论值)。A1 = πd21 4 = π×124,A2 = πd22 4 = π×224,u1=1 m/s,g=9.8m/s2 。代入(5)式得:

hζ理=0.004 305 m

实际流体的伯努利方程为[7]:

Z1 + P1 ρg + u21 2g = Z2 + P2 ρg + u22 2g + hf + hζ (6)

将仿真结果代入上式,其中Z1=Z2=0 P1=-0.03pa,P2=0.4pa,u1=1.06m/s, u2=0.58 m/s, hf=0, 得 hζ模拟=0.00 435m。误差率为:

η=hζ模-hζ理hζ模×100%

=0.00 435-0.004 3050.00 435×100%=1.03%

(三) 后台阶流动教学实例

为让学生对雷诺数有更进一步的感性认识,利用开源CFD程序[8]可设置后台阶流动教学实例,比较不同入流Re数时台阶后涡的大小和长度,现选择四种Re数工况的计算结果进行后处理,得到如图9所示的流线图。从图中可以看出,随Re数的增加,台阶后方主涡的大小呈增大趋势,在Re=1 000时在上方有次生涡的出现。

图9 不同雷诺数下的流线图

三、 教学实践中的几点体会

(一) 理论教学与数值实验教学的合理利用

在工程流体力学理论教学时可结合数值实验教学加以辅助,例如在管中流动一章教学时,可以用上述相关教学实例。由于在进行课堂演示教学时,依计算机性能及不同问题的规模难易程度,数值模拟求解的时间将有不同,要掌握合理数值模拟时间。可采取让学生安装CFD程序及软件,并要求学生事先自学使用方法,尝试数值预测,预习理论知识。然后教师理论教学时对学生预测结果进行抽样调查分析,将理论结果与计算结果比较分析。条件许可的话,也可以通过高性能集群提交计算作业,在较短的时间内获得计算结果。这样学生对复杂的理论就能有深入的认识,同时也锻炼了学生的科研能力。

(二)适当安排精选案例教学

课堂教学演示案例的选取应做到简单且具有代表性。 案例简单能够减少计算机的运行时间,使教学更加紧凑;而有代表性的案例贴近生活或工程实际,则有利于提高教学趣味,开阔学生的视野。由于课堂教学时间有限,因此应在简单演示教学案例的基础上,精心布置较为复杂的课外任务。

(三) 源程序和软件互补

在数值模拟教学中结合利用软件和程序。软件不是万能的,商用软件所能解决的问题是已在学术界得到充分研究的问题,对于科学研究来说,自己编程是必不可少的。一方面,自编程能更好地理解CFD具体实施过程,对商用软件的理解和使用也是有帮助的。另一方面,自编程序还可以更好地对接科研成果,用于工程流体力学课程辅助教学。

四、结 语

通过上述几个数值模拟实例可以看出,数值模拟过程并不太难,但结果更形象直观。借助计算机辅助手段,在工程流体力学课堂教学中,利用CFD软件及源程序进行数值模拟辅助理论教学, 将理论性较强的内容形象化,可以开阔学生的视野, 激发学生的学习兴趣和创新意识, 加深学生对基础理论的理解。此外,通过对接科研成果,用源程序进行数值实验教学还可以培养学生的动手能力和科研能力,丰富数值实验教学内容。参考文献:

[1]J.H. Ferziger, M.Peric., Computational Method for Fluid Dynamics[M]. Springer,2002.

[2]张涵信,沈孟育.计算流体力学―差分方法的原理和应用 [M]. 北京: 国防工业出版社,2003.

[3]傅德薰,马延文.计算流体力学[M]. 北京: 高等教育出版社,2000.

[4]张也影.流体力学[M].2版.高等教育出版社,2009.

[5]郑捷庆,邹锋,张军,等. CFD软件在工程流体力学教学中的应用[J]. 中国现代教育装备, 2007(10):119-121.

[6]何永森,舒适,蒋光彪,等.管路内流体数值计算与仿真[M]. 湖南 湘潭: 湘潭大学出版社,2011.

篇7

论文关键词:工程流体力学;教学研究;改革探索

“工程流体力学”课程在能源动力类工科专业中占有非常重要的地位,主要研究流体(液体和气体)的平衡、运动规律及其实际工程应用的技术科学,是力学的一个重要的分支学科。通过本课程流体力学的基本概念和基本原理的学习,学生掌握分析和解决本专业中涉及流体力学问题的能力,为后续专业课程学习奠定基础,然而当前的教学效果并不理想。自然界和人类生活中,以及工农业生产的各行各业中均广泛存在流体流动现象,但是由于缺乏对生活的观察,学生很难做到对课本讲授内容形成直观映像。此外,自然界中的流动现象往往包含多种流动方式,在理论分析与公式推导中涉及许多复杂的数学理论与方法,经验公式多,且不易理解记忆,给学生的学习带来很大困难,导致教师难教、学生难学,实践与应用起来更是难上加难,教学效果不理想,教学目的难以实现。还对后续专业课的学习造成很大影响,进而影响本科教学的整体质量。因此,“工程流体力学”教学改革势在必行。

一、“工程流体力学”教学调查研究

“工程流体力学”课程通常是开设于热能动力工程专业二年级阶段。对扬州大学的学生的问卷调查显示,多数学生对“工程流体力学”课程的评价是“难学”。为何会有这样的评价,通过分析发现,存在几个方面的原因。

1.研究对象比较抽象

“工程流体力学”课程本身研究对象是流体,没有一定的形状和具有流动性,这是流体区别于固体的本质特征。这一特征决定了流体力学研究理论比较抽象、经验公式繁多且推导过程复杂不易理解、易混淆,进而导致了本课程教师难教、学生难学,教学效果不够理想。因此,能否将前面学习过的对“固体”平衡和运动物理规律的分析方法通过比拟的方式移植到“流体”上,并使其形成正向的学习迁移是学生能否很快的掌握本门课程学习方法、学好本课程的一个很重要的方面。

2.教师与学生

“教学”包括“教”与“学”两个方面的内容,忽视任何一个方面都有可能造成教学效果的不理想。理论课教学是工程流体力学课程教学的主要方面,是进行实验指导和应用于工程实践的基础。某些任课教师为了自己的方便省事,教材和教学内容仍然是多年前的老教材,对现阶段流体力学的发展方向和研究成果,以及本学科的最新科技前沿理论及工程应用进展不能做到及时更新,教学内容与实际应用严重脱节。

教学方法单一呆板,无法吸引学生的兴趣。经常看到这样一种现象:教师在讲台上只顾着自己滔滔不绝地讲,忽视了课堂教学的互动性和学生的主观能动性,学生了无兴趣的在座位上睡觉、开小差、玩手机,基本上是教师在向学生单方面地传授知识,这样的教学效果是很低的。

本专业本科生新的培养方案中课程设置有这样一个特点:课程增加,课时压缩,总学分保持不变。“工程流体力学”课程理论课学时从64压缩到48学时,在教学内容总量不变的情况下,每堂课教授的内容,即学生需要接受的信息量就大大增加了,严重增加了学生的负担。“浮躁”是当代很多大学生所普遍具有的心理特征,导致的直接结果是学生自制力差、怕吃苦,上课前不预习、课后不认真复习、作业普遍抄袭。

二、教学改革的目标

围绕当前“工程流体力学”课程教学中存在的问题,以提高课程教学质量、实现教学目标为目的,进行了如下方面的改革:改变教育理念,以课程改革与教学适应新时代的要求为目的;加强教学方法与教学手段的改革,提高“教”的质量;加强课程的应用性,解决基础理论课程的知识教育、应用能力与创新能力的培养,全面提升学生的综合素质;加强课程教学评价与考核体系改革,引入全程教学评价与考核机制。

三、“工程流体力学”教学改革探索

从上面的分析可知,“工程流体力学”课程教学效果不理想存在很多方面的原因,因此,教学改革也要同时从多方面入手才可以起到事半功倍的效果。以下是笔者在扬州大学热能与动力工程专业本科生课程教学中进行的探索与尝试,取得了较好的效果。

1.教学方法的探索与实践

(1)俗话说“良好的开端是成功的一半”,第一堂课的重要性也就不言而喻了。兴趣是学生学习的直接原动力,能否在开始就激发学生对“工程流体力学”课程的学习兴趣是学好本课程的关键。运用多媒体技术,通过生动的视频和动画向学生展示生活中随处可见的流体力学现象。如,男孩子喜欢足球、乒乓球的比较多,可以用“香蕉球”和“弧圈球”现象的流体力学解释来吸引他们的注意力,还有其他的现象如高尔夫球表面的凹坑设计依据,飞机机翼能够产生巨大升力,跑车外形设计成流线型又是什么道理等等。此外我国正在实施的“南水北调”工程同样涉及很多流体力学相关知识,以上这些事例都是学生所非常熟悉而又在学习之前无法用理论来解释的现象,很容易引起学生的注意力和想要探索的兴趣。

