当前位置: 首页 精选范文 生物多样性的研究方法范文

生物多样性的研究方法精选(十四篇)

发布时间:2023-12-06 11:16:38

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇生物多样性的研究方法,期待它们能激发您的灵感。

生物多样性的研究方法

篇1

【关键词】生物多样性;细胞学标记;DNA分子标记

【Abstract】According to the Chinese Biodiversity Conservation Strategy and Action Planning (2010-2030), the continuous loss of genetic resources becomes one of three thorny issues threatening biodiversity conservation in China, which highlights the significance of genetic diversity monitoring plan in the future. After both Standard for the Assessment of Regional Biodiversity (HJ623-2011) and Regulation for the Collection of Genetic Resources (HJ628-2011) come into force, identification and collection of genetic resources becomes essential in biodiversity assessment projects. This review summarizes the front application of both cytological marker and DNA molecular marker techniques to distinguish plant varieties, and consequently the feasibility of large-scale application of DNA marker technique on future biodiversity monitoring and assessment projects is discussed.

【Key words】Biodiversity; Cytological marker; DNA molecular marker

0 Introduction

As one of three layers of biodiversity, which includes ecosystem, species and genetics, genetic diversity is the diversity of genetic factors that determine the traits of organisms and their combinations, so that becomes the basis of species and ecosystem diversity [1]. It is inevitable for a species of poor genetic diversity to move towards the extinction in natural selection process [2].

After a series of environmental policy has been worked out by centre government of China, such as Chinese Biodiversity Conservation Strategy and Action Planning (2010-2030), Standard for the Assessment of Regional Biodiversity (HJ623-2011) and Regulation for the Collection of Genetic Resources (HJ628-2011), it is essential for environmental engineers to include genetic diversity in biodiversity monitoring and assessment projects, and collection and identification of genetic resources in the nature definitely becomes the first step of this work. In present, identification of plant varieties mainly relies on the biological traits of plants[3], which are susceptible to environmental conditions and time-consuming when those biological traits are artificially cultivated and observed in experiment land [4]. However, the development of DNA marker technology provides a quicker and more accurate solution for environmental engineers to distinguish different sub-populations of a plant species in the nature, particularly when identification of economic traits is not essential in biodiversity assessment work. This review summarizes both cytological marker and DNA molecular marker for the differentiation of plant cultivars in recent years.

1 Cytological Marker

Due to its high stability and reproducibility, karyotype becomes one of the unique chromosome information to distinguish different species, populations of the same species and to identify the hybrids. Karyotype parameters, mainly including the absolute length and relative length of chromosome, arm ratio, centromere index, chromosome ploidy and asymmetry index, are frequently analyzed by botanists to study the variation in chromosome number and structure between species, the origin of species and the genetic evolution[4].

1.1 Traditional squash technique

Zhang etc [5] analyzed karyotype of three Fritillari thunbergii cultivars based on traditional squash technique. The karyotype formula of F. thunbergii (Xiaye, Kuanye, Duozi) varied among three varieties, indicating the feasibility of genetic identification of Fritillari thunbergii cultivars. The karyotype of all the varieties were classified into 3B type, and heterozygosity of homologous chromosome were found in both F. thunbergii(Xiaye) and F. thunbergii(Duozi).

The karyotype of three diploid oat species was studied by Liu etc [6] with application of traditional squash technique. Both karyotype formula and asymmetry index of Avena strigosa, Avena hispanica, Avena brevis were calculated for comparison, revealing more advanced evolution in karyotype for A.strigosa, followed by A.a brevis and A.hispanica. Three diploid oat species were effectively distinguished by a combination of both karyotype formula and asymmetry index.

The traditional slice-making method with micrograph technology was adopted by Dai etc[7] to study the cytology basis for cultivar identification of Secale cereale subsp.segetale. Three populations of Secale cereale subsp.segetale(89R4, 89R14, 89R60) and one variety Secale cereale L.(H36) were selected to conduct karyotype analysis. Karyorype formulae, asymmetry index and asymmetrical karyotype coefficient were provided and compared among these varieties in this research, which showed rich diversity in chromosome morphology.

Traditional squashing method was adopted by Liu etc[8] to analyze the karyotype of 7 R.hybrida cultivars and 5 R.rugosa cultivars. According to the results, all the R.hybrida cultivars were tetraloid (2n=4x=28), except that R.hybrida ‘Elmshorn’ was triploid (2n=3x=21), while all the 5 R.rugosa cultivars were diploid (2n=2x=14). A number of karyotype parameters, including karyotype formula, chromosome relative length, ratio of the longest chromosome to the shortest one in length, arm ratio, asymmetry index and centromere index, were interpreted as biomarkers for identification of varieties and correspondingly the genetic distance was analyzed, revealing that distinct differences in both karyotype and ploidy levels existed between R.hybrida and R.rugosa cultivars and R.rugosa cultivars appeared to be more advanced in karyotype evolution.

21 cultivars’ karyotype of ornamental Ginkgo was studied by Gao etc [9] with smear method. The karyotype of all cultivars was reported to be identical, and the relative length of chromosome varied from 4.31% to 15.34% for the female cultivars, as well as 4.37% to 17.12% for the male. For approximately 83.33% of all the varieties in this research, the arm ratio of chromosome was above 2:1, which belonged to asymmetric 3B type. Cluster analysis was conducted on the basis of karyotype calculation, showing that the mean arm ratio or length ratio of ornamental Ginkgo cultivars was significantly different from original Ginkgo Biloba, and consequently the originality, evolution and classification of these cultivars were discussed.

In total 6 varieties of Hippophae Rhamnoides L. were selected by Li etc[10] to analyze karyotype characteristics of chromosomes, including 4 strains from Russia and 2 strains from China. Karyotype formula, asymmetry index, centromere index and ratio of the longest chromosome to the shortest one in length were compared and contrasted between these varieties, providing the basis for the identification and evolutionary analysis of Hippophae Rhamnoides L. varieties. According to the asymmetry index, six of these cultivars were classified into middle centromere or sub-middle centromere, with karyotype types as 2A or 2B.

40 typical and stable varieties of Chinese large-flowered chrysanthemum were chosen to carry out cytological karyotype analysis for investigation of genetic differences[11]. 1-4 satellite chromosome(s) were reported in approximately 35% of the cultivars, with increasing possibility of satellite chromosome when chromosome number increased. The karyotypes of these varieties were summarized as 2A, 2B and 2C, and types 2A and 2C were more likely to appear in the cultivars with higher ploidy. The interrelationship of karyotype parameters including long-/short-arm ratio, asymmetry coefficient of karyotypes, karyotype asymmetry index and relative length of chromosomes were discussed in this research, indicating great values of karyotype parameters for cultivar identification, classification and genetic evolution analysis for chrysanthemums species. The relationship of karyotype parameters towards phenotypic characters was also examined, revealing that the variation of long-/short-arm ratio and asymmetry coefficient of karyotypes led to highest relevance to most phenotypic characters.

Wild Rosa species, which are broadly found in the Xinjiang Uygur autonomous region of China, possess many important unknown economic traits. Yu etc[12] collected karyological data from 13 samples of seven wild Rosa taxa (R. berberifolia, two botanical varieties of R. spinosissima, R. platyacantha, R. beggeriana, R. acicularis, and R. laxa), which were easily distinguished by karyotype parameters of chromosome ploidy, asymmetry index, centromere index, and distribution of relative lengths. The karyological data provided comprehensive cytogenetic resource to analyze the taxonomy, evolution and speciation in the genus Rosa as well as to identify suitable cultivars for breeding programs.

1.2 Fluorescence in situ hybridization (FISH) technique

Fluorescence binding technology with fluorescent dyes, which are capable of revealing AT or GC DNA sequences on chromosomes, can distinguish different types of heterochromatin on the chromosomes. For example, DAPI (4',6-diamino-2-pheny- lindole dihydrochloride) results in the appearance of AT rich region on chromosomes, whereas CMA (Chromomycin A3) can reveal the GC rich region [13]. Fluorescence in situ hybridization (FISH) technique provides the accurate mapping information of rDNA probes on the chromosome, which becomes the more effective markers to distinguish chromosomes of plants [14]. She etc [15] analyzed the mitotic metaphase chromosomes of Arachis hypogaea L. species by using a combination of DAPI+ banding technology and double fluorescence in situ hybridization (FISH) technique with both 5S and 45S rDNA probes. On the basis of the chromosome measurements, DAPI+ bands and rDNA FISH signals, the chromosomes of Arachis hypogaea L. were accurately paired and arranged, leading to a molecular cytogenetic karyotype in detail.

However, DAPI banding patterns varies between different plant species. Xu etc[16] compared DAPI fluorescent banding patterns among different plant species, indicating that fluorescent bands were obviously observed in maize and peanut species, followed by sesame and loofah whose DAPI bands were relatively weaker. However, no clear DAPI bands could be identified in soybean chromosomes.

2 DNA Molecular Marker

DNA molecular marker technologies for plant variety identification mainly include RFLP, RAPD,ISSR,AFLP,SNP and SSR. However, the ranking of these molecular marker techniques based on comprehensive effectiveness is AFLP>SSR>RAPD>RFLP, which has been internationally recognized in the 92th ASHS conference[17]. This review summarizes the recent development of both SSR and AFLP marker technology for variety differentiation.

2.1 SSR marker

EST-SSR molecular marker technique was conducted by Zhao etc [18] to identify 12 Chinese cabbage cultivars. Based on expressed sequence tags(ESTs)of Chinese cabbage in GenBank, 30 pairs of screened SSR primers were designed and synthesized, resulting in 21 pairs of EST-SSR primers which were effectively amplified, but only 10 pairs of EST-SSR primers were highly polymorphic. According to the identification results and the mapping difference, 10 pairs of primers with high polymorphism were designed as 2 sets of multiplex EST-SSR markers to distinguish these 12 Chinese cabbage varieties, with satisfactory polymorphic rate of 88.9% and 97.0% respectively, as well as high polymorphism information content of 0.910%.

Lai etc[19] selected 26 inbred lines and 54 test varieties for the examination of distinctness, uniformity and stability (DUS) of these varieties by adopting SSR markers. 49 pairs of SSR primers were screened from 952 pairs in total, based on the criteria of richness of polymorphism information content (PIC), the clearness of PCR bands and convenience of different allele identification. 49 pairs of SSR primers led to 57 loci with 311 alleles identified in total. The average number of alleles per locus was 5.5, ranging from 2 to 13, with a mean PIC of 0.53. Cluster analysis showed that all test varieties were clearly distinguished by 49 markers when the genetic similarity coefficient was set as 0.93.

In order to provide robust reference for the identification of barley varieties and avoid counterfeit and inferior varieties, Wang etc [20] selected 29 barley standard varieties and genetic diversity was analyzed by DUS testing. 28 pairs of highly polymorphic SSR primers were chosen, leading to 125 alleles measured in total. Each pair of polymorphic primers detected an average of 4.46 alleles, with polymorphism information content (PIC) varying from 0.81 to 0.25 and an average PIC of 0.62 among 28 pairs.

The specificity and stability of 123 representative rice varieties were analyzed by Tian ect[21] based on SSR fingerprinting profiles, and the value of SSR core markers chosen in this study was examined. 24 pairs of primers detected 138 alleles in total, with 12 loci detected in single cultivar and 21 loci successfully distinguishing japonica and indica rice varieties. On the basis of genetic similarity coefficient set as 0.96 for the classification, all tested varieties showed their unique specificity by cluster analysis, which indicated that 24 pairs of SSR core primers was able to effectively identify 123 varieties of rice.

2.2 AFLP marker

Six pairs of AFLP primers with rich polymorphism were screened by Li etc[22] to conduct fingerprinting analysis on two Chinese cabbage samples (label 587 and 586) as well as a standard sample. Euclidean distances coefficient of each sample was estimated, indicating that distinct difference was found between the sample 587 and standard sample, with the polymorphism band rate of 31.7%. Consequently variety 587 was identified as a different variety from the standard sample. In comparison, variety 586 showed consistent PCR bands with the standard sample, which was consequently identified as the same variety as the standard sample. This research demonstrated that AFLP was capable of providing reliable differentiation technology for plant cultivars.

In total 14 samples of eight varieties and six wild populations of Toxicodendron vernicifluum from Shaanxi were chosen by Wei etc [23] for the development of variety identification technique. Both morphological and AFLP molecular markers were examined with 26 morphological character indexes and 8 AFLP primers (EcoRⅠ+3/MseⅠ+3). Multivariate statistic analysis was conducted on morphological markers, resulting in 3 principle component index (PCI). The fist PCI included the ratio of petal and anther, length to width of the fifth lobular, the length and diameter of filament; the second PCI covered the length of compound leaf and petiole of compound leaf, the numbers of leaflet, the fifth lobular, and the top lobular; and the third PCI were the top lobular and the vertex angle of the fifth lobular, which respectively contributed to 30.383%, 19.321% and 13.777% of variance in morphology of 14 varieties. Further more, molecular markers of 8 AFLP primers (EcoRⅠ+3/MseⅠ+3) also completely distinguish 14 cultivars, in consistence with morphological markers.