(2)合理使用多媒体。在流体力学的教学过程中,采用多媒体有利于学生对流动现象的感性认识,加深对概念的理解,提高学习兴趣。但是,采用过多或华丽的多媒体也会产生一些负面作用,如多媒体教学替代板书节约了时间,增加了授课容量,但相应的讲课速度也就比较快,学生不易吸收和消化,容易造成学生“跟不上”进度,产生厌学情绪。因此,传统板书与多媒体有机结合的教学方式可以充分利用各自的优点,达到最佳教学效果。当然,不同教学方式之间的比例分配的“度”是需要关注的问题。

2.教学内容的选择

“工程流体力学”课程是机械、能源、化工、动力、建筑、生物、航天等专业的重要的专业基础课,这些专业具有不同的特点,对流体力学知识需求的侧重点也不同。因此,教材的选取要有针对性,即根据本专业特点和要求、学生层次来选择教材。此外,教师要能够跟踪掌握现阶段流体力学最新的发展方向与研究成果,不断更新和补充教学内容,做到课程内容的与时俱进。

3.重视实验教学

实验教学是“工程流体力学”课程教学必不可少的组成部分,属于实践教学环节。通过实验对理论进行验证,从而加深对课程基本概念和理论的理解和掌握。在基础实验外增加设计性实验、建立开放性实验室,锻炼学生的动手能力,培养学生发现问题、分析问题和综合运用所学知识解决实际问题的能力。

4.课程评价与考核体系

对于“工程流体力学”课程来说,学习要达到的目的是学生运用所学知识对实际工程问题的进行分析和解决的能力,而不是对课本理论知识和大量复杂公式的记忆能力。因此建立合理、公正、客观的课程评价与考核体系非常重要。针对学生普遍存在的平时不努力、考前几天突击考试的现象,摒弃“一考定成绩”的考核方式,采用灵活的、全程考核方式取得了很好的教学效果。具体做法是:提高平时成绩所占最终成绩权重,包括出勤率、课堂互动和讨论、小测试、作业质量等平时学习各方面的表现;期末考试成绩权重减少,采用闭卷方式,但考题中所涉及的公式、图表等会在试卷中集中给出,并增加一些干扰公式进去,既避免了学生花大量时间去记忆毫无规律可言、而又易忘的经验公式,同时也达到了考核学生选取基本理论和公式去分析、解决实际问题的能力,实现了教学目的。

篇8

(甘肃农业大学 工学院,甘肃 兰州 730070)

摘要:启发式教学是现代教育研究当中的一个重要课题,尤其是在高等教育全面改革的大背景下,通过启发式教学引导学生自主学习,勇于创新,让学生的个性自由发挥,充分调动学习的积极性和热情,促进学生身心的健康发展。本文主要探讨的是启发式教学在《工程流体力学》课程教学中的运用,彻底摒弃传统的教学观念,让学生成为教学活动的主体,通过教师的启发引导,让学生更加主动地学习。

关键词 :工程流体力学;启发式教学;教学实践;运用

中图分类号:G642文献标识码:A文章编号:1673-2596(2015)03-0274-02

一、引言

《工程流体力学》是我国普通高等学校工科专业的基础课程,是一门研究液体和气体的机械运动规律以及应用的学科。工程流体力学在土木工程、能源、动力、环境、设备、化工、航空以及国防等领域都有很重要的应用,尤其是热能与动力工程专业的学生需要掌握系统、全面的《工程流体力学》理论知识,通过学习本课程,确保学生能够熟练地掌握流体力学的基本概念和原理,通过实验操作能够将理论知识运用到实际当中,为日后的工作和学习打下坚实的基础。鉴于此,本文主要探讨启发式教学在《工程流体力学》课程教学中的运用。

二、《工程流体力学》传统教学理念的转变

《工程流体力学》是工科专业的一门基础学科,是力学的一个重要分支,主要目的是为了将流体力学知识充分运用到生产生活当中。工程流体力学的研究方法主要包括实验研究、理论分析以及数值计算等。其中实验研究主要是利用各种实验仪器对流体现象进行观测分析,总结出流体运动的规律,并在此基础上进行预测,通常采用模型进行实验分析;理论分析主要是根据质量守恒、动量守恒以及能量守恒等定律,加以数学分析的手段,对流体运动进行分析研究;数值计算则是利用数学语言将流体运动的普遍规律表达出来,从而获得质量守恒、动量守恒以及能量守恒的计算方程,这些方程组合在一起成为流体力学基本方程组。《工程流体力学》课程设置的根本目的是为了让学生熟练地掌握流体的机械运动规律,将其运用到实际生活当中,以此来解决各种与流体力学相关的问题,但是长久以来我们在课堂教学中所强调的是知识点的灌输,学生进行机械化的记忆,缺乏创新,因此需要对传统的教学理念进行彻底改变。

(一)帮助学生建立流体力学的思维方式

《工程流体力学》的教学大纲要求学生能够了解及应用流体力学的基本运动规律,掌握流体力学的理论研究方法。在传统教学理念中,课堂教学过分注重基本概念、基本理论和计算方法的学习,学生在应试教育的环境中对书本上的知识进行机械化的记忆,很大一部分学生对于知识点的记忆仅仅是为了完成考核任务,因此无法形成系统的知识体系,也无助于培养学生的科学的思维方式,使其在日后工作和学习当中遇到关于流体力学相关的问题时,无从下手。鉴于此,在现代教育理念下需要教师引导学生建立系统的流体力学知识体系,并学会运用科学的思维方式对流体力学相关的问题进行分析研究。①

(二)提高学生综合分析应用能力

《工程流体力学》课堂教学不仅要求学生建立科学的思维方式,还需要具备对流体力学知识的综合分析和应用能力。在传统教学理念的影响下,学生被动地接受知识,严重缺乏学习的积极性和热情,对知识和计算公式的机械化记忆,无助于培养学生的发散思维。②因此需要在《工程流体力学》课堂教学过程中引导学生对知识进行自主总结,通过对知识点的归纳总结,形成鲜明形象的记忆;与此同时在课后练习中需要增加综合性,促进学生对流体力学知识的综合应用。

(三)培养学生的实践操作能力

实验是《工程流体力学》教学活动的重要组成部分,通过实验设计来检验一个理论或证实一种假设而进行的一系列操作或活动,从而更加清晰地理解和认识流体力学规律。通常实验要预设“实验目的”、“实验环境”,进行“实验操作”,最终以“实验报告”的新闻形式发表“实验结果”。③在传统教学模式下,学生只能在有限的范围内进行实验操作,根本无法锻炼学生的实践操作能力,因此需要学生自主独立的进行试验操作,让学生自行设计实验内容,确定实验方案,在实践中不断提高自己的操作和知识的运用能力。

(四)充分体现学生的主体地位

传统教学与现代教学理念严重背离之处在于课堂教学活动中,教师往往处于主导地位,而作为教学活动关键核心的学生群体则成为了知识的被动接受者,单方面机械地完成课堂教学任务,无法真正达到教学的目的。这就要求,在课堂教学过程中,教师必须时刻关注教学同步,充分调动学生的参与热情,通过讨论、提问等方式,让学生真正参与到学习活动当中,学会发现问题,解决问题的方法。④

三、启发式教学的具体应用

(一)启发式教学的实质

启发式教学源远流长,历久弥新,“启发”一词最早源于古代教育家孔丘的“不愤不启,不悱不发”。朱熹解释说:“愤者,心求通而未得之意;悱者,口欲言而未能之貌。启,谓开其意;发,谓达其辞。”愤与悱是内在心理状态在外部容色言辞上的表现。就是说在教学前务必先让学生认真思考,已经思考相当长时间但还想不通,然后可以去启发他;虽经思考并已有所领会,但未能以适当的言辞表达出来,此时可以去开导他。在现代教育理念当中,启发式教学主要是指教学活动中教师依据课程学习的客观规律,引导学生积极主动自觉地掌握知识的教学方法。启发式教学可以很好地诠释教育学之间的关系,通过设置问题情境,充分调动学生参与的积极性和主动性,启发学生独立思考,发展学生的逻辑思维能力,并且通过教师的适当引导培养学生的动手操作能力和独立解决问题的能力。⑤