Wen etc[24] tried to distinguish 26 jujube cultivars and 1 sour jujube by adopting fluorescent-labeled AFLP markers. 8 AFLP primer pairs were chosen, leading to 886 AFLP markers identified in total. Among these AFLP markers, 112 markers were identified as unique bands for specific varieties, whereas 60 markers were deletion bands for specific varieties, leading to effective identification of jujube cultivars.

Song etc[25] chosen 90 cultivars of Chinese cabbages from 7 different production areas, and developed fingerprinting technique based on AFLP markers for the identification. In total 20 pairs of AFLP primers were designed to examine the genetic polymorphism of these cultivars, and AFLP primers varied broadly in terms of differentiation capacity of Chinese cabbage varieties. The number of polymorphic bands that were detected by AFLP primers differed from 9 to 32. A combination of primers (E-ACA/M-CTG) resulted in 71 amplified bands, including 32 polymorphic bands, which effectively distinguished all of the 90 varieties. In comparison, the genetic polymorphism between individuals of the same variety was also examined by AFLP marker technique. Two hybrid cultivars (Beijingxin 2 and Jingxiawang) of Chinese cabbage were selected and 10 individuals were chosen from each cultivar. The AFLP bands showed consistence between individuals of the same variety, except that one of Beijingxin 2 differed from the others.

2.3 Capillary electrophoresis with fluorescence detection

Compared with polyacrylamide gel electrophoresis and silver staining technique, capillary electrophoresis with fluorescence detection method is more automated and programmed. The system software of capillary electrophoresis with fluorescence detection is able to calibrate the differences between capillary electrophoresis, and reduce the artificial and systematic errors, which consequently improves the stability and repeatability of variety identification tests [26]. Feng etc[3] screened 58 SSR primers to identify 14 Poplar varieties by application of capillary electrophoresis with fluorescence detection, which included 4 varieties of Populus deltoids, 5 varieties of Populus nigra (including 3 transgenic varieties) and 4 hybrid varieties. The results showed that the 4 varieties of P. deltoids, 5 varieties of P. nigra, and 4 hybrid varieties were effectively identified by 4 primers, 5 primers, and 4 primers respectively, with significant difference observed at the SSR loci between P. deltoides and P. nigra. Different SSR genotypes were also identified between the transgenic and non-transgenic varieties.

3 Conclusion and Implication for Biodiversity Monitoring and Assessment

In comparison to the DNA molecular marker, cytological marker techniques result in less polymorphism for the sub-populations’ differentiation of a plant species, but obviously reduce the cost of this work, once biodiversity monitoring and assessment projects are implemented at large scale. Consequently, cytological marker would be more suitable as the main solution for environmental engineers to conduct genetic resource collection work, based on which DNA molecular marker would become a complementary solution. Capillary electrophoresis with fluorescence detection method certainly leads to higher accuracy and stability for identification tests. Nevertheless, the relatively cheaper facilities required by polyacrylamide gel electrophoresis and silver staining technique would be more acceptable in practice, which has been adopted by recent National Standards including Protocol of Purity Identification for Soybean Variety using-SSR Molecular Markers (NY/T 1788-2009), as well as Genuineness and Purity Verification of Potato Seed Tuber - SSR Molecular Marker (GB/T 28660-2012).

Collection and storage of sampling location information as well as photos of plant morphological characters are usually necessary for the genetic resource collection work as indicated by Regulation for the Collection of Genetic Resources (HJ628-2011), and GIS technology provides a supportive tool for the collection and storage of both location information and field sampling photos [27] in this process.

【参考文献】

[1]李昂,葛颂.植物保护遗传学研究进展[J].生物多样性,2002(1):61-71.

[2]C, A.J., H.J. L. Conservation Genetics, Case Histories from Nature[M]. Chapman & Hall, New York,1996.

[3]冯锦霞,等.利用荧光SSR标记鉴别杨树品种[J].林业科学,2011(6):167-174.

[4]周延清, 张改娜,杨清香.生物遗传标记与应用[M].化学工业出版社,2008.

[5]张彦南,等.浙贝母主要栽培品种类型花粉形态及染色体核型研究[J].中国中药杂志,2013(19):3265-3270.

[6]刘伟,张宗文,吴斌.加拿大引进的二倍体燕麦种质的核型鉴定[J].植物遗传资源学报,2013(1):141-145.

[7]代明,等.新疆杂草黑麦染色体核型分析[J].麦类作物学报,2013(3):440-444.

[8]刘佳,等.7个月季和5个玫瑰品种的核型分析[J].西北农林科技大学学报:自然科学版,2013(5):165-172.

[9]高进红,等.银杏观赏品种染色体核型分析[J].山东农业大学学报:自然科学版, 2005(1):19-24.

[10]李洪梅,等. 核型分析技术在沙棘品种进化研究中的应用[J].济南大学学报:自然科学版, 2013(1):97-101.

[11]ZHANG, Y., M. ZHU, S. DAI. Analysis of karyotype diversity of 40 Chinese chrysanthemum cultivars[J]. Journal of Systematics and Evolution,2013,51(3):335-352.

[12]Yu, C., et al.. Karyotype Analysis of Wild Rosa Species in Xinjiang, Northwestern China[J]. Journal of the American Society for Horticultural Science, 2014.139(1):39 -47.

[13]T., S.A.. Chromosome banding[M]. London: Unwin Hyman, 1990.

[14]佘朝文,宋运淳. 植物荧光原位杂交技术的发展及其在植物基因组分析中的应用[J].武汉植物学研究,2006(4):365-376.

[15]佘朝文,张礼华,蒋向辉.花生的荧光显带和rDNA荧光原位杂交核型分析[J]. 作物学报,2012(4):754-759.

[16]徐延浩,高伟,张文英.不同作物染色体DAPI荧光显带的研究[J].吉林农业科学,2013(2):27-28+51.

[17]郑成木.植物分子标记原理与方法[M].湖南科学技术出版社,2003.

[18]赵新,等.复合EST-SSR标记在大白菜品种鉴定中的应用[J].生物技术通报, 2013(1):107-110.

[19]赖运平,等.利用SSR标记筛选DUS测试中甘蓝型油菜近似品种[J].分子植物育种,2013(2):174-184.

[20]王艳平,等.大麦DUS测试标准品种的遗传多样性分析及指纹图谱的构建[J]. 麦类作物学报,2013(2):273-278.

[21]田大刚,等.123份水稻重要品种的SSR核心标记指纹分析[J].分子植物育种, 2013(1):20-29.

[22]李丽,郑晓鹰.AFLP分子标记应用于白菜品种鉴定[J].分子植物育种,2006(5):685-689.

[23]魏朔南,等.应用植物形态学和AFLP分子标记鉴别陕西漆树品种[J].西北植物学报,2010(4):665-671.

[24]文亚峰,何钢,张江.枣优良品种分子鉴别系统的开发[J].中南林业科技大学学报,2007(6):119-121.

[25]宋顺华,郑晓鹰.AFLP分子标记鉴别大白菜品种[J].分子植物育种,2005(3):381-387.

篇2

参与生物多样性管理:一个企业无法回避的新课题

生物多样性是人类社会赖以生存和发展的基础,很多国家已经将生物多样性提升到国家战略资源的高度,国际社会也将生物多样性退化与气候变化一起列为当今世界面临的重大环境问题。在这种大形势下,无论是从企业的社会责任,还是从企业自身生存与发展角度,生物多样性都已经成为现代企业一个无法回避的问题了。

事实上,国际社会很早就意识到了企业与生物多样性的密切关系,并在近年来纷纷采取行动,推动企业参与生物多样性的保护与可持续利用。1992年生效的《生物多样性公约》,在其第十条第五款中规定,所有缔约方都应该尽可能鼓励政府部门和私营部门之间的合作,以探索生物多样性资源可持续利用的方法。第十六条第四款规定,各缔约方应该采取法律、行政与政策措施促进私营部门参与到生物多样性相关的技术转让过程中。《联合国2020生物多样性目标》(《爱知目标》)中,将企业在生物多样性保护中的地位和作用提升到了前所未有的高度,其战略目标一(通过将生物多样性主流化到政府和社会中,解决生物多样性丧失的主要成因)中的四个具体目标都与企业参与直接相关,第四个目标则直接确定为“企业和全社会的参与”。国际标准化组织2010年的社会责任国际标准ISO 26000中,明确将生物多样性列入了环境责任议题之中,要求各种组织能够通过采取相关行动而对社会更为负责任,包括评估、保护和可持续利用生物多样性以及评估、保护和恢复生态系统的服务功能等,具体涉及到野生动物保护、外来入侵物种防控、栖息地恢复等当今生物多样性的热点问题。全球报告倡议组织2011年的《可持续发展报告指南(G3.1版)》中,也有多款涉及到生物多样性的内容,其中的“企业经营方式、产品和服务对生物多样性的影响”,即使在未来一段时间内也将是企业参与生物多样性管理的重点。

生物多样性正在不知不觉地影响所有的企业、行业和领域。一个现代企业,不管表面上是不是利用生物多样性资源作为生产原料,或者是否对生物多样性产生直接影响,都无法回避生物多样性问题。这是因为,首先,生物多样性已经成为国家的战略资源,所有企业都会受到战略资源的影响,同时也有保护它的责任与义务,保护生物多样性对所有企业来说都责无旁贷。第二,生物多样性是人类赖以生存的基础,包括物质与环境,如果人类失去了生存的条件,企业发展也就无从谈起了。第三,良好的生态系统是维护一个地区生产、生活环境的基本保障。如果生态系统失去了服务功能,直接依赖这些服务功能的企业将首先受到影响,其他企业也会失去发展的空间。第四,每个企业的日常经营管理都离不开生物多样性,比如公司使用的纸张、办公用的桌椅、饮用的水源、员工的食物和服饰都直接来自生物多样性或生物多样性的服务。还有一点,那就是涉外企业对生物多样性的影响,随着我国在海外投资的增加,生物多样性问题也越来越突出。如果涉外企业忽视对生物多样性的影响,小则影响到企业与当地的关系和生存及发展,大则影响到国家的形象。为了加强国际合作、维护中国负责任大国的形象、提升国家软实力,涉外企业必须将生物多样性保护提高到国际上认可的高度。

企业参与生物多样性的现状

由于生物多样性概念提出的时间并不长,其进入企业视角的时间更短,所以无论是从企业直接参与生物多样性实践来看,还是从国际组织、政府和社团协会等相关方促进和服务企业参与生物多样性来看,企业参与生物多样性总体上处于探索和尝试阶段。一些先锋企业对生物多样性的参与进行了富有成效的探索。一些国际组织、政府、社团、协会、专家学者等对企业参与生物多样性也进行了许多有益的尝试。这些探索和尝试包括为企业参与提出或制定所需的规划、指南、方法、工具、倡议、公益活动、环评、管理技术等。这些有益的探索尝试为进一步推动企业的参与积累了宝贵的经验。

在国内,国务院2010年的《中国生物多样性保护战略与行动计划(2011-2030年)》,在其“优先行动6-减少环境污染对生物多样性的影响”中,将“工矿企业对生物多样性影响的恢复”列为今后我国生物多样性保护的优先行动之一。在《社会责任指南》国家标准征求意见稿中,在涉及生物多样性问题方面,也是基本采纳了社会责任国际标准ISO 26000中关于组织对生物多样性保护和可持续利用方面的表述。中国社会科学院2011年出版的《中国企业社会责任报告编写指南CASS-CSR2.0》,纳入了生物多样性保护的相关指标,引导企业增强对生物多样性的保护与关注。2008年出版的《如何编制企业社会责任报告》将生物多样性作为一个企业社会责任报告重要的内容,探索将生物多样性纳入到企业环境绩效评价的指标体系,其中明确提出了一些重要的生物多样性指标,如栖息地恢复、物种保护、生物多样性影响等。另外,国内还有一些学者开始探索评估企业经营对生物多样性的影响和贡献。

近些年来,我国的一些企业也开展了参与生物多样性的实际行动。2004年9月,由中国生物多样性保护基金会植物园委员会、北京植物园联合发起,北京数家地产界知名企业参与的“保护植物资源公益活动”在北京植物园举行,开启了我国房地产企业参与生物多样性保护的新模式。2014年6月,《WTO经济导刊》联合多家企业、专业组织同步发起新的倡议议题,了包括生物多样性在内的多项“金蜜蜂2020社会责任倡议”。2013年11月,以“企业与生物多样性”为主题的生物多样性与绿色发展国际研讨会在京举办。还有其他一些企业已经或正在积极进行参与生物多样性保护的尝试。