(二)设置问题情境

启发式教学的关键在于设置问题情境,同时也是激发学生创新思维的一种有效方式。这就要求教师在《工程流体力学》课程教学中有目的、有意识地创设各种情境,鼓励学生主动发现问题,让学生独立地进行探索分析。在《工程流体力学》课程教学过程中,学生遇到任何疑问都应该及时提出,向同学和老师进行探讨。大量的教学实践表明,提问可以充分调动学生的注意力和学习的积极性,通过提问锻炼学生的探索欲和逻辑思维能力。⑥学生在启发式教学模式下还应该增加主动性,寻找自己的兴趣点,去钻研。这样学生才会有问题意识,可以提出问题,而不是在别人背后去解答问题。另外,设置问题情境要与实际生活相融合。可以通过创设生活或工作式的教学情境,让学生真正感受到《工程流体力学》课程教学的多样性以及前瞻性,通过不断探索激发出学生潜在的学习兴趣以及好奇心。

(三)充分调动学生的主动性

在启发式教学过程中,需要充分调动学生的主动性和积极性,让学生真正意义上成为学习活动的主导者。《工程流体力学》课程需要打破传统应试教育的束缚,让学生的积极性和主动性得到充分释放。教师组织学生进行讨论时,要注意学生的反映,激发起学生发的求知欲望,引导学生通过收集资料了解流体运动的基本规律以及这些规律在工程实际中的应用,帮助他们对问题的独立思考。例如教师可以列举一些流体力学在生活和生产中广泛应用的实例,使学生了解流体处于平衡及运动状态下的力学规律,加强理论概念与现实生活的相互联系。总之,只有主动参与其中,学生才能对问题有一个深入的了解,并且能够切身地投入自身全部的精力想方设法去解决当前所面临的问题,而教师则完全不用花费大量的精力进行讲解,只需要进行适当的指引工作,使学生的自学能力能够充分发挥。⑦

实验是检验学生动手操作以及对知识运用的最佳方式,借助实验也可以充分调动学生学习的积极性和主动性。在问题情境环节中,学生大胆假设和创新提问以后,就需要通过实验对问题进行模拟分析,并得到结论。在安全的保障下,进入实验室,在教师的引导下,自己动手去做,积极探索。这样会对学习更有帮助,而这一过程会提高学生的研究热情,也可以提高学生团队的协作能力。此外,在《工程流体力学》课程教学过程中,学生还可以自由组合进行某一问题的研究,当假设足够成立的情况下,通过查询相关的文献资料,并进入实验室去寻找答案。这样一来,学生在今后的学习或者工作中,如果遇到问题,就可以真正独立地进行思考和研究。⑧

(四)建立轻松愉悦的学习氛围

建立轻松愉悦的学习氛围是启发式教学实现的前提。而长久以的来灌输式教学,让教师成为课堂教学的主体,其高高在上的形象,让不少学生产生畏惧感,这也使得学习氛围过于凝重、刻板甚至拘束。因此在教学方式上需要打破传统教学模式的束缚,改掉以往死气乏味的课堂教学,教师应该是教学活动的组织者和设计者,通过营造出民主、和谐、愉悦的课堂气氛等方式更好地帮助学生调动他们的主观能动性和积极性,鼓励学生亲自动手,并且给学生提供更多的进行流体力学讨论研究的空间和机会,让学生在独立思考、互相讨论以及动手操作中完成问题的发现与解决过程。此外,教师还需要引导学生相互尊重、相互理解,课堂气氛做到张弛有度。让学生在合作交流中真正理解和掌握《工程流体力学》的理论知识和基本技能,使他们真正成为学习的主人。⑨

综上所述,启发式课堂教学强调学生在学习过程中的主体地位。只有充分调动起学生的积极性,才能够提高《工程流体力学》课堂教学的质量。为此,本文总结了传统教学模式下《工程流体力学》课堂教学的种种弊端,然后在此基础上对启发式教学的有效途径进行了深入研究。通过营造和谐的学习氛围以及建立良好的师生关系,使《工程流体力学》课堂教学变得更加生动、形象。

注释:

①张晓宏.高校研究型教学范式之探究——启发式教学[J].教育探索,2007(3).

②朱昌流.论启发式教学的有效实施[J].教育与职业,2007(18).

③李小川.工程流体力学教学改革模式的探索与实践[J].中国现代教育装备,2012(10).

④吴翊.启发式教学再认识[J].中国大学教学,2011(1).

⑤刘全忠.关于工程专业流体力学课程教学改革的探讨[J].教育教学,2014(1).

⑥Wuhan University、scientific Research Publishing.The Heuristic Teaching Practice Based on Innovative Thinking [A].Proceedings of Conference on Creative Education(CCE2012).2012(5).

⑦朱辉,陈洪杰,刘飞.CDIO教育模式下工程流体力学课程教学改革与实践[J].桂林航天工业学院学报,2013(12).

⑧刘莹.解立平.基于“卓越工程师”培养计划的工程流体力学课程教学改革初探[J].时代教育,2014(2).

篇9

关键词:能源与动力工程;网络教学平台;混合式教育

作者简介:代乾(1981-),男,河北沧州人,天津城市建设学院能源与安全工程学院,讲师;王泽生(1964-),男,天津人,天津城市建设学院能源与安全工程学院,教授。(天津 300384)

基金项目:本文系天津城市建设学院2012年度教育教学改革与研究项目(项目编号:JG-1207)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)05-0074-02

2012年9月,教育部颁布实施新的《普通高等学校本科专业目录(2012年)》,热能与动力本科专业更名为能源与动力工程专业。由专业名称可见该专业的内涵更加广阔和深远,从而也说明随着能源动力科学技术的飞速发展和新问题地提出,社会对人才的培养提出了新的要求。目前,大约有170多所高校设置了热能与动力工程专业。[1]随着经济的发展,能源与环境逐渐成为世界各国所面临的重大科技和社会问题。培养高素质的具有创新意识的能源工程专业人才是本学科义不容辞的责任。而热工系列课程作为重要的专业基础课程,其重要性不言而喻。合理的课程体系是体现教育教学理念的重要载体,是实现专业培养目标、构建学生知识结构的中心环节,建立适应社会主义市场经济发展需要、体现热能动力技术学科内在规律、科学合理的课程体系极为重要。[2]为了使该课程适应新的要求,非常有必要对其进行一定的改革,以培养适应21世纪社会发展需要的人才,同时对推动我国可持续发展战略具有重要的意义。

一、实施混合式教育方式

开发混合式学习方案的关键因素在于确定适当的时机,使用适当的混合方式,为适当的学生施行教学。而教师想要运用适当的混合方式需要考虑学习地点的设置、信息传输技术及时间的安排、教学策略和绩效援助策略等。[3]混合式教学模式一般可分为以下几个阶段:[4-6]

1.前期分析

学生作为学习活动的主体是有认知、有情感的,学生本身的知识水平、学习能力和社会特征都对学习的信息加工过程产生影响,教师进行学生特征分析有助于了解学生的学习准备和学习风格,从而为后面的学习环境设计和媒体的选择提供依据。

2.混合式教学的组织与管理

教师应按照教学进度有针对性地选择和设计教学活动,同时要参照已经设计好的课程目标、课程内容及其呈现形式,将其与具体的章节知识点相关联。教学活动的作用在于为学生创造具体的学习情境,并加强师生、生生之间的交流互动,因此恰当的教学策略对于教学活动的顺利展开尤为重要。

3.网络教学平台及教学资源建设

网络的对于教学来说不应当只是教学内容,而更多的应该是支持教学交互、教学评价和教学管理,教学交互、教学评价和教学管理是保证教学质量的重要环节,这就需要有一个集教学内容与管理、课堂教学、在线教学交互、在线教学评价、基于项目的协作学习、发展性教学评价和教学管理等功能于一体的网络教学平台来支撑混合式教学。本校对“工程热力学”、“传热学”、“工程流体力学”原有的教学网站进行了全面改版,并于2010年先后投入运行。其中“工程热力学”课程教学网站主页如图1所示。网站按照省部级精品课程的要求制作,网上教学内容详实,包括课程的概况、教学文件、习题及答案、实验实践教学等各种资源。学生可通过浏览网站学习更多的知识,这对课堂教育来说是一个非常有益的补充,并有助于实现教与学的互动。

二、教学内容优化

“工程流体力学”是理解能源动力系统工质流动与流量、能量分配的基础。“工程热力学”是研究如何充分和有效利用能量的学科,其基本内容是热力学基本定律和工质热物性、热过程的研究,是理解能源动力系统中能量转换基本规律和提高系统能源利用效率的理论基础。“传热学”研究热量传递的基本规律,是理解和控制能源动力系统热量传递过程的理论基础。“热工学”集成了“工程热力学”、“传热学”的基本理论和核心内容,为能源动力类安全工程专业等提供必要和少量学时的热工理论基础教育,也是其他非能源动力类专业节能技术及应用的理论基础课程。“热工测量技术”和“流体热工基础实验”课程则是关于“工程流体力学”、“工程热力学”、“传热学”的实验理论的技术基础课程,旨在揭示相关课程的实验研究目标、原理、方法以及应用。

1.热工系列课程间内容关联性分析

(1)“工程流体力学”与“工程热力学”在教学内容的关联性之处主要体现以下两个方面:“工程流体力学”中的一维无粘性重力流体流动能量方程(伯努利方程)与“工程热力学”中的热力学第一定律稳态稳流能量方程式具有相同的理论基础,后者是普遍适用的能量方程式,而后者是前者在一维无粘性重力流体条件下的特例和不同的表达方式;“工程流体力学”中的可压缩流体流动基础与“工程热力学”中的气体和蒸汽的流动研究对象及理论基础完全相同,只不过研究的侧重点不同,前者强调流动特性,后者注重能量传递与转换过程。

(2)“工程流体力学”与“传热学”课程在教学内容方面具有紧密的关联性和延续性,主要体现在“工程流体力学”中粘性流动方面与“传热学”中对流换热方面的相关内容,具体为:

1)研究对象均为传递现象,“工程流体力学”研究的是动量的传递,而“传热学”研究的则是热量的传递,其规律及分析方法具有类比性。首先,传递驱动力分别为速度差和温度差;其次,传递方式均为分子扩散和对流扩散,其中对于分子扩散基本规律两者具有类似的形式,即牛顿摩擦定律及傅里叶定律,也均有描述传递能力的物性参数,即运动粘度(m2/s)和热扩散系数(m2/s),而且流动边界层与热(温度)边界层具有相似的定义和相同的边界层结构;最后,描述传递现象的控制方程,即动量微分方程式(N-S方程)和能量微分方程,也具有相似的形式。这也是“传热学”中动热类比分析方法(类比律,即将阻力实验结果直接用于表面传热系数的计算)的理论基础。

2)如果粘性流体流经壁面且具有与壁面不同的温度时,就会同时发生动量传递和热量传递现象。此时“工程流体力学”与“传热学”研究的是同一现象的不同方面的特性,即阻力特性和传热特性。一般阻力特性是传热特性研究的基础,某些特殊情况(流动及对流换热具有耦合特征)下两者相互影响,如流体外掠平板的层流与紊流流动及对流换热、圆管内层流与紊流流动及对流换热、外掠圆柱的层流与紊流流动及对流换热、各类自由流动及对流换热等等。显然在此类教学内容中,“工程流体力学”是“传热学”的基础。

3)具有相同的分析、计算方法。正是由于动量方程和能量方程具有相似的形式,理论分析法(包括微分方程组求解及积分方程组求解)、模化实验方法(相似原理)、数值计算方法均可应用于阻力特性和传热特性的研究,甚至同一数值计算商业软件(如FLUENT、ANSYS、PHINICS等)可同时分析求解同一现象的阻力特性和传热特性。因此在研究方法上,“工程流体力学”与“传热学”是并行的或者说是相同的。

(3)“工程热力学”与“传热学”课程在教学内容具有关联性之处主要体现以下两个方面:“工程热力学”中有关热量传递只是讨论热力过程中热量传递的量,而“传热学”研究的是热量传递的机理、方式、影响因素、计算方法。在“热力学”中热量的单位是q(J/kg),而“传热学”中热量(热流密度)单位是q(W/m2),可见后者强调的是热量传递的速率及能力,而后者以前者的理论(即热力学第一定律—能量守恒规律)为基础;“工程热力学”中有关湿空气焓及含湿量变化规律与“传热学”中的热质交换有着内在联系。如电厂冷却塔中,“工程热力学”讨论了其工作原理及状态参数的变化,而“传热学”则讨论了其热湿交换的具体方式和传递速率。

2.热工系列课程教学内容体系优化原则

依据培养方案,流体热工系列课程时间安排顺序是“工程流体力学”—“工程热力学”—“传热学”(或“热工学”)—“热工测量技术”,“流体热工基础实验”课程与上述课程并行安排。因此,热工系列课程教学内容体系优化按照以下原则进行:

(1)安排在前的课程。教师除完成本课程教学内容外,须根据上述各课程之间知识点的关联性,有意识地为后续课程涉及的内容打下牢固的理论基础。“工程流体力学”课程的教师需要向“工程热力学”、“传热学”课程任课教师了解相关的内容,如一元绝热稳定流动的能量转换规律、相似原理等等,在“工程流体力学”的教学中兼顾这些内容的教学需求。

(2)安排在后的课程。教师依据上述各课程之间知识点的关联性分析,在相关内容的教学过程中,须了解前面课程任课教师的授课内容和方法,精选授课内容,避免不必要的重复,使该课程与前面课程有机衔接,且注意采取比较教学法,让学生更容易掌握课堂知识。

(3)“热工测量技术”和“流体热工基础实验”课程。课程任课教师应了解和引用其他理论课程相关教学内容,使实验教学与理论教学内容有机结合。如温度测量,教师除加强温度测量原理、仪表、标定及使用方法教学外,对于高速气流温度测量,需引用“工程热力学”中气流一维绝热流动能量方程以及滞止温度和气流温度的关系等相关理论知识,说明气流速度对温度测量误差的影响;而对于高温气流温度测量,需引用“传热学”的辐射换热相关理论,说明辐射对测温误差的影响以及消除误差的措施;而对于铠装热电偶或在加温度计套管情况下,还需引用“传热学”的通过肋壁导热的相关理论,说明套管的存在对温度测量误差的影响以及消除误差的措施。

三、结束语

经过一定时间的教学体验和学生的反馈表明,该教学模式使教学效果得到很大提高。笔者认为在以后的教学当中,要把这种模式继续深化并推广到其他课程的教学当中,热工系列课程的教学改革也必然会取得成功。

参考文献:

[1]宋文武,符杰,李庆刚,等.关于构建“热能与动力工程”大专业多方向课程体系的思考——基于培养复合型应用人才的视角[J].高等教育研究,2011,28(4):44-48.

[2]战洪仁,张建伟,李雅侠,等.热能与动力工程专业人才培养模式及课程体系探讨[J].化工高等教育,2008,99(1):19-21.

[3]Matt Donovan,Melissa Carter.Blended Learning:What Really Works[J].CLASTD,2004,(2).

[4]Driscol1 M.Blended learning:Let’s get beyond the hype[J].learning and Training Innovations[R].2002.

篇10

针对工程流体力学课程当前存在的问题,结合CDIO工程教育模式,从理论和实践之间的关系、学风建设、教师身份转换以及考核机制方面进行改革,重点加强对学生主动学习能力,工程应用能力和团队合作能力的培养。实践表明,实施CDIO工程教学改革达到了预期的人才培养目标,也对其他课程的教学改革具有参考意义。

关键词:

CDIO工程教育模式;工程流体力学;教学改革;三级项目

0引言

随着中国工业化进程的不断推进和“再工业化”战略的提出[1],我国需要一大批有着扎实的专业知识、具备良好工程能力的工程师人才。应用型本科院校承担着培养创新能力和工程能力人才的重任。如何使毕业生具备良好的自主学习能力、团队合作意识、系统分析和动手能力,已成为我国高等工程教育改革的重点和难点。CDIO是一种强调创新与工程实践的新型高等教育模式,其核心是将教学与工程实践紧密结合,以满足企业对工程人才知识结构和工程能力的需求,解决传统工科高等院校在人才培养中出现的重理论教学轻实践问题。按CDIO模式培养的学生,学习迁移能力、理论联系实践能力强,具备自主学习能力和“终生学习”的习惯,深受社会与企业欢迎[2,3]。工程流体力学是力学的一个重要分支,侧重在生产生活上与气体和液体相关的工程实际应用,它不追求数学上的严密性,而是趋向于解决工程中出现的实际问题[4]。要求学生对试验研究、理论分析和数值计算有深入的理解,才能对实际工程问题进行定性、定量分析。将CDIO教学模式引入工程流体力学的课程教学改革中,更有利于提高学生的工程实践能力和水平。

1工程流体力学课程存在的问题

1.1理论教学困难

随着教学计划改革的进行,工程流体力学课程的教学计划课时由传统的50课时缩减为目前的32课时。其中,教学学时为26课时,实验学时为6课时,学时少,内容多,学生理解困难。