同样,在国际上也有很多企业参与生物多样性保护的成功案例。例如,2007年,在德国波茨坦召开的G8+5环境部长会议上,提出了一项关于开展生物多样性损失经济学全球研究的提议。为了回应这项提议,德国和欧盟委员会发起了生物多样性与生态系统经济学(TEEB)行动倡议。倡议一提出,立即得到了联合国的支持和国际社会的广泛响应。目前,TEEB通过其出版的五个方面的报告(D0-D4)向国际社会进展与成果,其中《D3―企业风险、机遇和度量报告》就是专门针对企业参与生物多样性的报告。

2006年,国际采矿及金属委员会开发了《采矿与生物多样性保护操作指南》。2008年,世界自然保护联盟(IUCN)开发了“生物多样性:我的酒店在行动指南”。农业企业代表针对生物多样性方面的新挑战,向国际商会(ICC)特别工作组提出了他们的观点,并由该商会提交给联合国可持续发展委员会第16届年会(2008),发表了一系列企业参与生物多样性的论文。2008年,世界可持续发展工商理事会(WBCSD)与美国的世界资源研究所(WRI)联合了《企业生态系统服务评估》,试图从经济上将企业与生物多样性联系起来。

欧盟一直在积极推动企业参与生物多样性的活动。为了保护蜜蜂,欧盟委员会修订了可尼丁、噻虫嗪、氟虫腈和吡虫啉4种杀虫剂的使用条件。2014年4月,欧洲企业社会责任协会召开企业与生物多样性电话会议,讨论企业与生物多样性相关的问题和参会企业在生物多样性问题上的战略等。

一些国家在法律和政策方面鼓励企业参与到生物多样性的保护中。美国新近修订的雷斯法案(Lacey Act),为了保护生物多样性和推进减排,鼓励国内外木材加工企业严格履行环境保护与社会责任。澳大利亚已经将生物多样性管理列为矿业企业可持续发展最优计划的主题之一。

除了国际组织和国家层面的行动外,一些中外企业也已经开始了行动。斯道拉・恩索是世界上知名的生产纸和纸板的公司,目前持有或管理着遍及芬兰、瑞典、巴西、俄罗斯和中国超过百万公顷的森林。企业正在研究促进管理森林生物多样性的新方法,以推进生物多样性保护行动在这些国家得以顺利实施。富士施乐为保护生物多样性,对所有纸张供应商制定了新的采购规定,提高纸张供应商门槛。一些发达国家的医药企业对环境的责任中纳入了企业在获取最大化利益的同时必须保护生物多样性。杜邦公司2008-2011年支持开展“杜邦杯”环保摄影展,其中,2010年主题为“生物多样性与扶贫”。生物多样性相关的展览内容包括“中国行动”、“公众参与”、“走向和谐”。中国五矿在老挝Sepon矿山社会责任中,重视生物多样性的保护,从环评到项目运行,都将生物多样性(栖息地和野生动植物)保护放在重要的位置,不仅为企业赢得了赞誉,也为我国涉外企业参与生物多样性保护提供了宝贵的经验。其他诸如南京地铁规划为了保护绿化树种,决定“绕道”而行,河南新郑一家企业为了保护已经在工地上筑巢的燕子,决定暂缓工期。小磨高速公路在修建时,给古树“让路”等等。这些企业在参与生物多样性保护的行动中,有的是直接影响到企业的经济效益,有的则增加了额外的投资或给企业带来损失,但他们仍然选择了保护生物多样性。

企业参与生物多样性面临的问题

虽然正在有越来越多的企业参与到生物多样性的保护与可持续利用中,但不可否认的是,企业的生物多样性知识、保护与可持续利用意识、参与力度和参与方法都还有待进一步加强。全面推动企业参与生物多样性保护,还存在着诸多问题与制约因素,这些问题主要包括以下一些。

缺少生物多样性知识。缺少生物多样性知识是制约企业参与生物多样性保护的重要原因之一。生物多样性作为一个跨学科、而且仍然处在发展中的新兴领域,对大多人来说还都存在着理解和操作上的困难,甚至包括了部分从事生物生多样性相关工作的人员。在这种情况下,企业缺少生物多样性知识也成为企业参与生物多样性的首要制约因素。

企业的生物多样性保护意识还有待加强。根据对部分企业社会责任报告的调查分析,只有21%的报告以不同方式提出了生物多样性议题(名词)。其中仅有8%的报告将生物多样性列为了报告议题,甚至有部分企业认为他们和生物多样性没有关系。生物多样性保护意识不强,还突出体现在以下两个方面。对于一些以生物多样性资源为原料的企业来说,如生物制药、化妆品、生物原材料加工等企业,在其企业战略中很少考虑到生物多样性的保护与资源的可持续利用。对于一些直接影响生物多样性的企业,如采矿、水电、土地开发等企业,在工程设计、施工、投产使用过程中,也较少将生物多样性作为一个主要因素来考虑。

企业参与力度有待加强。目前,总体来说,生物多样性尚未进入企业的主流。虽然有部分企业已经参与到生物多样性的保护和可持续利用中,但与国外企业相比,还远远不够。据问卷调查的结果:72%的政府官员反映他们的部门会评估大型项目对生物多样性的影响,而只有20%的企业员工认为自己的单位会这样做。值得注意的是,有接近一半的企业员工不知道企业是否有这方面的评估。而只有5%的企业员工认为他们的公司这样做,而高达47%的企业员工反映他们公司从未宣传过这方面的信息。

缺少有效的参与方法。笔者在过去几年中,参加过一些企业与生多样性方面的会议或相关活动,在这些场合下,往往都会有很多企业直接表达他们已经知道了生物多样性的重要性,并同时表达了参与生物多样性保护的愿望,但苦于不知道用什么方法和途径去参与。造成这种情况的原因固然有很多,但缺少指导和引导应是重要的原因之一。据《WTO经济导刊》与环保部对外合作中心于2013年共同组织开展的公众生物多样性意识的全国调查显示,大部分企业都披露了生物多样性保护的相关信息。然而,对于众多不同的行业领域开展生物多样性保护实践、经验以及标准尚存在明显的不足。

政府缺少相关的引导和鼓励政策。从国家层面来说,目前尚缺少企业参与生物多样性保护与可持续利用活动的相关政策、标准、规范、方法以及鼓励和惩罚措施。虽然在市场经济条件下,企业的参与属于商业行为,政府无法对这些行为进行干预,但各级政府的生物多样性负责部门完全可以从政策和技术方面为企业参与生物多样性保护提供支持和鼓励措施。如加强生物多样性指标在环评中的权重、组织生物多样性相关的专业知识和技能培训、出台激励措施和机制、制定有利于企业参与的相关政策等。

企业参与生物多样性的路径

针对上述存在的问题,企业参与生物多样性保护与可持续利用或可参考以下途径、方法以及相关促进措施。

提高企业自身的生物多样性知识。为了应对新的形势和要求,企业应首先提升自身的生物多样性知识水平,这些知识包括生物多样性的概念、内涵、价值、保护与可持续利用理念、与企业的关系等。具体操作方法包括:企业可以聘请生物多样性专家为职工开展专题讲座、企业组织职工开展生物多样性知识竞赛、征文比赛、生物多样性摄影比赛、组织以生物多样性为主题的旅行或参观等。

参与社会的公益宣传。企业可以与专业机构合作,参与生物多样性的宣传。具体操作方法包括:支持生物多样性方面的公益广告(如电视、电台、广播、报纸、网络等)、在企业内部广泛张贴宣传海报等。

企业社会责任报告增加生物多样性内容。无论企业是否直接与生物多样性相关,都应该在企业社会责任报告中考虑生物多样性的内容,特别是对生物多样性依赖较大和影响较大的行业和企业,最好是生物多样性独立成章,包括企业与生物多样性的关系、影响、所开展的工作以及效果等。

建立生物多样性信息披露制度。企业,尤其是一些依赖生物多样性资源的企业或对生物多样性具有较大影响的企业,如一些生物资源加工企业、包括生物制药、木材与林产品加工、化妆品等企业,以及一些工矿和水电企业等,可以建立生物多样性监测指标与方法、评估指标等,建立起企业生物多样性信息披露制度。通过信息披露制度,公示、公开企业有关的生物多样性的信息,包括对生物资源的消费、保护行动、可持续利用措施、经营状况等信息和资料,向社会公开或公告,接受社会公众的监督。

建立生物多样性技术支撑机构。为了确保企业参与生物多样性能够沿正确的轨道前进,企业,尤其是那些与生物多样性密切相关的企业应该聘请生物多样性专家,组建生物多样性专家技术支撑机构,企业一旦遇到生物多样性相关的技术问题,可邀请该专家组对该问题进行讨论并提出合理解决的途径。

增加生物多样性相关的绩效考核指标。企业可以邀请生物多样性专家开发生物多样性相关的绩效考核指标,对企业内部各部门和主要相关责任人增加生物多样性考核指标,对其业绩进行考核。

做到生物多样性保护的“三同时”。我国《环境保护法》第26条规定:“建设项目中防治污染的设施,必须与主体工程同时设计、同时施工、同时投产使用。防治污染的设施必须经原审批环境影响报告书的环保部门验收合格后,该建设项目方可投入生产或者使用”。这些要求,同样适用于企业生物多样性的保护与可持续利用。

设立生物多样性保护标识。如果一个企业在生物多样性保护或可持续利用方面做得比较好,可以为自己的产品贴上生物多样性保护标识,如“生物多样性友好产品”、“生物多样性保护先进企业”等。为了使标识具有法律效力,企业应请求行业协会或政府主管部门开发相关的标准和评估体系。

建立生物多样性保护示范园区。企业可以在施工现场、总部或者野外建立生物多样性保护示范区,尤其是一些采矿、水电、大型路桥等设施附近,建立生物多样性迁地保护区、生物多样性廊道,在确保生物多样性恢复的同时,作为企业生物多样性保护的教育、宣传基地。

参与生物多样性补偿。企业可以通过加入一些现有的生物多样性补偿基金,参与生物多样性补偿。比如上下游之间的生物多样性补偿、冲突补偿、生物多样性惠益分享、生物多样性资源有偿使用等。企业既可以自己建立补偿基金,也可以参与到现有基金中。目前已经有些企业开始了这方面的尝试。

篇3

关键词:发酵食品;微生物多样性;分子生物科学技术

食品若要发酵就必须要有一个特定的微生物环境,发酵过程中微生物的种类会对发酵食品的口感产生非常大的影响,而加强对发酵食品中微生物多样性的研究可以十分有效的为相关的研究提供更多的理论依据,在研究的过程中,最为基本的两个要素就是物种的丰度和物种的均匀程度。而微生物在生长的过程中也有其自身独到的特点。因为微生物自身的体积小,结构也并不是十分的复杂,所以我国在微生物多样性的研究方面还处于比较缓慢的状态,在很长一段时间里都采用非常陈旧的方法去研究微生物的多样性,而我国有关的技术在不断的发展,所以在微生物研究方面也有了一些新的迹象。

1 微生物的培养分离方法

在微生物多样性研究的过程中,培养技术起到了非常关键的作用,直到现在,这种技术都广泛的使用在研究当中,微生物培养主要是按照目标的要求给微生物选择比较适宜的培养基,然后再按照不同的微生物特性来对其进行更加全面和准确的鉴别,但是这种方法在使用的范围上还是有着一定的限制,一般情况下它比较适合使用在小范围的微生物多样性鉴别中。

微生物培养法在实际的应用中需要首先通过人工的方式对培养基进行适当的处理,虽然不同的微生物在生长环境和自身的特性上都存在着较为明显的差异,所以研究的结果会和实验室当中不受任何外界因素影响条件下得出的结果存在着一定的差异,此外,自然界当中,很多种微生物都是没有办法通过人工培养的方式得到的,所以在研究的过程中也会造成生物多样性的流失,这样就使得实验室中所得出的结论不是非常的准确,存在着一定的片面性。

2 化学方法

磷脂脂肪酸是生物细胞膜中一个非常重要的成分,而不同的微生物能够通过生活反应形成不同种类的磷脂脂肪酸,这样就可以对不同的微生物进行鉴别和检验,但是在这一过程中尤其需要注意的一点就是不同类型的磷脂脂肪酸或者是不同生物体上的磷脂脂肪酸有可能会出现完全相同的研究和实验结果,所以还需要采用其他的辅助方式对其进行进一步的检验。

3 生理方法的鉴定系统

BIOLOG微孔平板阀是国外的研究机构在1991年建立起来的一套专门研究土壤微生物多样性的一种方法,这种方法通常就是按照生物对单一碳源不同的反应而实现对不同种类的微生物进行区分的目的,该鉴定系统当中主要有95反应孔的微孔平板和鉴定的软件组成的,反应孔当中还设置了碳源底物和对应的指示剂,而当接种样品溶液的时候,其中的一些营养物质就会被吸收和利用,从而使得孔中的反应物呈现出不同的颜色和状态,因为不同的微生物对95糖的反应和接受程度具备一定的差异按照反应孔当中颜色的转变和吸光度的变化就形成了不同的形式,这样也就使得不同微生物逐渐被判断出来。经过该系统软件的处理和判断,和标准菌种的数据进行详细的对比之后,这种菌的种类也就被准确的判断了出来,这种方法实际上已经进入到了微生物食品微生物多样性的研究当中,但是这种方法在应用的过程中也存在着一定的局限,所以也无法很好的独立使用,其主要的不足有:由于真菌、放线菌的代谢反应不能分解氯化物.此方法只能检测微生物群落细菌中快速生长的那部分微生物信息主要为革兰氏阴性菌:另外由于培养环境的改变可能引起微生物对碳源底物实际利用能力的改变而造成一定的误差目前所具有的标准菌种的数据库还不完善。有些种类还不能被准确进行鉴定即使存在以上不足。但由于其不需经过培养分离繁琐的步骤.仍被用于微生物多样性的研究。

4 分子生物学方法

分子生物学技术在微生物多样性研究上的应用主要可以归纳总结为2个方面:一方面是在PCR技术应用前提下所衍生出的一些研究方法.这些方法可以把少部分的DNA进行大量的增加.通过对基因排列顺序的对比和分析来对微生物的多样性进行研究另一方面是在应用分子杂交技术的前提下使用分子标记的方法。

4.1 建立在PCR技术的方法

PCR是1985年由MULUS发明的一种聚合酶链式反应技术.主要特点是短时间内在实验室条件下人为控制并特异扩增目的基因或DN段,以便于对已知DN断进行分析。PCR技术的发明和不断完善.不仅为分子生物学的发展作出了巨大的贡献.而且在微生物生态学的发展和分析技术的建立提供了有利工具。

4.2 基于分子杂交技术的分子标记法

分子杂交技术是基于核酸分子碱基互补配对的原理.用特异性探针与待测样品的DNA或ETNA形成杂交分子的过程用于微生物多样性研究常用的探针主要有RNA基因探针、抗性探针和编码代谢酶基因探针等。特别是近年来发展起来的荧光原位杂交技术是研究环境中不可培养微生物群落多样性最为常用和有效的手段荧光原位杂交技术是根据已知微生物不同分类级别上种群特异的DNA序列,以荧光标记的特异寡聚核酸片段作为探针与环境基因组中DNA分子杂交,检测该特异微生物种群的存在与丰度。操作步骤是将微生物样品固定在载玻片上,用荧光染料标记的基因探针杂交,将未杂交的荧光探针洗去后用普通荧光显微镜进行观察和摄像采用这一技术可以同时对不同类群的细菌在细胞水平上进行原位的定性定量分析和空间位置标示。该方法的特点是可以进行样品的原位杂交,且特意性和灵敏度高,克服了PCR扩增的偏好性,对生态系统样品中的种群结构的测度准确性高发酵食品中微生物多样性研究方法在传统技术的基础上有了很大的发展.主要发展出了4种研究方法四种方法在不同的方面有不同的优缺点,只有根据不同的特点选择不同的研究方法,才能更好地保证研究的准确性,从而促进发酵食品中微生物多样性研究。

结束语

发酵食品越来越多的走入到人们的生活当中,发酵食品中的生物多样性是影响其口感的一个非常重要的因素,而在实际的研究工作中,有很多的研究方法,不同的研究方法尤其自身的优势和使用范围,所以一定要根据实际的需要选择适当的方式,只有这样,才能更加充分的保证发酵食品微生物多样性研究更加的成熟。

参考文献

篇4

摘要:生物多样性是人类赖以生存的物质基础,如何更好地保护生物多样性,实现人类社会与自然生态环境和谐发展已成为当今社会面临的重大议题。本文论述了我国生物多样性保护中存在的主要问题,提出环境善治是生物多样性破坏区域恢复和保护的有效模式,并进一步指出,生物多样性保护政策创制、生态系统与生物多样性经济学(TEEB)主流化、生物多样性保护的技术创新和以多元文化为基础的传统生态自然观是环境善治的有效途径。

关键词 :环境善治;生物多样性保护;TEEB;传统生态自然观

生物多样性是地球生态系统不断演化的结果,生物多样性是人类赖以生存和发展的物质基础,它不仅给人类提供了丰富的食物、药物资源,而且在保持土壤、调节气候、维持自然平衡等方面起着不可替代的作用,是人类社会可持续发展的生存支持系统。近年来,随着人类活动的不断增强,地表环境的破坏越来越严重,很多动物、植物赖以生存的环境遭到严重的破坏,导致大量物种灭绝,生物多样性的保护刻不容缓。我国生物多样性现状

生物多样性(Biological diversity/Biodiversity)是生物及其与环境形成的生态复合体以及与此相关的各种生态过程的总和,包括数以百万计的动物、植物、微生物和它们所拥有的基因以及它们与其生存环境形成的复杂的生态系统,是生命系统的基本特征。生物多样性是一个总的概念,具体包括物种多样性、生态系统多样性和遗传多样性,有的学者也将景观多样性作为生物多样性的一部分。中国是生物多样性特别丰富的国家之一。据统计,中国的生物多样性居世界第八位,北半球第一位。同时,中国又是生物多样性受到威胁最严重的国家之一。中国的原始森林长期受到乱砍滥伐、毁林开荒等人为活动的影响,其面积以每年5000平方千米的速度减少;草原由于超载过牧、毁草开荒的影响,退化面积达870000平方千米。生态系统的大面积破坏和退化,不仅表现在总面积的减少,更为严重的是其结构和功能的降低或丧失使生存其中的许多物种已变成濒危种和受威胁种。高等植物中有4000~5000种受到威胁,占总种数的15%~20%。在《濒危野生动植物种国际贸易公约》列出的640个世界性濒危物种中,中国就占156种,约为总数的1/4,形势十分严峻。生物多样性中最为重要的是物种多样性,它使每个物种在系统中不至于灭绝,是生物多样性研究和保护的重点,每个生物都处于一条生物链的某一层次,每一种物种的绝迹,都预示着很多物种即将面临消亡。

我国传统的保护生物多样性的方法就是“堡垒式”保护,即在生态环境脆弱地带建立自然保护区,由政府划定保护范围,在保护区内完全禁止人类活动。后来对于保护区的划定有所发展,划定了核心区、缓冲区和实验区,这在一定程度上将保护区对人类开放,但是普通民众仍然没有参与到生物多样性的保护中来。直到20世纪90年代后期,可持续发展思想的注入,以及国际机构(如世界银行)等开始关注我国的生物多样性保护问题,在生物多样性保护与社区发展方面开始了诸多的尝试,并取得了一些成果。

之后,随着城市化进程的加快,城市规划在城市建设中显得尤为重要,生物多样性规划也被提上日程,作为城市规划的一部分,包括省、市、县3级保护规划。同时,景观生态学被引人生物多样性的范畴之内,从基质、斑块、廊道等景观生态学的观点出发,提出生物多样性保护还应考虑它所在的生态系统及有关生态过程,应着眼于区域、大陆尺度的生态网络,生态网络的建立将非常有利于物种多样性的保护,尤其是较为脆弱的物种。

我国生物多样性保护存在的主要问题

我国生物多样性保护存在的问题主要可以归为四个方面:管理体制方面、经济学方面、生物多样性保护技术路径方面和传统环保文化方面。

管理体制层面:一是我国生物多样性保护存在.“多龙治水”的问题,“多部门”管理,“多法律”规定,保护行政管理部门与资源经营部门重叠,这种多样的“双重”身份造成了行政主权的混乱与错位,增加了我国生物多样性保护的难度。二是与生物多样性保护相关的政策不完善。我国的法律体系采用的是稀缺价值论与生物资源的可再生论,忽略了生态因素的交互作用,存在由于对外部经济认识不足导致的价值实现方式的设计缺陷。因此,生物多样性保护的制度设计还有待于进一步完善和细化。三是生计与生态割裂也是造成生物多样性保护困难的一个主要原因,很多保护区的破坏主要是由于当地社区居民的偷猎、过度使用资源造成的,而当地居民的这种行为最原始的驱动力就是贫困,贫困往往是生物多样性遭受破坏的外部驱动力,导致“贫困生物多样性破坏一灾害频发”的恶性循环的加剧。而我国环保部门、扶贫部门及灾害管理部门“各司其职”,造成了资源的浪费,很多资源不能整合,使生计改善与生物多样性保护割裂。自然保护与生计冲突是生物多样性保护中较为突出的问题。传统的建立自然保护区的方法,很少考虑当地社区居民的利益和发展要求,社区居民利益的受损将居民和保护区推到了对立面上,导致矛盾激化,其结果往往是保护代价高,而保护的收效甚微。

经济学层面:主要缺乏对生态系统和生物多样性经济价值的科学评估、独立评估,缺乏系统的评估体系和评估指标,导致决策层、管理部门、企业、媒体和公众等利益相关群体对生物多样性的经济价值缺乏科学认识,进而不能科学分析自然资本、生物多样性的效益与经济部门之间的关系,导致生物多样保护的投资力度与当地经济发展不协调。

生物多样性保护技术层面:我国关于生物多样性保护的研究仍十分欠缺,研究体系单一,其研究的主体仍然是保护区管理部门的技术人员、与生物多样性相关的研究部门,缺乏社区、企业、NGO的合作与参与,国际合作的领域有限,导致理论研究较强,可操作、可示范的模式少。而一些环境NGO和国际机构通过长期的实践取得的富有成效的保护技术,因缺乏与政府的协调沟通而得不到生物多样性保护部门的采纳推广。

传统环保文化层面:我国是一个多元化、多民族的国家,绝大部分民族都具有丰富的环保文化。南方少数民族的自然崇拜、北方少数民族对自然的敬畏、穆斯林民族的传统生态自然观对保护自然生态和生物多样性均发挥了非常积极,甚至不可替代的作用。传统环保文化无疑对生物多样性保护具有举足轻重的作用。但随着主流化的进程和传统环保文化传承面临的挑战,生物多样性保护受到了日益严峻的威胁。

综上所述,生物多样性的保护面临四个层面的挑战,而要应对这些挑战,环境善治理念的采纳和普及应用是最佳选择之一。以环境“善治”理念为基础的生物多样性保护途径

环境善治(Good Environment Governance)的提出是建立在对市场和政府角色重新认识的新的治理理念基础上的。“善治”的本质是政府与公民间积极而有成效的互动与合作。环境善治包括环境制度创新、市场机制运用、科技进步、能力建设、政府与NGO、社区和企业的合作以及全球环境治理各个方面。

要解决我国生物多样性破坏区域的修复及保护面临的上述问题需采取如下措施。

生物多样性保护政策创制

政策支持是生物多样性保护的根本保证,联合国《生物多样性保护公约》之后,中国成为国际《生物多样性保护公约》签约国以来,制定通过了《中国生物多样性保护行动计划》、《中国生物多样性国情报告》、《全国生态环境建设规划》、《全国生态功能区规划》和《全国生态脆弱区保护规划纲要》等相关政策文件,并把《生物多样性与优化生态环境的可持续性研究》列为《国家重点基础研究发展规划》。但这些国家层面的政策在省及省级以下行政区域缺乏对政策的细化,许多政策的执行缺乏财政部门的财力支撑。例如,野生动物破坏庄稼的赔偿制度在绝大部分保护区得不到执行。这种缺乏跨部门合作的政策急需创制革新,需要打破管理部门之间的壁垒,统筹管理权限至权威部门,废除“九龙治水”,提高环保部及其直属系统的执法权威和财务运作能力。除了国家重大的法律支撑外,生物多样性保护还应出台具体制度:如自然资源产权制度,自然资源价格制度,生态环境税收制度,公众参与制度,生态补偿制度,跨部门合作制度,传承少数民族传统环保文化制度,政府官员的环境绩效考核制度,政府与社区、环境NGO和企业的合作机制,政府购买环境NGO服务机制,生态移民政策,“生态民”政策,以及符合当地社会经济条件的磋商机制等。这些重大制度的确立及执行需要跨部门合作、利益楣关群体参与,并要避免“精英决策”或领导决策模式,而要充分发挥公众参与的理性决策模式。否则,缺乏操作性的政策其执行力将大大减弱。如尽管生态补偿政策的讨论已经持续了20年左右,但到目前还不能得到有效而全面执行。这说明生物多样性保护机制的确立和有效执行面临的挑战和风险是巨大的,迫切需要政策创制来应对挑战、预防风险。