1.2学生学习主动性差

传统课程理论性较强,需要熟练掌握的公式复杂,内容较为抽象,学生存在理解困难、理论与实践脱节等问题。同时实验环节学生的参与度很低,看多于做,更谈不上思考和理解。

1.3考核方式单一

传统的笔试考核方式造成了学生学习依赖心里严重,学习迁移能力差等问题。只在乎基本理论的死记硬背和卷面考试,面对实际问题无从下手,难以判断学生对课程的掌握情况。

2CDIO工程教育理念

CDIO工程教育模式是由麻省理工学院和瑞典皇家工学院等四所大学组成的跨国研究团队于2001年创立的新型的工程教育模型。CDIO即构思(Conceive)、设计(Design)、实施(Implement)和运行(Operate),包括了三个核心文件:1个愿景、1个大纲和12条标准[5]。根据工程师应具备的能力以逐级细化的方式表达出来,为工程教育改革提供了系统全面的指导,代表了当代工程教育的发展趋势。CDIO工程教育模式从2005年引进我国以来,取得了令人瞩目的成就。燕山大学作为教育部机械类、电气类的CDIO工程教育模式研究与实践课题组试点的第一批高校之一,积极推进CDIO工程教育改革进程。自2008年春季学期开始实施基于CDIO模式的教学改革以来,已经培养了七届毕业生,积累了丰富的教学改革经验,并不断进行创新,为CDIO工程教育模式在中国的发展做出了一定的贡献。

3规划调整基于现代工程环境下的“工程流体力学”课程体系

传统的工程流体力学教学体系已经不能满足当今社会对工程人才素质的需求。基于CDIO思想构建的新的课程体系,加强了对学生基础知识积累和运用的要求,强化工程实践环节,重视对学生动手能力的培养。同时,重点介绍工程流体力学的最新科学技术领域和工程领域的发展,以构建新型多层次课程教学体系。在实际改革进程中,要强调基础素质的培养,采用课堂理论教学、课下多层次实验和三级项目相结合的方法,注重与学生之间的交流与反馈,将基于CDIO的课程教育改革平稳、有序地进行[6]。

4基于CDIO的课程具体教改内容

4.1理论教学环节改革

针对工程流体力学学科基础性强,理论难度大,应用范围广的特点,基于CDIO思想的课程改革采用将授课内容精简,关键知识点精讲,综合性知识点布置主题性任务的方法,让学生主动学习,拓展知识面,培养了学生进行独立思考的能力。充分利用互联网资源以及教师的实际工程经验,对知识点进行剖析,增强学生对知识点的感性认识。同时制作大量的流体流动动画,展示最新工程流体力学学科应用资料,极大地丰富了教学资源,便于理解重要知识点,激发学生的学习兴趣和主动性。

4.2实践教学环节改革

华裔诺贝尔物理学奖获得者李政道先生,在关于杰出科学人才培养的问题上特别强调实验精神和实验能力。基于CDIO思想课程改革的实践环节,以三级项目为主,多层次实验教学为辅,全面锻炼学生的知识检索能力,团队协作交流能力,多学科、大系统的掌控能力,并能够对学生知识的掌握情况进行深入的了解[7]。工程流体力学三级项目包括:系统全面的任务要求,灵活多变的题目选择,细致的团队任务分工,明确的节点汇报形式,以及一套合理的考核机制。以2014年秋季学期工程流体力学三级项目为例,要求每个班级的学生自行组队,3-5人一组,每组选出一个组长,分别从六个题目中任选一个为题,对该题目进行分析、求解,明确组内成员分工,按时进行节点汇报,最后提交三级项目的课程报告和项目感想,抽签进行PPT汇报。通过对学生的反馈信息和实际表现进行分析可以看出,三级项目的方法可以将CDIO教育改革理念与课程知识完美融合。不仅让学生对所学知识有了更加深刻的理解,锻炼工程实践能力,而且让教师的参与者和引领者作用得到充分发挥。

4.3学风建设环节改革

工程流体力学课程的理论难度较大,采用传统的课堂式教学和单一卷面考核的方式,使学生只关注考试得高分,做实验不提前准备、不关注原理,更让一部分学生产生了课程学了也毫无用处的想法。基于CDIO工程教育的流体力学课程改革,严格按照CDIO的12条标准与能力大纲的要求,设计出一套合理的、循序渐进的三级项目考核机制。在项目的进展过程中,学生需要付出很多的课余时间,对项目的相关内容进行广泛的搜索和学习,通过软件仿真、理论计算以及与工程应用对比等方式,使学生对所学知识有了更深刻的认识。同时,学生充分体会到了团队合作过程中,成员间交流、沟通、共享的重要性,体会到了集体智慧带来的冲击,以及团队合力完成项目的成就感。在听取其他小组汇报的过程中,对整个课程也有了更加深刻的理解。

4.4教师身份转换环节改革

根据CDIO工程教育改革方案的要求,教师不仅仅是知识的传播者,更是知识交流的参与者和引导者[8]。教师在自身知识和工程经验积累的基础上,严格按照CDIO工程教育改革能力大纲要求,系统、全面地整理出独具特色的课堂教学教案。表2给出了工程流体力学课程某一个单位学时的部分课堂教学教案,只有按照详尽的能力大纲的要求,才能充分保障教学质量。在三级项目考核机制的进程中,每个小组都要与教师在课下进行深入的沟通和交流。这种轻松、愉悦的沟通方式,不仅拉近了教师与学生之间的距离,而且使教师能够更加充分地发挥参与者和引领者的作用,积极地引领学生走向自主学习和探索的阶段。

4.5考核机制环节改革

与传统单一卷面考核的方式相比,基于CDIO工程教育改革的考察机制更加注重对学生学习态度和学习能力的考察。目前采用的考核方法是:课堂出勤0.1,平时作业0.1,实验成绩0.1,三级项目0.1,考试卷面成绩0.6。其中,三级项目由二部分组成:①组内互评等分,总分5分,最优分和最差分相差不得小于1分,组内人均得分为4分;②导师评分,总分5分,最优分和最差分相差不得小于1分。实践证明,CDIO工程教育改革的考核机制更加公平、合理,克服了学生对卷面考试的依赖,提高了学习的积极性,同时保证了课程、实验和三级项目的正常有序进行。近三年的课程合格率由改革前的低于75%,稳步增长并保持在90%以上,获得了学生们的广泛认可。

5结束语

CDIO工程教育体系是基于欧美发达国家的教育基础而提出发展的,并不完全符合我国的教育情况和社会背景。如何将CDIO工程教育改革消化吸收,与中国的社会现状和教育现状相结合,走出一条具有中国特色的教学改革之路,是今后CDIO在中国发展的重点和难点。通过对几年来基于CDIO工程教育理念的工程流体力学课程改革成果进行分析,可以得出很多宝贵的经验。应用型本科院校必须克服困难,强调方法,将改革进行下去,只有这样才能培养出符合当代社会发展需要的工程型人才。同时,教育改革是一个漫长的过程,必须本着“决策—实施—检查—反馈—修正”的闭环管理思路,才能将改革合理、平稳地进行下去。

作者:袁晓明 王超 杜冰 单位:燕山大学河北省重型机械流体动力传输与控制重点实验室 燕山大学先进锻压成形技术与科学教育部重点实验室

参考文献:

[1]黄群慧.中国的工业化进程:阶段、特征与前景[J].经济与管理,2013,07:5-11.

[2]胡文龙.基于CDIO的工科探究式教学改革研究[J].高等工程教育研究,2014,01:163-168.

[3]顾学雍.联结理论与实践的CDIO—清华大学创新性工程教育的探索[J].高等工程教育研究,2009,01:11-23.

[4]高殿荣,张伟.工程流体力学[M].北京:化学工业出版社,2014,1.

篇11

Key words: the CDIO Engineering Educational Model;engineering fluid dynamics;teaching innovation;third-grade project

中图分类号:G642.0 文献标识码:A 文章编号:1006-4311(2016)11-0217-04

0 引言

随着中国工业化进程的不断推进和“再工业化”战略的提出[1],我国需要一大批有着扎实的专业知识、具备良好工程能力的工程师人才。应用型本科院校承担着培养创新能力和工程能力人才的重任。如何使毕业生具备良好的自主学习能力、团队合作意识、系统分析和动手能力,已成为我国高等工程教育改革的重点和难点。

CDIO是一种强调创新与工程实践的新型高等教育模式,其核心是将教学与工程实践紧密结合,以满足企业对工程人才知识结构和工程能力的需求,解决传统工科高等院校在人才培养中出现的重理论教学轻实践问题。按CDIO模式培养的学生,学习迁移能力、理论联系实践能力强,具备自主学习能力和“终生学习”的习惯,深受社会与企业欢迎[2,3]。

工程流体力学是力学的一个重要分支,侧重在生产生活上与气体和液体相关的工程实际应用,它不追求数学上的严密性,而是趋向于解决工程中出现的实际问题[4]。要求学生对试验研究、理论分析和数值计算有深入的理解,才能对实际工程问题进行定性、定量分析。将CDIO教学模式引入工程流体力学的课程教学改革中,更有利于提高学生的工程实践能力和水平。

1 工程流体力学课程存在的问题

1.1 理论教学困难

随着教学计划改革的进行,工程流体力学课程的教学计划课时由传统的50课时缩减为目前的32课时。其中,教学学时为26课时,实验学时为6课时,学时少,内容多,学生理解困难。