生态系统与生物多样性经济学(TEEB)主流化

TEEB是一项由八国集团联盟(G8)和五大发展中经济体发起的全球性研究,研究主要集中于“生物多样性的全球经济效益、失去生物多样性与未能采取任何措施的代价以及有效保护的成本”。TEEB对于决策者、企业都有莫大的影响。TEEB的首要任务是深刻认识生态系统的经济价值,其次,TEEB提出,要妥善衡量,以管理我们的自然资本。而妥善衡量的方法就是完备的指标体系,自然环境为人类社会提供的大部分服务都没有被GDP或其他传统经济指标捕获,现有观念没有将生态系统提供的服务看作是经济发展的一部分,生态系统服务未能得到足够的重视。因此,政府决策部门应实施国家评估,对生物多样性的自然资本进行估值,这种评估将会对分析自然资本、其效益与经济部门之间的关系至关重要,也会对决策者的决策产生很大的影响。最后,TEEB提出改善成本效益分配。这是基于环境损害的社会影响的代偿原则,即“使污染者付款”和“全成本恢复原则”。这种机制出于使负责人看到和感受到生物多样性和生态系统服务受损的经济成本,并可改变影响他们的行为动机,当然,这是基于设计稳健的制度和市场框架的基础上的。

TEEB能够使人们正确认识生物多样性的价值,从而促使人们做出正确的决策,在长期可持续发展的原则下,更好地利用生态系统的服务价值。因此,只有当顶层设计部门和决策部门深刻认识到TEEB的重要性,并将其纳入规划、决策和考核的范畴,才能够从制度层面推动生物多样性的保护。

生物多样性保护的技术创新

政策创制和TEEB是从机制层面应对生物多样性保护面临的诸多问题,但保护需要技术创新的支撑。在技术创新方面,社区共管、替代性生计、耦合模式、PPP (Private Public Partnership:公私伙伴关系)是值得借鉴的一些技术或模式。

推行社区共管。随着人口的增长及人口对资源需要的不断增长,社区在发展经济的同时,存在着对当地资源的过度利用和生态环境破坏,如何能在不破坏或少破坏资源和环境的前提下,帮助当地社区发展社会经济,使生物多样性与社会经济协调发展已成为困扰各界的一道难题。自20世纪90年代以后,一些国家和组织开始从不同角度将这种保护与发展相协调的思想付诸于实践。我国生物多样性与社区可持续发展存在的矛盾较多,但最根本的问题是生物多样性保护的长期利益与当地农民的生存和发展的短期利益之间的冲突,同时,生物多样性的保护还受到生物多样性丰富地区的所有权、国家生物多样性管理水平、自然资源开发政策及其他相关政策、法律和社会因素等诸多方面的影响。因此,基于照顾双方利益的社区发展的生物多样性保护(Communitybased conservation,CBC)策略应运而生。CBC注重社区居民的主动参与,让社区居民参与到生物多样性保护中来,主张“自下而上”的保护模式,打破传统的“堡垒式”、“强制式”保护模式;同时,该模式注重在社区发展的基础上进行保护,通过直接的经济补助,或者提供技术支持和政策优惠,引导社区居民主动参与濒危物种保护工作,逐渐改变原来以消耗资源为代价来换取经济增长的生产方式。之后,YUEP模式对CBC模式进行了深化,主张先利用小额贷款改善村民的生产基础,改善其生计,其次建立社区保护与发展基金,通过村民自助推举实现资源共管、生物多样性保护与生物多样性监测,同时通过对小额贷款利润的运作使项目具有可持续性。

发展替代性生计。替代性生计是指改变生态环境脆弱区民众的生产方式,使其原来粗狂的、以掠夺资源为主的生产方式发生转变。很多生物多样性的破坏,是由于当地民众的贫困所致,贫困驱使他们砍伐树木,开垦林地或草地。因此,保护生物多样性必须首先改善当地人的生计,转变当地人的生产方式。兰州大学与Oxfam及白水江自然保护区曾经成功实施过一个替代性生计项目,即通过“小额信贷”的模式,为林缘区农户创造更多的可供选择性就业机会或创收机遇,极大地减缓了社区与保护区管理局之间的冲突,农户通过小额信贷解决了增收和生计问题,保护区的偷盗砍伐得到遏止,生物多样性得到有效保护。位于内蒙古高原东部的浑善达克沙地在1959年到1999年间,阳坡植被覆盖率下降了20%~30%,阴坡下降了30%~40%,这是由于当地人口的增多,导致牧民的数量急剧上升,牲畜的数量也急剧上升,过度放牧导致了浑善达克沙地的荒漠化。因此,学者们提出了“以地养地”的模式,即在当地建立人工高产饲料基地,将传统的放牧改为圈养,而腾出大量的退化土地进行恢复,并进一步发展成保护区。同时,调整畜牧结构,减少山羊的数量,增加牛的数量,并引进液体奶生产线、生态旅游等适合当地发展的企业,这些措施,使民众由原来单纯的放牧发展为多元化的生产方式。这些案例说明,替代性生计满足了生态脆弱区居民的发展需求,使他们由生态的破坏者变成生态的保护者。

生计改善一生态恢复一灾害管理耦合模式。兰州大学丁文广教授经过10多年的农村社区综合发展项目的实施,在我国首次提出了“生计改善一生态恢复一灾害管理耦合模式”。该模式首次在甘肃省平凉市崆峒区康庄乡的清水岭村实施。清水岭村是一个典型的贫困村,缺乏能源,农民因能源需求破坏了大面积森林和草地,造成水土流失严重,形成了“贫困一生态退化一灾害(旱灾)频发”的恶性循环。为了应对这一问题,丁文广带领项目团队,应用“农村参与式评估”方法,到项目村进行需求评估和项目设计,组建包括村委会成员在内的项目实施小组,通过村民大会公开选举项目分批受益户名单,制定项目管理制度。在完成需求评估之后,依据项目管理制度,组织项目实施。具体思路是,将贫困村中的贫困户按照特困户、贫困户和较好户分组,先对特困户无偿提供良种繁育母牛,生产的(母)牛犊依次滚动到贫困户和较好户。这种滚动发展模式,既保证了让最贫困的人群先受益,又照顾了条件相对好的农户,最后达到整村受益的目标。作为获得项目资助的必要条件之一,项目受益户必须每户种植至少2亩苜蓿和2亩薪炭林。项目资助方对完成项目指标的农户奖励清洁能源设施(太阳灶、沼气池、节能炉等),进一步阻止了农户对生态的破坏。为了规避旱灾风险,项目设计了压缩夏粮、扩大秋粮面积,以充分利用雨水的时空分布规律,同时,牛粪、沼液的使用减少了化肥使用量,改善了土壤结构,增强了作物的抗旱性。该模式推动了清水岭村实现了人与自然和谐发展的目标,并在甘肃省多个贫困社区推广示范。从该模式中提炼的主要理论为:“人类与自然耦合系统”中灾害风险、生态环境退化与经济贫困三者之间具有负向耦合关系,其中,经济贫困是“灾害频发一生态退化一贫困加剧”恶性循环的外部驱动力,环境退化和灾害频发只是经济贫困的外在表现和结果。要打破生态退化、灾害频发及贫困加剧的恶性循环,需要决策部门在生态治理、灾害风险管理及扶贫领域推行“灾害风险管理一生态恢复一生计改善耦合模式”,打破部门壁垒,设计跨领域横向合作项目,推动可持续发展。

PPP(Private Public Partnership:公私伙伴关系)模式。PPP模式是生物多样性保护的一个有效机制,特别是在人口众多、贫困人口比例高、人与自然生态环境交错分布的区域,应对生物多样性的保护就不能缺少PPP模式。所以,我国政府、企业与环境NGO之间在生物多样性保护方面迫切需要建立良好的互动合作模式。环境NGO在反映公众利益诉求、推动公众主动参与和组织协调方面有其独特的优势,它是政府行为的重要补充者和合作者;企业在获取经济利益的同时,要回馈自然和社会,体现企业的社会责任,承担生物多样性保护的义务:而政府在资金、政策、协调等方面具有很强的优势,是资源的主要控制者和分配者,政府的参与对PPP模式发挥的作用至关重要;众多的社区是与自然环境直接接触的群体,他们既是环境资源的索取者,又是生物多样性保护的主体,没有社区的参与和合作,就无法实现保护目标;国际环保机构有许多成功的保护案例和实践,与它们开展合作,会起到事半功倍的作用。可见,PPP模式能够整合生物多样性利益相关群体的优势和资源,无疑是生物多样性保护的理想途径。

这里只列举了4种技术,但生物多样性保护的技术创新会随着政府和公众对自然的认知程度不断深化而丰富。

以多元文化为基础的传统生态自然观

文化价值观是人类文化的核心,包括原住民对生物的认知、利用和保护的价值观、伦理观、人与自然和谐观等。我国是一个多民族的国家,民族文化呈现多样性。归类起来,可以分为两种生态自然观:一是原始崇拜,人们往往将一些与自己生活关系密切的动植物作为崇拜的对象并加以保护,这些原始崇拜在历史上都起到了保护动植物物种及其生境的作用。二是以各大宗教为基础的宗教生态自然观。佛教的生态自然观以尊重一切生物为佛家的根本观念。道教中的生态自然观最大的特点便是表现在对生命的关怀上,强调要以仁爱之心来善待生命,所有的生物都处在一个相互平等的过程。伊斯兰教中的生态自然观认为要正确处理好自然资源的开发与利用之间的关系,不能过分索取,否则会遭到大自然的惩罚。无论是宗教生态自然观还是原始崇拜,都强调保护生态系统,主张人与自然和谐发展。但是随着现代商业理念和商业活动的侵入及全球化和主流化的负面影响,我国各民族的传统生态自然观逐渐衰弱,甚至消失。因此将民族传统文化纳入生物多样性保护的范畴,是生物多样性保护和民族传统文化保护的共同需求。中国少数民族生存的地区面临着类似的环境问题、相同的社区结构及文化基础,应用传统的少数民族生态自然观推动环保无疑具有强大的生命力,对于推动人口只占中国人口8. 5%、但国土面积占比高达46%的少数民族区域的环保意义重大。当环保上升到信仰的高度的时候,环保将无需外部力量的推动。正如新制度经济学代表人物、诺贝尔经济学奖得主道格拉斯·诺斯所说的那样,行为是由制度决定,而制度又由正式约束与非正式约束共同构成,其中,正式约束是国家的宪法法律等,而非正式约束是指一个国家的宗教、文化、传统、习俗等方面。尽管正式约束非常重要,但决定制度特征的更主要是非正式约束。可见,在全球化的时代,传统文化及宗教文化在解决生态危机方面仍然具有不可替代的强大生命力。

主要

参考文献

[1]张金屯,论生物多样性保护与持续发展[J].经济地理,1999,19(2):71-75.

[2]马克平,钱迎倩.生物多样性保护及其研究进展[J].应用与环境生物学报,1998,4(1):95-99.

[3]马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势[J].科技导报,1995 (1):27-30.

篇5

(一)教材内容分析

《生物多样性及其保护》是第二册第九章《人与生物圈》的第二节内容,是环境教育极其重要的教学内容。本节内容主要包括生物多样性的基本内容、生物多样性的价值及我国生物多样性的概况和保护知识,其涉及范围广,知识跨度较大。

(二)学习者特征分析

本节课授课对象是高中二年级学生,高二学生已经全部完成了前面对生物基本理论知识的学习,以生物六大基本特征为主线的知识已经掌握得很熟练,而且已经学习过生态学的基本概念和原理及环境保护的基础知识。要从丰富的内容中概括出遗传多样性、物种多样性、生态系统多样性和直接使用价值、间接使用价值等,学生不仅需要扩散思维、概括、综合能力,而且需要信息获取、处理和表达能力。

二、教学目标设计

(一)知识与技能

1.能准确说出生物多样性的概念;解释生物多样性的价值及分析我国生物多样性的概况;阐明生物多样性的保护。

2.培养学生自主学习、自主探索及总结归纳能力。

(二)过程与方法

通过课件演示、学生交流、师生交流等形式,加深学生对生物多样性的认识,提高对生物多样性知识的应用能力及综合分析能力。

(三)情感与价值观

1.让学生在自主解决问题的过程中培养成就感,为今后自主学习打下良好基础。

2.通过课件演示,培养学生研究探索精神,从而调动学生积极性,激发学生对生物课的兴趣。

3.提高学生热爱自然、热爱生物、热爱生活的理念,增强自觉保护生物多样性的观念。

三、教学内容设计

(一)教学重点

1.生物多样性的基本内容及保护生物多样性的具体要求。

2.生物多样性的使用价值。

(二)教学难点

1.生物多样性的保护。

2.我国生物多样性概况。

四、教学策略分析

(一)教学方法

1.任务驱动法(观察分析、对比)

让学生在具体任务驱动下学习,在完成任务的过程中掌握应掌握的知识点。本节课教学中,让学生观察有关录像资料和图片并通过交流、讨论识别五灵脂、蝉蜕等动物药物标本,当归、凤尾草等植物药物标本。

2.讨论交流学习法(讨论、讲述)

通过对动物标本和植物标本的对比,在此基础上多播放、些动植物种类,了解生物多样性,并通过同学之间的讨论解释生物多样性的价值及分析我国生物多样性的概况,在此过程中,同学、老师之间加强交流。

(二)教学手段

多媒体网络教室、相关教学课件。

五、教学过程设计

(一)导入

教师活动:展示幻灯片,黄土高原破坏之前和现在的对比。引出:保护生物资源,生物圈是人类共同的家园。

学生活动:观看图片,思考。

设计意图:展示图片,设计问题,使其产生急需探求的心理,学生学习动机由潜伏期迅速自然进入活跃状态。

(二)生物多样性基本内容

教师活动:1.什么是生物多样性?2.我们应从几个层次对它进行保护?引出:生物多样性及其保护。

学生活动:1.生物多样性包括遗传多样性、物种多样性和生态系统多样性。2.保护生物多样性就是在基因、物种和生态系统三个层次上采取保护战略和保护措施。

设计意图:培养学生概括能力。

(三)生物多样性的价值

教师活动:野生生物资源具有很大使用价值,只有全面认识野生生物资源的价值所在,才能增强并树立保护野生生物资源的意识,规范人们的行为方式。引出:1.对于人类来说生物多样性有哪些价值?2.阅读课文,了解什么是直接使用价值,包括哪些方面?

学生活动:1.对人类来说,生物多样性具有直接使用价值、间接使用价值和潜在使用价值。2.直接使用价值指人们能够直接利用的,包括药用价值、科学研究价值、重要的工业原料、美学价值及文学创作素材。

设计意图:培养归纳总结和表达能力。

(四)我国生物多样性概况

教师活动:以上是生物多样性的使用价值,我国地域差异显著,自然条件复杂多样,从而孕育了既丰富多彩又独具特色的生物物种和生态系统,近年来,我国生态环境面临严峻形势,为了保护好我们的生存环境,应了解我国生物多样性的概况。引出:1.谁能说说我国生物多样性有怎样特点?2.为什么说我国是世界上物种最丰富的国家之一?

学生活动:1.第一,物种丰富;第二,特有的和古老的物种多;第三,经济物种丰富;第四,生态系统多样。2.据统计,我国苔藓植物、蕨类植物和种子植物共3万多种,居世界第三位。我国还是世界上裸子植物物种最多的国家,是世界上鸟类种类最多的国家之一。

设计意图:培养学生探究能力。

(五)生物多样性的保护

教师活动:我国生物多样性存在两方面问题,其中,生存环境的改变和破坏是多数野生生物灭绝或濒危的主要原因。引出:我们应该怎么做?

学生活动:保护野生生物。生物多样性的保护包括就地保护、迁地保护及加强教育和法制管理。

设计意图:强化法律法规。

(六)小结

教师活动:1.结合板书,带领学生一起回顾本节课知识框架。2.挑选典型习题,学生相互解答,教师点拨。

学生活动:整理知识体系,做习题。

设计意图:归纳总结,拓展思维,便于记忆。

六、教学反思

本节课的教学设计主要有三个特点:

(一)教学流程设计符合认知规律

采用先导入再引导的顺序,使学生尽快进入学习状态。

(二)鼓励学生自主学习

学生自主学习,整理知识体系,归纳总结,便于记忆。

篇6

关键词 生物多样性;保护;生态园林;生态绿地基地

中图分类号 Q146 文献标识码 A 文章编号 1007-5739(2012)24-0206-01

1 生物多样性的作用

1.1 有利于珍稀濒危物种的保存

一个物种一旦灭绝,它的基因将很难保存,从而导致该物种永不再生。而保护生物多样性,特别是对濒危物种的保护,对于人类后代繁衍和科学研究意义重大[1-2]。

1.2 调控作用

生物多样性可以调控地球表面温度、大气层成分、地表沉积层氧化还原电位以及pH值等。例如,地球早期的大气中含氧量很低,由于植物的光合作用,现今地球大气层中的含氧量约为21%。据科学家估计,一旦失去了植物的光合作用,大气层中的氧气将会在数千年内消耗殆尽[3-4]。

1.3 改善生态环境

保持生物多样性有利于保持土壤肥力、保证水质以及调节气候等。作为中华民族的摇篮,黄河流域在几千年前曾经土地富饶,野生动植物种类繁多。然而,由于长期战乱及过度开发,黄河流域的生物多样性已经极度贫乏,水土流失严重,自然灾害频发,给人类的生存和生活带来极大的威胁[1-3]。

2 生物灭绝的原因

2.1 环境污染是直接原因

人类不仅数量迅速增长,改造自然的能力也极大地增强,填海造田,长江截流,荒漠变农田。同时,人类活动也使环境污染日益加重,如食物农残、工业“三废”、生活垃圾等。许多陆地和水体由于受到不同程度的污染,不再适宜野生生物的生存,如咸海生物群落已完成毁灭,许多海洋生物已经彻底灭绝;由工厂废气、汽车尾气形成的酸雨,正严重危害着地球生物[1-2]。

2.2 世界人口增长过速是主要原因

人口增长导致人类对生存空间和食物需求量的增长,致使地球上许多自然景观被大面积的人造景观代替,这些人造景观包括农田、人工草场、人工林、楼群、混凝土地面和人工水产养殖基地等。因此,野生动物的生存空间被大量侵占,自然景观逐渐消失,原生植被随之减少乃至消失,而公园、城市绿化带等多为人工筛选的植物,原生物种锐减,加剧了种群的衰退和灭绝的过程[1-4]。

3 城市生物多样性的保护

3.1 开展物种的引种、驯化和推广

为了扩大物种的栽培范围、分布区和种群规模,建议开展物种迁地保护和离体保护。城市园林部门多年来进行了大量的引种和繁育工作,建立了植物园、公园、种子资源园等,如葫芦岛市20多年来进入新物种约100种(包括外来归化野生草本和栽培林木)。由此可见,城市引种比较丰富,通过引种大大增加了城市生物多样性。

3.2 城市生物多样性保护和持续利用方法

一是为了给城市规划、管理提供可操作的依据,要加大对城市生物多样性保护、恢复和持续利用的研究力度,逐步完善城市建设过程中有关保持生物多样性的规划设计、施工技术、工程措施、生物多样性检测、评估方法及其指标评定系统等。二是城市物种受城市空间的限制,易形成小种群,生境碎化、隔离以及城市污染物等系统胁迫加大了物种灭绝的概率和速度。因此,应大力研究城市化进程影响生物多样性的内在机制和模式。三是为了分析和预测城市建设对生物多样性的影响及后果,应建立生物多样性监测网络,以为城市生物多样性保护和管理提供依据[1-4]。

3.3 重视生物本身原有的生态规律

城市是人类的集中地,因而城市生物多样性的保护是至关重要且非常必要的。为了对城市生物多样性进行保护,在建设项目中应该增加生物多样性价值评估,使城市建设能够遵循生态规律,合理协调功能、景观设计和城市自然保护、生物多样性的关系,以实现人与自然可持续发展,从而达到物种保存、进化以及保持生态系统完善、稳定的目的[1-4]。

4 建立生态绿地基地

4.1 建立生态绿地基地应遵循生物多样性原理

生态绿地建设既要注重其观赏性,更要符合生态学原理。借鉴自然演替群落的种类组成和结构规律,根据不同植物的生态幅度,构筑和拓展生态位,合理配置乔、灌、藤、草,构建生物多样性高的复层群落结构,尽量减少大面积草坪的建植。充分利用乡土植物,使生物多样性体系具备地域特征,增加植物对城市环境的适应性。要优化群落结构、提高群落的生物多样性,使人工群落和自然生物群落完善结合,提高其系统的生态效应和景观效应[1-4]。

近年来,在园林绿化中,由于忽视生物多样性而引发的病虫害问题不胜枚举,如长春市公园内因丹东桧柏与山定子等苹果属的观赏树木配植在一起而导致草锈病、桧柏锈病的发生;2001年辽宁省各市区内杨柳树烂皮病的大面积危害等,所有这一切为人们敲响了警钟,在城市生态化绿地的建设,必须遵循生物多样性原理,在选择植物种类多样性的同时,选用抗病虫能力强的树种,使其能相互制约病虫害的发生,以达到生态化绿地发展的目的。

4.2 生态化绿地基地的建设类型

建设观赏型、保健型、耐污型、生产型的人工植物群,以色叶树、花灌木、宿根花卉等为主要素材,增加绿化层次的差异,用高大乔木、小乔木、花灌木、色叶小灌木、地被植物形成多层次、高落差的绿化格局;遵循“适地适树”的原则,在植物的选择与配置上注重环境的适应性,种间关系的协调性和互补性,以乡土树种为主,适当应用经过试验的适应当地条件的引种树,实现在满通功能的前提下,达到增加植物景观与周围环境协调性的目的。

为改善重污染区的生态环境,在绿化基地建设过程中选用抗性较强的植物构建复层结构为主的植物群落,这种结构通风透气性良好,生态效益高。在绿化基地中适当引进即将濒危和稀有的野生植物,可丰富景观,保存和利用物资资源。为满足市场需要和增加社会效益,可以发展乔、灌、花、果、草、药和苗圃基地,以增加经济价值,促进环境协调[5-6]。

5 参考文献

[1] 丛日辉,李研.浅议生物多样性与生态公园[J].资源与人居环境,2011(1):54-55.

[2] 张庆费.城市生物多样性的保护及其在园林绿化中的应用[J].大自然探索,1997(4):99-102.

[3] 乔欣.城市用地评定中的生态优先原则导入[D].重庆:重庆大学,2004.

[4] 郑瑞文.北京市城市建成区绿地植物多样性研究[D].北京:北京林业大学,2006.

篇7

关键词 生物多样性;农业生态系统;生产力;可持续发展

中图分类号 X176 文献标识码 A 文章编号 1007-5739(2012)14-0202-02近年来,全球物种灭绝速度呈加快的趋势,物种多样性降低或物种丧失会带来一系列负面的影响。当前,在环境与发展研究领域,生物多样性与生态系统功能的关系是学者研究的热点问题。作为地球上最大的人工生态系统,农业生态系统的生物多样性问题越来越受到学术界乃至全人类的关注。

1 人类农业发展史中生物多样性的变化

农业的发展史是人类改造自然、建立人工生态系统的历史。在这个漫长的历史过程中,由于人类改造自然能力的不断增强以及对其生存环境价值取向的变化,农业生态系统生物多样性也在不断发生着变化,主要经历了5个阶段,具体如下:

一是森林农业。最早的农业是以原始的狩猎和野果的采集为主。在这一阶段,由于人类对自然的作用力有限,以利用和适应为主,对生态系统及其生物多样性的影响效果不大。研究表明,墨西哥东北部玛雅的农业森林植物种类超过300种,其中超过200种植物在医药领域发挥重要的作用,33种植物用于建材制造领域,81种植物用于采集或其他用途[1]。二是火农业。当人类掌握作物的栽培技术后,为提高作物的产量及栽植面积,人类常采用烧山或砍除后烧掉的方法来扩大种植面积,进行单一作物的栽培。烧山会把范围内的所有动物、植物全部烧死。火农业无疑是以牺牲生物多样性为代价的,但是由于古代森林资源丰富,同一块地常使用一段时间后即废弃,由于周围生物的再度入侵,其生物多样性的减少可以得到缓减。三是水农业。即采用单一种植方式,在农业生产中通过灌溉解决水分供应和施肥、除草、病虫害防治等一系列主要栽培措施,生产力得到提高。同时,其高度的人为干扰也严重破坏生态系统的复合结构,生物多样性较低。但是由于水农业系统有着良好的水生环境,其生物多样性还是有一定的保障。Heckman[2]研究发现,泰国东北部一块传统水稻田富含590个物种,包括146种节肢动物、166种藻类、10种两栖爬行动物、83种纤毛虫、18种鱼类。四是石油农业。进入工业社会后,由于人口的不断增加以及对资本最大化的追求,一些发达国家采取以高能量投入为特点的石油农业生产模式,其以石油、机械、化肥及农药等的投入大大提高农业生产率,为人类社会在近代的高速发展做出巨大贡献。但由于大量使用化肥和农药,农业生态环境中的土壤结构被破坏,物质消亡导致其生物多样性大大降低,石油农业并不能处理好生产与生态环境,资源开发利用与保护之间的关系,农业生态环境不断恶化。五是生态农业。进入20世纪后期,由于石油农业导致的生态环境恶化不断加重,人类开始反思自己的行为,并着力创建一种良好的人与自然以及生态—技术—经济和谐发展的农业发展模式——生态农业。由于生态农业强调生态系统的自然属性及其稳定性,生物多样性的保持无疑成为其中的重点。

2 生物多样性与农业生态系统的稳定性

生物多样性与自然生态系统稳定性的关系问题一直是学术界没有圆满解决的问题。到目前为止,多数学者和研究人员都相信生物多样性能增加系统的稳定性,但关于二者关系的研究非常少[3]。一个稳定的生态系统至少要保持一定数量的生物多样性,这已是共识。对于现代的农业生态系统,由于人为干扰十分严重,因而会使其生物多样性往往达不到一个自然稳定生态系统的要求。中科院冯耀宗通过40余年对人工群落的研究表明,随着种类增加,层次复杂加大,系统在生物量及生产力上均有明显增加;小气候中随着结构的复杂化加大,相对湿度也随着增加,最高温度降低,最低温度升高,风速减少,土壤流失明显减少,对低温风害的抵抗力加强,表明人工生态系统结构明显影响系统的稳定性[4]。