1.2 学生学习主动性差

传统课程理论性较强,需要熟练掌握的公式复杂,内容较为抽象,学生存在理解困难、理论与实践脱节等问题。同时实验环节学生的参与度很低,看多于做,更谈不上思考和理解。

1.3 考核方式单一

传统的笔试考核方式造成了学生学习依赖心里严重,学习迁移能力差等问题。只在乎基本理论的死记硬背和卷面考试,面对实际问题无从下手,难以判断学生对课程的掌握情况。

2 CDIO工程教育理念

CDIO工程教育模式是由麻省理工学院和瑞典皇家工学院等四所大学组成的跨国研究团队于2001年创立的新型的工程教育模型。CDIO即构思(Conceive)、设计(Design)、实施(Implement)和运行(Operate),包括了三个核心文件:1个愿景、1个大纲和12条标准[5]。根据工程师应具备的能力以逐级细化的方式表达出来,为工程教育改革提供了系统全面的指导,代表了当代工程教育的发展趋势。

CDIO工程教育模式从2005年引进我国以来,取得了令人瞩目的成就。燕山大学作为教育部机械类、电气类的CDIO工程教育模式研究与实践课题组试点的第一批高校之一,积极推进CDIO工程教育改革进程。自2008年春季学期开始实施基于CDIO模式的教学改革以来,已经培养了七届毕业生,积累了丰富的教学改革经验,并不断进行创新,为CDIO工程教育模式在中国的发展做出了一定的贡献。

3 规划调整基于现代工程环境下的“工程流体力学”课程体系

传统的工程流体力学教学体系已经不能满足当今社会对工程人才素质的需求。基于CDIO思想构建的新的课程体系,加强了对学生基础知识积累和运用的要求,强化工程实践环节,重视对学生动手能力的培养。同时,重点介绍工程流体力学的最新科学技术领域和工程领域的发展,以构建新型多层次课程教学体系。在实际改革进程中,要强调基础素质的培养,采用课堂理论教学、课下多层次实验和三级项目相结合的方法,注重与学生之间的交流与反馈,将基于CDIO的课程教育改革平稳、有序地进行[6]。

4 基于CDIO的课程具体教改内容

4.1 理论教学环节改革

针对工程流体力学学科基础性强,理论难度大,应用范围广的特点,基于CDIO思想的课程改革采用将授课内容精简,关键知识点精讲,综合性知识点布置主题性任务的方法,让学生主动学习,拓展知识面,培养了学生进行独立思考的能力。充分利用互联网资源以及教师的实际工程经验,对知识点进行剖析,增强学生对知识点的感性认识。同时制作大量的流体流动动画,展示最新工程流体力学学科应用资料,极大地丰富了教学资源,便于理解重要知识点,激发学生的学习兴趣和主动性。

4.2 实践教学环节改革

华裔诺贝尔物理学奖获得者李政道先生,在关于杰出科学人才培养的问题上特别强调实验精神和实验能力。基于CDIO思想课程改革的实践环节,以三级项目为主,多层次实验教学为辅,全面锻炼学生的知识检索能力,团队协作交流能力,多学科、大系统的掌控能力,并能够对学生知识的掌握情况进行深入的了解[7]。

工程流体力学三级项目包括:系统全面的任务要求,灵活多变的题目选择,细致的团队任务分工,明确的节点汇报形式,以及一套合理的考核机制。

以2014年秋季学期工程流体力学三级项目为例,要求每个班级的学生自行组队,3-5人一组,每组选出一个组长,分别从表1的六个题目中任选一个为题,对该题目进行分析、求解,明确组内成员分工,按时进行节点汇报,最后提交三级项目的课程报告和项目感想,抽签进行PPT汇报。

通过对学生的反馈信息和实际表现进行分析可以看出,三级项目的方法可以将CDIO教育改革理念与课程知识完美融合。不仅让学生对所学知识有了更加深刻的理解,锻炼工程实践能力,而且让教师的参与者和引领者作用得到充分发挥。

4.3 学风建设环节改革

工程流体力学课程的理论难度较大,采用传统的课堂式教学和单一卷面考核的方式,使学生只关注考试得高分,做实验不提前准备、不关注原理,更让一部分学生产生了课程学了也毫无用处的想法。

基于CDIO工程教育的流体力学课程改革,严格按照CDIO的12条标准与能力大纲的要求,设计出一套合理的、循序渐进的三级项目考核机制。在项目的进展过程中,学生需要付出很多的课余时间,对项目的相关内容进行广泛的搜索和学习,通过软件仿真、理论计算以及与工程应用对比等方式,使学生对所学知识有了更深刻的认识。同时,学生充分体会到了团队合作过程中,成员间交流、沟通、共享的重要性,体会到了集体智慧带来的冲击,以及团队合力完成项目的成就感。在听取其他小组汇报的过程中,对整个课程也有了更加深刻的理解。

4.4 教师身份转换环节改革

根据CDIO工程教育改革方案的要求,教师不仅仅是知识的传播者,更是知识交流的参与者和引导者[8]。教师在自身知识和工程经验积累的基础上,严格按照CDIO工程教育改革能力大纲要求,系统、全面地整理出独具特色的课堂教学教案。表2给出了工程流体力学课程某一个单位学时的部分课堂教学教案,只有按照详尽的能力大纲的要求,才能充分保障教学质量。在三级项目考核机制的进程中,每个小组都要与教师在课下进行深入的沟通和交流。这种轻松、愉悦的沟通方式,不仅拉近了教师与学生之间的距离,而且使教师能够更加充分地发挥参与者和引领者的作用,积极地引领学生走向自主学习和探索的阶段。

4.5 考核机制环节改革

与传统单一卷面考核的方式相比,基于CDIO工程教育改革的考察机制更加注重对学生学习态度和学习能力的考察。目前采用的考核方法是:课堂出勤0.1,平时作业0.1,实验成绩0.1,三级项目0.1,考试卷面成绩0.6。其中,三级项目由二部分组成:

①组内互评等分,总分5分,最优分和最差分相差不得小于1分,组内人均得分为4分;

②导师评分,总分5分,最优分和最差分相差不得小于1分。

实践证明,CDIO工程教育改革的考核机制更加公平、合理,克服了学生对卷面考试的依赖,提高了学习的积极性,同时保证了课程、实验和三级项目的正常有序进行。近三年的课程合格率由改革前的低于75%,稳步增长并保持在90%以上,获得了学生们的广泛认可。

5 结束语

篇12

关键词 工程力学 环境科学 综合应用

中图分类号:X-019 文献标识码:A

1 工程力学与环境科学的学科交叉理论

工程力学是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。

在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下,促使了工程力学的建立。工程力学之所以出现,一方面是迫切要求能有一种有效地手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。

总的来说,工程力学具有现代工程与理论相结合的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。

2工程力学理论在环境科学中的发展

2.1环境与力学的学科特点

工程力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。工程力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。

工程力学注重从微观到宏观,以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而工程力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是工程力学建立的主导思想和根本目的。

虽然工程力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。工程力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。

2.2研究内容和方向

工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。

工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。

工程力学研究方向主要有:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与爆破。

3工程力学理论在环境科学中的应用

3.1材料力学与环境

材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。

利用材料力学中卸载与在加载规律得出冷作硬化现象,工程中常利用其原理以提高材料的承载能力,例如建筑用的钢筋与起重的链条,但冷作硬化使材料变硬、变脆,是加工发生困难,且易产生裂纹,这时应采用退火处理,部分或全部地材料的冷作硬化效应。

3.2固体力学与环境

自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计都应用了固体力学的原理。

固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。

固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。

3.3流体力学与环境

流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定理和质量守恒定理,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。

篇13

[关键词]过程装备与控制工程;专业方向;人才培养;课程设置

引言

过程装备与控制工程专业是在化工设备与机械专业基础上建立起来的。早在20世纪50年代初期,根据经济发展的需要,我国仿照原苏联的教学模式成立了化工设备与机械专业。如大连工学院(即大连理工大学)在1951年率先成立了化学生产机器与设备专业,第二年天津大学、浙江大学、华东化工学院(华东理工大学)等国内知名高校也相继设立了化学生产机器与设备专业。该专业的设立,对我国当时经济的发展起到了巨大的推动作用,特别是对我国化工、石油化工、轻工、制药等行业的发展功不可没。该专业主要的特点是将化工过程和过程设备有机地结合起来,所学知识既可以解决化工生产过程遇到的难题,又可以根据化工生产需要来设计、改进和加工所需的设备,还可以对生产设备进行操控、维护和维修。该专业曾被誉为“万金油”专业,培养出来的人才长期备受社会青睐。[1][2][3][4][5]然而,随着工业和科技的发展,高能耗、低效率、高污染的粗放式的生产模式已与时代主题格格不入。目前的生产,要求过程设备向大型化、精密化、节能化和自动化方向发展。为了迎合社会发展的需要,1998年教育部对普通高等学校本科专业进行调整时,将原来的“化工设备与机械”专业更名为“过程装备与控制工程”专业。专业名称的变更,既拓宽了专业领域范围,也拓宽了专业知识结构。目前的过程装备与控制工程专业,涵盖了化工设备与机械、真空技术与设备、炼油机械、矿业机械、建材机械、轻工机械等专业。也就是说,过去的这些专业经专业调整以后现在都叫过程装备与控制工程。对应专业名称的变更,专业知识结构也发生了巨大的变化,即从原来的以化工过程原理和化工设备设计知识为主的课程设置,拓宽到以过程原理、过程装备和过程控制为主要内容的课程体系。学生的就业领域也从原来的以化工和石化企业为主导领域,拓宽至化工、石油化工、炼油、食品、环境工程、制冷工程、生物化工、动力能源、冶金、轻工和制药等领域。不可否认,专业名称和专业内涵的变革对社会发展和人才培养起到了无法估量的作用。同时,专业范围的拓宽也带来了一系列不容忽视的问题。