3 生物多样性与农业生态系统的生产力

根据进化论理论推测,生物多样性可提供更加丰富的可利用资源,从而提高了群落生产力,并被应用于生产实践。当前,由于经济发展中过于开发自然资源,生物多样性明显下降,也产生维持多样性和追求高生产力的矛盾。农业生产的目标是实现作物高产、优质,而导致品种单一化,使物种减少,加速捕食生物、菌根、固氮细菌、传粉及种子传播生物消失的速度。

研究表明,在一定范围内人工生态系统的生物多样性与其生产力呈正相关关系,生物多样性越丰富,生产力越高,从长远来看,单一的人工生态系统生产力要远远差于复合型。Trenbath[5]研究表明,344个草本植物混作可促进作物增产。冯耀宗[6]研究表明,在热带经济作物组成的多层多种人工生态系统,由于其能充分利用太阳辐射能量,因而提高系统生产力。作为一个典型的人工生态系统,农业生态系统在目前整个世界范围内以单一作物作为主要种植方式的条件下,提高其生物多样性,配置适当的混作作物,能有效地提高其系统生产力[7-8]。

4 保护生物多样性,促进农业可持续发展

4.1 农业对生物多样性的破坏

(1)栖境的改变。人类对土地的过度开发和集约化利用,不断地缩小和改变着各种生物的栖息环境。在我国东南部的集中农区,由于城市化和园田化的发展,土地资源没有得到合理的开发和利用,森林、草地和湿地生态系统不断被蚕蚀,少量田地和湿地成为受人类影响很大的残留野生生境“岛屿”,永久绿地面积比例过小[9]。20世纪50—90年代,全国累计开垦荒山荒地约0.34亿hm2,约等于国土面积的3.5%[10],单一农业生态系统的不断扩大,大大缩减适生物种的数量。

(2)化学污染。现代农业的发展离不开化学产品,随着人类对土地生产力提高的不断需求,单一的农业生态系统导致病虫害大面积发生,人类对各种化学农药、化肥的依赖性进一步增强。化学产品的大范围使用,不仅对人体健康产生危害,还加快了自然物种的灭绝速度[11]。

(3)过度猎取。人类的发展进程中,一直源源不断地从自然界中获取资源,导致资源结构被改变,一些珍贵的野生资源数量不断减少甚至呈区域灭绝状态,资源价值降低。随着沿海经济及工农业生产的快速发展,海洋开发活动不断增加,中国海洋生物多样性已经受到不同程度的损害,并且这种损害正呈现持续上升的趋势[12]。

(4)外来生物的引进和侵入。外来物种入侵对生境的影响表现为占领生态位—排挤当地物种—减少当地物种多样性—导致生态系统单一或退化—改变或破坏当地自然景观,污染当地的遗传多样性(入侵种与当地种的基因交流可能导致当地种的遗传侵蚀)。20世纪80年代,我国从美国引进互花大米草(S.alterniflora)、从英国引进海滩大米草(Spartion angelica),并在沿海滩涂区域种植,也获得一定的生态效益[13-14]。但随着种植时间的持续,区域原有的滩涂生物群落结构被改变。新疆从额尔齐斯河引入的河鲈鱼(Perca fulviatilis),已导致新疆博斯腾湖中的新疆大头鱼(Aspiorh-ynchus laticeps)濒于灭绝。

4.2 保护对策

(1)开展生态农业建设。20世纪80年代初,我国提出发展生态农业,强调在保护生态系统的前提下发展农业生产。在新型的农业生产方式中,强调薪炭林建设的作用,提倡使用小水电、风能、沼气等可再生能源;注意保护和建设植被,控制水土流失;推广种植绿肥,提高肥料的综合利用率,培肥地力;实行病虫害综合防治,控制化学污染;根据区域资源优势和生产特点,积极调整产业结构,实行种养加相结合、农林牧副渔相结合的生态模式[15]。

(2)优化作物种植模式和土地耕作管理。单一种植和粗放耕作管理是导致农业生物多样性减少的原因之一。因此,在进行农业生产时要因地制宜,根据生态学原理,对农田作物进行合理资源配置和种群构建,改单一种植模式为复合立体种植模式。采用复合农林业和生态农业技术,实现不同作物的轮作与间作套种,以充分利用空间与环境资源,还要加强农田的水分与土壤耕作管理,促进提高农业生态系统的生产力,同时增加农田的生物多样性[16]。

(3)建立农业生物多样性保护技术体系。深入研究农业生物多样性保护的关键技术,建立相应的技术体系是实现农业生物多样性保护的强有力保证。一是健全环境污染防治技术,包括优化施肥技术、高效低毒低残留农药的生产与喷施技术、清洁生产技术、废弃物的资源化技术、病虫害综合防治技术等;二是提倡实施种质单一化防治技术,包括复合农林业技术、生态农业技术、立体农业技术等;三是采取水土流失防治与控制技术,如等高耕作技术、防护林技术、生物篱笆技术、坡面工程技术等;四是实行物种保护技术,包括基因工程技术、人工繁育技术、遗传育种技术、就地保护与迁地保护技术等[7]。

(4)加强农业生物多样性的监测管理。为完善和丰富农业生物多样性系统的基础数据,应该加强野外定位监测网络站点的建设,综合详查不同地区的农业生物多样性,进行农业生物种类的分类与编目,建立农业生物多样性数据库和管理信息系统。同时,适当地建立一批各具特色的农业生物多样性保护区,加强农业生物种质资源库与基因库的建设,以保护农业生物的遗传多样性、稀有或濒危的农业生物物种(包括野生亲缘物种),进一步提高生态系统的生产力[17-19]。

5 参考文献

[1] BERRERA A,GOMEG-POMPA A,YANES C V. El manejo de las selvas por los Mayas:sus implicaciones silvícolas y agrícolas[J].Biotica,1997,2(2):47-61.

[2] HECKMAN C W.Rice field ecology in noutheastern Thailand[M].Boston:Dr.W.Junk,1979.

[3] 张国全,张大勇.生物多样性与生态系统功能:最新进展与动向[J].生物多样性,2003,11(5):351-363.

[4] 冯耀宗.物种多样性与人工生态系统稳定性探讨[J].应用生态学报,2003,14(6):853-857.

[5] TRENBATH B R.Biomass productivity of mixtures[J].Advances in Agro-nomy,1974,26(1):177-210.

[6] 冯耀宗.巴西橡胶-云南大叶茶人工植物群落的实验生态学研究[J].植物学报,1982,24(2):164-171.

[7] 祝增荣,李红叶,程家安.农业生物多样性与农业的可持续发展[J].农业现代化研究,2000,21(2):100-104.

[8] 冯耀宗.生物多样性与生态农业[J].中国生态农业学报,2002,10(3):5-7.

[9] 李波.中国的农业生物多样性保护及持续利用[J].农业环境与发展,1999,16(4):9-15.

[10] 李波.中国农业生物多样性保护及持续利用[J].农业环境与发展,1999(4):9-16.

[11] 曾斌,彭丽,翟学昌,等.赣南不同坡向杉阔混交林物种多样性初步研究[J].福建林业科技,2009(3):80-84,97.

[12] 国家海洋局中国海洋21世纪议程[M].北京:海洋出版社,1998.

[13] 景福军.黄土高原半干旱区山地不同地形不同利用方式植物群落多样性研究[D].兰州:甘肃农业大学,2005.

[14] 吴大付,吴艳兵,任秀娟,等.农业集约化对生物多样性的影响[J].吉林农业科学,2010,35(2):61-64.

[15] 尚占环,姚爱兴.生物多样性研究中几个热点问题的研究现状[J].自然杂志,2003,25(2):106-110.

[16] 范晓黎.农业生物多样性的保护和利用概述[J].污染防治技术,2008(5):60-63.

[17] 赵静,苏金华,曹洪涛,等.农业规划环评中生物多样性影响评价研究[J].农业环境与发展,2012,29(2):69-73.

篇8

关键词:生物多样性;威胁因素;保护对策;安徽

中图分类号:Q16 文献标识号:A 文章编号:1001-4942(2013)11-0134-03

生物多样性是人类赖以生存和发展的基础。1992年,世界环境与发展大会上签署的《生物多样性保护公约》把生物多样性提到了与和平发展同等重要的地位。目前生物多样性的丧失已严重威胁到人类的生存和发展:地球上已知物种的25%已消失,20%~30%还有消失的危险,现在植物以每天1种的速度消失[1]。生物多样性的丧失是不可逆的,对人类的损失是不可估量的,保护生物多样性已成为全球共同的呼声。

安徽省跨暖温带、北亚热带、中亚热带3个气候带,兼跨长江、淮河、新安江3大流域,境内山丘、平原、湖泊镶嵌交错,自然景观具有高度的异质性,蕴育了丰富的生物资源。但近几十年的经济快速发展导致自然资源过度开发、环境污染加剧、生态系统遭到破坏,生物多样性也在迅速减少,严重威胁安徽社会、环境和经济的可持续发展。

1 安徽省生物多样性的现状与问题

1.1 安徽省生物多样性受威胁的现状

1.1.1 生态系统功能不断退化 安徽省境内的淮河、巢湖等淡水生态系统受到威胁,部分重要湿地退化。内河湖泊的物种及其栖息地不断丧失,淡水渔业资源大量减少。安徽省20世纪50年代初开始至今围湖造田达1 667平方公里,占原湖泊面积的32.3%,而同期天然阔叶林面积由近1.2万平方公里减少到9 100多平方公里,水土流失面积则由全省总面积的7%上升到20%。

1.1.2 物种濒危程度加剧 据估计,安徽现有384种野生物种正处于濒危状态,占全省同类物种总数的3.2%;其中脊椎动物210 种,濒危比率达28.3%,大大高于全国的7.7%和世界10%的濒危程度。安徽的野生扬子鳄、丹顶鹤、白冠长尾雉、香果树等珍稀物种若不能得到有效保护,可能会在50年内灭绝。非国家重点保护野生动物种群下降趋势明显。

1.1.3 遗传资源不断丧失和流失 一些农作物野生近缘种的生存环境遭受破坏,栖息地丧失,如野生稻原有分布点中的60%~70%已经消失或萎缩。部分珍贵和特有的农作物、林木、花卉、畜、禽、鱼等种质资源流失严重,一些地方传统和稀有品种资源丧失,如曾经遍布安徽的华南虎已灭绝,野生扬子鳄、白豚(即下加鱼) 和大灵猫也面临类似的命运。

1.2 安徽省生物多样性保护面临的问题与挑战

1.2.1 缺乏明确的法律法规 生物多样性保护法律和政策体系尚不完善,生物物种资源家底不清,调查和编目任务繁重,生物多样性监测和预警体系尚未建立,生物多样性保护投入不足,管护水平有待提高,基础科研能力较弱,应对生物多样性保护新问题的能力不足,全社会生物多样性保护意识尚需进一步提高。

1.2.2 经济社会发展对生物多样性的影响 城镇化、工业化加速使物种栖息地受到威胁,生态系统承受的压力增加。生物资源过度利用和无序开发对生物多样性的影响加剧。环境污染对水生和河岸生物多样性及物种栖息地造成影响。外来入侵物种和转基因生物的环境释放增加了生物安全的压力。生物燃料的生产对生物多样性保护形成新的威胁。气候变化对生物多样性的影响有待评估。

2 安徽省生物多样性的威胁因素分析

2.1 环境污染和水体富营养化

环境污染指的是人类直接或间接地向环境排放超过其自净能力的物质或能量,从而使环境质量降低,对人类的生存与发展、生态系统和财产造成不利影响的现象。由于经济的粗放式高速发展,工业废水、废气、废渣和生活污水严重破坏了安徽省的自然环境,致使动植物遭受巨大伤害。化肥、农药和除草剂的使用在带来农业丰收的同时,也使农业污染越来越严重,尤其对那些周围无林地的湖泊更是雪上加霜。由于缺少林地的净化,农业污染源导致湖泊富营养化加快,例如五大淡水之一的巢湖每年接纳化肥约20万吨,致使N、P严重超标,成为重富营养化湖泊。

2.2 野生动植物的栖息地遭到破坏

水利水电、围湖造田、航道航运等工程建设破坏了水生动植物的栖息地及其生存环境,造成大量物种的生存空间被挤占、洄游通道被切断、产卵场遭到破坏。如巢湖拒江倒灌后,鲫鱼、触科鱼类、马口鱼、胭脂鱼、铜鱼在湖区已属罕见[2]。