一、过程装备与控制工程专业发展存在的问题

鉴于目前过程装备与控制工程专业就业形势较好,目前全国已有120多所高校开设了此专业。其中部分院校的过程装备与控制工程专业,并不是由原来的化工机械与设备专业转变过来的。这些院校为了满足过程装备与控制工程专业课程体系的要求,同时保存原来专业的特点,课程体系一度变得庞大而复杂。面对复杂的课程体系,学生们在一定程度上对本专业的认识、专业课程的学习、就业甚至再深造专业的选择产生了一定的困惑。目前,为了与国际工程教育接轨,使过程装备与控制工程专业国际化,即使是由化工设备与机械发展起来的过程装备控制工程专业的课程体系也非常庞大。图1是我校2015级培养方案的课程体系,加上选修课共60余门次。目前面临的一个严峻问题是,课程门数在增多,而总学时却在减少,从而出现学时紧张难以分配的现象。对本专业而言,一些非常重要的专业基础课程如工程流体力学和工程热力学仅有32学时,在有限的学时内学生对这些课程知识点的掌握不够深入和透彻,这导致学生在后续课程的学习(如过程流体机械)中比较吃力,难以理解过程中涉及的物理现象;甚至有些学生在考研时,几乎不敢报考专业课程为流体力学、工程热力学和传热学的高等院校。其次,课程的大而全,在某种程度上给学生带来了很大的困惑。面对复杂的课程体系,学生们不知道他们到底要学什么,将来能干什么。学生在课程学习时,对很多课程认识不足,只是简单的根据学时的多少来判断课程的重要性,这导致他们在学习时不能很好地把握专业方向,严重影响了就业方向选择的主动性。再加上过程装备与控制工程专业本身在专业方向归类时就比较特殊,其本科阶段归属于机械工程一级学科,而研究生阶段(即化工过程机械)又归属于动力工程及工程热物理一级学科。这无形中又增加了学生对专业方向理解的困惑。再次,目前有些院校虽然已形成了自己独特的专业方向,但从学生就业和发展的角度来说,缺乏一定的灵活性,再加上目前高校招生规模逐步扩大,学校很难满足学生个性发展的需求。而且单一的专业方向会影响学生的就业,形成内部竞争的局面。因此,过程装备与控制工程专业方向的精心凝练和认真规划是我们必须面对的问题。

二、专业方向的规划和思考

正如前述,早期曾把过程装备与控制工程专业称为“万金油”专业。但仔细想想,如果一个人啥都能干,那也就意味着他啥也专不了、精不了。就学术界而言,到目前为止,本专业出来的两院院士和杰出科学家屈指可数,所以专业方向的凝练和规划是必然的。为了与国际接轨,专业方向的凝练不能偏离已有的课程体系,而应在与国际接轨的基础上,认真规划专业方向。从表1可以看出,对于我校的过程装备控制工程专业而言,主要的专业课程可分为:过程设备、过程机器和过程控制三大类。顺着这三大课程类别,实际上可以规划为过程设备、过程机器和过程控制三个专业方向。学生在数学、自然科学和人文与社会科学等基础课程学完之后,就可以根据个人的兴趣爱好进行专业方向选择。确定了专业方向后,学生就可以根据专业方向和个人的发展深入学习相关课程。当然,制订培养方案时应根据专业方向的需要合理地安排相关课程、分配学分和学时。

(一)过程设备方向

该方向以过程设备(包括存储容器、换热器、塔器、反应釜等)的结构设计、强度设计、材料选用、制造加工为主。支撑专业方向的主干专业基础课程应为理论力学、材料力学、弹性力学、过程原理、工程材料,主要的专业课程应为过程设备设计、过程装备制造工艺、压力容器设计规范、信号测试与处理。相对于其他专业方向而言,在制订培养方案时,这些课程的学时应偏多些。

(二)过程机器方向

该方向以过程机器(包括压缩机、泵、离心机、汽轮机等)的结构设计、热力设计、节能设计、操作运行、故障诊断为主。支撑专业方向的主干专业基础课程应为流体力学、热力学、传热学、过程原理、材料力学,主要的专业课程应为过程流体机械、故障诊断技术、过程装备制造工艺、信号测试与处理。相对于其他专业方向,在制订培养方案时,这些课程的学时应偏多些。

(三)过程控制方向

该方向以过程控制仪表(包括压力、温度、流量、应力应变等传感器)的结构设计、原理设计、电路设计、控制设计为主。支撑专业方向的主干专业基础课程应为电工和电子技术、控制工程基础、复变函数、过程原理、计算机原理及应用,主要的专业课程应为过程控制技术及应用、化工仪表及自动化、过程控制与计算机控制系统。相对于其他专业方向,在制订培养方案时,这些课程的学时应偏多些。表1列出不同专业方向课程的对比情况。从中可以看出,每个方向都有自己的重点课程,这样做有以下优点。1.学生明白了专业方向的重要课程,可以有针对性地进行学习,能够很好地将课程学习和自己将来的就业和发展结合起来。2.优秀学生在进一步深造学习、选学校和专业时,比较灵活,选择的余地比较大,摆脱了考研专业课程只敢选材料力学和理论力学的尴尬局面。3.能够合理地利用教学资源,分层次教学,比如每个专业方向的重点课程应配置经验丰富、责任心强的教师进行授课。对于这些重点专业课程,不论是理论学习还是实践学习,均应严格要求,在纵、深方面均应达到预定的水平。而对于相同课程、非专业方向学生的教学,教师应侧重于知识广度的教学,不应再抓细节、求深度。4.便于课堂管理和减轻学生的学习负担。有了专业方向,学生学习的目的性就比较强,重点课程会多投入,非重点课程应以了解为主。对学生而言,在明白了课程的学习目标后,他们学习的积极性会相应提高;对教师而言,课堂管理也会相对轻松。

三、结束语

不可否认,任何事情都具有两面性,教育也如此。教育的改革和国际化,一方面促进了我国教育的发展和教育与国际接轨的步伐,另一方面也带来了诸如课程体系膨胀、专业方向模糊等一系列问题。本文针对过程装备与控制工程专业方向模糊不清这一问题,给出了自己的一些看法和解决方案。在笔者看来,根据目前的课程体系,过程装备与控制工程应设置过程设备、过程机器和过程控制三个专业方向,然后再根据专业方向设置相应的课程。每个方向应根据需要来设置自己的课程,不同的方向、相同的课程,可配置不同的学时,讲授不同的内容。面对具体的专业方向,学生应制订详细的学习目标。这无疑对学生的学习、就业乃至未来的发展具有巨大的帮助作用。

[参考文献]

[1]李志义,.对“过程装备与控制工程”专业的认识与规划[J].化工高等教育,1999(3):9-12.

[2]李志义,.对过程装备与控制工程专业背景的认识[J].化工高等教育,2003(1):11-14.

[3]闫绍峰,廖国进,熊晓航.过程装备与控制工程专业建设探索[J].辽宁工业大学学报(社会科学版),2012(2):116-123.

[4]陈国华,梁峻.培养过程装备与控制工程专业卓越工程师的思考[J].化工高等教育,2011(2):45-49.

篇14

工程教育认证标准一般由八个指标构成,分别是学生、专业教育目标、学生成果、持续改进、课程体系、师资力量、教学设施、学校支持等。其中工程教育专业认证中的课程设置,为了能支持毕业要求的达成,课程体系设计有企业或行业专家参与。我国各高校在启动工程教育专业认证工作过程中,发现课程体系设置是否科学、合理、会规直接影响到毕业生的工程实践能力与创新能力,进而影响专业培养目标、毕业要求的可达性。因此各高校针对工程教育专业认证标准和要求,提出了各个专业课程体系改革的思路、做法和经验。西北工业大学的张清江等通过调研我国工程教育与专业认证发展历程,对我国航空航天专业与其他已获得资格专业进行对比分析。并结合国际航空航天质量体系认证中的要求,从航空航天工程教育专业认证的必要性、专业特点、航空航天工程教育现状等角度出发进行研究。结合现代中国工程教育存在的普遍问题,提出针对航空航天类专业认证的新方式、新方法,并对航空航天工程教育专业认证需要注意的特性进行讨论。辽宁石油化工大学马会强等依据工程教育专业认证标准,以辽宁石油化工大学环境工程专业为例,通过明确培养目标,解析培养要求,从课程设置、实践环节、毕业设计等方面进行了课程体系改革探索。广东石油化工学院任红卫等分析了我国工程教育的现状,并探讨了在工程教育专业背景下电气专业的教学改革方法,从而提高学生的工程实践能力。浙江工业大学姜理英等人基于对工程教育专业论证的国际比较,结合环境工程教育专业认证的必要性,从培养计划的调整、课程体系的优化、实践教学的强化和师资队伍的提升四个方面,综合系统地提出了对环境工程专业教学内容进行全面优化和提升的路径。张秋根等人根据环境工程专业规范和认证标准要求,以南昌航空大学环境工程专业为例,对其核心课程体系设置和教学内容两方面进行了优化与规范的探讨。为了重视国际认证的引领作用,加强专业办学品牌建设,突出南京航空航天大学能动专业的航空航天办学特色,紧跟国内能动专业人才需要,提升其人才培养质量与专业竞争力,从而拓宽自身生存发展空间,因此需要开展基于工程教育专业认证的能动专业课程体系改革。

2基于工程教育专业认证标准下南航能动专业课程体系优化

通过对国内外本科院校工程教育专业认证的分析与研究,利用对中国近几年的专业认证与评估成果的调查与研究,对其进行梳理,依据工程教育专业认证中课程设置要求,依据南京航空航天大学能源与动力学院能动专业建设相关内容与特色,以培养具有航空航天特色的工程教育专业人才为目标,对南京航空航天大学能动专业课程体系进行优化。以培养要求为基准,着手对课程体系进行优化,并对本科培养大纲进行相应的修订,从而实现培养目标。确定能源与动力专业学生在校期间应修总学分数不能少于180学分。

2.1数学与自然科学类课程

能源与动力专业数学与自然科学类课程是指该专业学生必须掌握的基础课程,主要包括高等数学(11学分)、大学物理(6.5学分)、大学英语模块(10学分)、C++语言程序设计(3学分)等方面共六门课程,总共30.5个学分。因此能源与动力专业数学与自然科学类课程占总学分的比例约为17%,达到了工程教育专业认证标准中至少占总学分的15%的要求。

2.2工程基础类课程、专业基础类课程与专业类课程

工程基础类课程和专业基础类课程主要体现数学和自然科学在该专业应用能力培养,而专业类课程主要体现系统设计和实现能力的培养。其中工程基础类课程主要包括电子电工技术(5学分)、理论力学(3学分)、材料力学(3学分)、工程图学(4.5学分)以及机械设计基础(3学分)等课程,总共为18.5个学分;专业基础类课程主要包括工程流体力学(3学分)、工程热力学(3学分)、传热学(3学分)和化学反应动力学基础(2学分)等课程,总共为11个学分。因此工程基础类课程和专业基础类课程必须要修满至少29.5个学分。对于专业类课程,由于能源与动力专业具体有两个培养方向:方向一为热能动力方向,主要陪养就业方向为航空发动机、地面燃气轮机等相关单位;方向二为能源利用方向,主要培养的就业方向为电厂、新能源以及制冷等相关单位。因此其专业类课程既有相同的专业课程,也有自身特色的课程。其中燃烧原理(2.5学分)、燃气轮机原理与构造(3学分)、热能综合利用(2学分)、热交换器原理与设计(2.5学分)以及热工测量原理与方法(2学分)等,总共12个学分,这些课程为能源与动力专业两个培养方向都必须学习的专业类课程。另外每个培养方向又有其特定的专业类课程必须选修,其中热能动力方向专业类课程包括叶轮机原理(2.5学分)、燃气轮机控制原理及应用(2学分)、燃烧技术与分析(2学分)、内燃机原理与构造(2学分)、工程传质与应用(2学分)等共9门课程;能源利用方向专业类课程包括泵与风机(2学分)、供热工程(2学分)、锅炉原理(2学分)、制冷原理与技术(2学分)、可再生能源利用技术(2学分)以及热力发电技术概论(2学分)等共10门课程。无论学生学习哪个方向,共同学习的专业类课程与特定选修的专业课程之和必须要修满至少28个学分。因此,工程基础类课程、专业基础类课程与专业类课程必须要修满的学分数为:29.5+28=57.5学分,因此该类课程学分占总学分的比例约为32%,达到了工程教育专业认证标准中至少占总学分的30%的要求。

2.3工程实践与毕业设计

能源与动力专业设计完善的实践教学体系,主要包括以下几个方面:(1)军事训练,培养学生的吃苦耐力与过硬的身体素质;(2)各种课程的课程设计,如:机械设计基础课程设计、电工与电子技术课程设计、C++语言课程设计等,主要培养学生对各门基础课、专业基础课的实际应用能力;(3)工程训练,主要包括机械加工方面的车、磨、铣、刨、铸造以及焊接等金工实习,锻炼学生的动手能力;(4)下厂实习,大三暑假期间,在指导老师带领下去中航工业集团下属的企业或电厂进行为期一个月的下厂实习,锻炼学生把理论知识应用于工程实际中的能力;(5)毕业设计,指导老师开设的毕业设计题目一般都来源于实际工程问题,学生在老师的指导下,在大四下半年开展为期半年的本科毕业实际,培养学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力。能源与动力专业要求学生在实践能力与毕业设计方面修读的总学分不低于42.5,占总学分的23.6%,达到了工程教育专业认证标准中至少占总学分的20%的要求。

2.4人文社会科学类通识教育课程

能源与动力专业在人文社会科学类通适教育课程方面主要包括以下几个模块:(1)通适基础教育平台,主要包括形式政策教育、思想道德修养与法律基础、安全教育、大学生心理健康教育等课程,共19.5个学分;(2)国防军事模块,包括航空航天概论、军事高技术概论等,至少修满1.5个学分;(3)文化素质模块,主要包括文化历史、艺术鉴赏、科技基础、哲学社会等课程,至少要修满6个学分;(4)创新创业类模块,主要包括大学生职业生涯发展与规划、创业基础以及经济管理等课程,共5.5个学分。人文社会科学类通识教育课程总共需修满32.5个学分,占总学分的18%,达到了工程教育专业认证标准中至少占总学分的15%的要求,使学生在从事工程设计时能够考虑经济、环境、法律、伦理等各种制约因素。

2.5航空航天特色类课程的设置

为了突出南京航空航天大学能源与动力专业的航空航天特色,在开设的课程中,如国防军事模块、专业类课程以及工程实践与毕业设计中,课程教学内容包含浓郁的航空航天特色,由于指导老师所从事的科研项目都是来自于国防工业集团,具有丰富的研究经验,因此在专业基础课和专业课的讲课过程中,所列举的实例都是以航空航天为背景的工程问题,特别是毕业设计和下厂实习,因此在能源与动力专业课程优化过程中,充分突出了南京航空航天大学的航空航天特色。

2.6注重科技创新能力培养

学生创新素质的培养直观重要的是培养学生的创新意识,因此积极创造条件让学生能够在大学期间积极的参与科技创新活动。主要包括:(1)鼓励学生积极参加各种科技类竞赛,如:流体力学大赛、节能减排大赛、开设卓越班等,并且科技竞赛获得奖励的同学在保研方面给予政策上的倾斜;(2)安排学生参与教师的科学研究工作,让学生在参与科研过程中更好的掌握好该专业的理论知识,加强学生的动手能力,拓展学生的科研视野。

2.7学习进程

大学生本科期间的各门课程是相互衔接的,因此需要考虑课程之间的匹配与衔接,如图1所示。学习进程主要分成了三部分:一是基础课程,包括高等数学、大学物理、计算机等;二是学科基础,包括结构和流体力学、热学和电学方面的课程;三是专业课程,主要包括了热能动力和能源综合利用两个方向的相关课程。整个课程体系分为三条线:第一是流体和热学相关的课程,如流体力学、工程热力学、传热学、燃烧学等;第二是结构力学方面,包括理论力学、材料力学等;第三是计算机语言方面的课程。因此在安排各门课程的学期上需要考虑上述课程衔接问题,从而最终制定出合理的能源与动力工程专业教学计划表。

3结论