由于大面积的森林采伐、自然灾害、修路架桥、开发旅游等原因,安徽省原生的天然林不断遭到蚕食和破坏,其面积已不超过2 667平方公里,严重影响了野生动植物的正常生长和森林群落的演替。同时,许多野生动物的栖息地不断岛屿化和片断化,造成一些珍贵野生动物数量锐减,如20世纪30~40年代安徽沿江南岸的支流湖泊随处可见的扬子鳄,目前野生种群数量不足200条,且被分割在六个县(区),近亲繁殖导致其变异性下降,处在灭绝的边缘。

2.3 生物资源被过度利用

尽管安徽省采取了一系列的资源保护管理措施,但长期以来形成的“野生无主,谁猎谁有”的思想依然存在,乱捕滥猎现象普遍。另外,由于长期重捕轻养,许多湖泊经济鱼类捕获量明显下降,鱼类资源锐减又影响食鱼鸟类和兽类的食物来源,从而影响到整个生物链的稳定性。

2.4 生物入侵

生物入侵是指某种生物从外地自然传入或人为引种后,成为野生状态,并对本地生态系统造成一定危害的现象。这些入侵种由于生存环境和食物链发生改变,在缺乏天敌制约的情况下泛滥成灾。某个生物种群数量急剧增加时,就会改变食物链各能量营养级的组成,使生态系统的平衡遭到破坏。空心莲子草和凤眼莲分别于20世纪30~50年代在安徽作为猪饲料广泛种植,后因农民不再将其当作猪饲料而逸为野生,由于其繁殖速度极快,造成了堵塞河道、阻碍排灌航运及破坏水生生态系统等危害。

3 保护安徽省生物多样性的对策

根据安徽省现有的地情、民情和经济发展状况,可以从以下几方面入手进行生物多样性保护。

3.1 建立明确的生物多样性保护目标

保护生物多样性的目标是通过不减少基因和物种多样性、不毁坏重要生境和生态系统的方式,来保护和利用生物资源,以保证生物多样性的持续发展[3]。保护生物多样性有三个基本组分:挽救生物多样性,研究生物多样性和持续、合理地利用生物多样性。安徽省在进行生物多样性保护时,可以从以上三个方面入手,建立明确的生物多样性保护目标,确保目标的科学性和可行性,还要制定短期、中长期的实施规划,有目的、有策略地进行保护工作。

3.2 加强宣传教育,建立生物多样性保护的法律体系

环境保护是我国的一项基本国策,其中就包括生物多样性的保护。安徽省应进一步加大生物多样性保护的宣传力度,让人们了解保护生物多样性的重要性,强化人们的生物保护意识,提高民众参与生物多样性保护的自觉性和积极性,为保护生物多样性奠定坚实的群众基础。另外,应根据本省实际,加快制定生物多样性保护的法律、法规,用法律来约束、规范人们的行为,提高人们对保护生物多样性的法律意识。

3.3 主体功能区划分与生物多样性保护相结合

根据安徽省不同地区的资源情况、生态状况、环境容量、人口数量以及国家、全省的发展规划和产业政策,明确不同区域的功能定位和发展方向,合理划定重点开发区、限制开发区、优化开发区和禁止开发区,将安徽生物多样性保护的关键地区和关键物种列入禁止开发区,使区域经济发展和生物多样性保护齐头并进,有机结合。

3.4 加大对环境污染和生态破坏的治理力度

严格环境保护的法律法规和政策标准,加强建设项目的环境管理,加强环境执法,确保企业污染物排放稳定达标,确保新建、改建、扩建项目严格履行建设项目环境影响评价制度,努力做好源头控制。要重点加强淮河、巢湖等重点流域的水污染防治工作;加强对道路、港口、水库等破坏生态项目的监督管理;控制二氧化硫的排放水平,积极降低酸雨的影响程度和范围。

3.5 加强自然保护区的建设与管理

建设自然保护区是实施生物多样性就地保护的重要措施。目前,安徽省的自然保护区数量、面积比重相对全国而言十分滞后。应进一步加大自然保护区的建设力度,建立不同类型、不同级别的自然保护区,完善自然保护区的空间布局,扩大自然保护区的规模,力争将所有的国家级重点保护物种、珍稀濒危物种和地方特有物种纳入保护范围,同时加大对自然保护区的监管力度。

3.6 建立生物多样性监测、风险评估体系

建立健全生物多样性监测、评价体系和信息共享平台,努力实现工作制度化、常态化,特别是加强珍稀濒危物种、关键物种、特有物种、指标物种以及外来物种的监测,全面、及时地掌握全省生物多样性动态信息。建立完善、准确的生物多样性数据库,对全省境内不同区域的物种进行实时监控,一旦发现问题,依据生物多样性保护法律法规及时处理。

3.7 加大对生物多样性保护的资金投入

必须建立稳定的资金投入渠道,并逐步加大投入力度,努力提高安徽省生物多样性保护的科研水平和管护能力。

参 考 文 献:

[1] 马克平.试论生物多样性的概念[J]. 生物多样性,1993,1(1):20-22.

篇9

(一)资产的两重性森林生物样性资产由森林生物资产(包括活动物、植物和微生物)和森林生态资产(森林生态效益资产)构成。森林生物资产的最大特点是具有生物转化功能(岳上植,2002.)。生物转化是指导致森林生物多样性资产质量(遗传价值、密度、成熟期、脂肪层、纤维强度)或数量(重量、立方米、纤维的长度或直径)发生变化的生长、蜕化、生产、繁殖的过程,从转化的机理上看,森林生物多样性资产主要靠自然力的作用和自身的转化能力实现其再生和转化。林业生产活动只起“催化剂”作用,会经常出现数量不减反增的现象。因此,对于森林生物多样性资产的初次确认和再次确认应定期地结合评估,以评估促进核算。

(二)价值的多元性森林生物多样性是森林这一综合地域类型中所呈现出来的生物多样性。一般而言。生物多样性包括物种多样性、遗传多样性和生态系统多样性三个层次,其所体现出来的价值分为直接使用价值、间接使用价值、选择价值和存在价值四类(国家环保局,1998)。直接使用价值是指森林生物多样性直接满足人们生产和消费需要的价值,又可分为直接实物价值和直接非实物服务价值;间接使用价值是指森林生物多样性提供的生态功能的价值;选择价值是指人们为了将来能直接或间接利用森林生物多样性的支付意愿;存在价值是人们为确保森林生物多样性继续存在的支付意愿(张颖,2002)。价值的多元性决定了会计确认与计量的困难与复杂性。森林生物多样性与人类的生存与发展密切相关,其所体现的价值不仅在于为当代人提供直接使用价值,更重要的是为人类目前及将来所创造的巨大的非直接使用价值,所展现的是对人类可持续发展的积极意义。

(三)资产的整体性森林生物多样性资产是有形资产和无形资产相互统一的整体。当森林生物多样性作为提供木材、竹材和蘑菇及其它动植物产品来源时,释放的是直接环境效益,此时属于有形的森林生物资产;当森林生物多样性作为涵养水源、保育土壤、固碳制氧等森林生态效益资源的时候,释放的是间接环境效益,此时属于无形的森林生态资产,两者的结合点在于森林生物多样性资源同一载体。森林生态资产不能脱离森林生物资产而独立存在,两者相互依存,其价值的形成、消费和补偿过程密不可分。因此,森林有形资产在其实物量和价值量的增减变动过程中,森林无形资产也相应地发生变动,其所发挥的生态效益地会发生变化。因而在对森林有形资产的价值确认和计量中,也要相应地对森林无形资产的价值及其所产生的效益进行确认与计量。

(四)稀缺性和不可替代性森林生物多样性资产是相对稀缺的,这不仅表现在天然存量方面,还表现在生成率方面。同时,地球上生物物种是自然界长期进化的产物,因而各物种的形态、结构和功能在绝对意义上是不可替代的。森林生物多样性资产的稀缺性和不可替代性,产生了对有限资源的优化配置要求,体现在会计上是必须对其进行确认和计量。

(五)产品的公共性和市场的无形性森林生物多样性资产发挥的生态效益具有典型的外部经济性,它超越了进行森林经营活动的林业行业以外的外部影响,即不通过市场机制反映的影响,进而会产生不能全部反映到私人收益中的社会收益。公共物品是具有外部经济性的典型例子。森林生物多样性资产发挥的生态效益主要是一种无形效用,不能贮藏和移动,生产者难以对其控制,即无法迫使受益者偿付了补偿费用后才能享用其生态效用。因此,森林所提供的生态效益服务具有“公共物品”的特性。同时,由于森林生物多样性资产中的生态资产一般不存在市场,所以应更多地考虑非市场价值的计价方法,实现对其生态价值的确认和计量。

二、森林生物多样性资产的会计确认、分类

(一)森林生物多样性资产的会计确认森林生物多样性价值的会计确认是指将森林生物多样性资源作为一项森林生物多样性资产、森林生态效益记入会计载体的过程。会计确认的核心问题是选择合理的会计确认标准。森林生物多样性资产要能够作为一项资产加以确认,应当符合资产的确认条件,会计确认从理论上讲要同时满足四项标准:(1)可定义性。我国《企业财务会计报告条例》中给出的资产定义为:“资产是指过去的交易、事项形成并由企业拥有或者控制的资源,该资源预期会给企业带来经济利益”。“预期会给企业带来未来经济利益”是资产的最本质特征。森林中拥有丰富的野生动物资源(如药用、食用、纤维、芳香油等)和野生植物资源(如哺乳类、鸟类和爬行类等)。作为林业经营组织来讲,一旦森林生物多样性资源为其所拥有或控制就能为它带来直接或间接的净现金流入。因此,它们符合确认的第一个条件——资产的定义。(2)可计量性。森林生物多样性资产可以通过现有多种计量属性选择达到对其计量的目的,但是由于森林生物多样性资产自身的特殊性,其计量比较复杂。同时,对森林生物多样性资产的科学定价主要通过对其价格评估的基础上进行。从长远来看,随着评估理论和技术方法的不断发展和完善,能够做到对森林生物多样性资产的合理计量。(3)相关性。会计信息的相关性是指会计信息能够影响信息使用者的决策、能够导致信息使用者决策的差别(于富生等,2000)。显然,森林生物多样性资产计量所反映的信息,可以帮助决策者了解森林生物多样性资产的实物量和价值量、存量和流量信息,从而会影响到他们为我国森林生物多样性保护事业所采取的宏观或微观的经济决策。(4)可靠性。可靠性是指信息使用者可以对会计信息给予充分信赖。“当信息没有重要错误或偏向,并能够如实反映其所拟反映或理当反映的情况而能供使用者作依据时,信息就具备了可靠性”(国际会计准则委员会,2003)。真实反映是可靠性的核心标志。森林生物多样性资产的计量结果,可从一定程度上真实反映林业经营组织所拥有或控制的森林生物资产和森林生态资产的实物量与价值量,足以使决策者信赖。

(二)森林生物多样性资产的分类森林生物多样性资产分类标准有多种,其中最基本的是按存在形态分。按存在形态可将森林生物多样性资产分为有形的森林生物资产和无形的森林生态资产。森林生物资产是指森林中活的动物、植物和微生物及栖息于动物、植物和微生物的个体基因,包括林木资产、林副产品及以森林为依托生存的动物、植物和微生物等,因此森林生物资产是一种有形资产。森林生物资产在价值层次上主要表现为物种多样性价值和基因多样性价值,在价值总额中主要表现的是直接使用价值。森林生态资产是指森林生态效益所形成的资产,包括有机物质的生产、的固定、的释放、营养物质循环与贮存、水土保持、净化污染物等。森林生态资产在价值层次上表现的是森林生态系统多样性价值,在价值总额中表现的主要是间接使用价值和和部分直接使用价值(如旅游观赏价值、科学文化价值等),此外森林生物多样性所表现出来的选择价值和存在价值,也归属于森林生态资产。

(三)森林生物多样性资产核算在实践中的应用从森林生物多样性资产会计核算的可操作性角度考虑,目前主要可侧重于森林物种多样性价值方面的核算,特别是其中植物和动物多样性价值的核算。虽然森林生物多样性包括遗传多样性、物种多样性和生态系统多样性三个层次,但目前人们对每个层次的认识是非常有限的。相对而言,物种多样性最明显也最容易测定。而森林遗传基因多样性多发生在分子水平上,它主要包括染色体的多态性、蛋白质的多态性和核酸的多态性三个方面。就目前人们的研究手段和认识水平看,要做到完全掌握森林中有机体,即动植物和微生物的DNA中的氨基酸的排列次序及其结构还是比较困难的。而生态系统多样性的测定比遗传多样性的测定更困难,因为系统的边界都是模糊的。同时,对于物种多样性,也部分受到研究手段和认识水平的限制,对于其中的微生物多样性测定与确定比较困难,所以物种多样性目前主要着重于植物与动物多样性的测定,特别是其中的裸子植物、被子植物和脊椎动物。因此,一般来讲,目前森林生物多样性资产的核算主要是以物种多样性中的植物与动物价值的核算为代表,暂不考虑基因及生态系统多样性价值的核算。

三、森林生态效益的会计确认

(一)森林生态效益的概念及特征森林生态效益作为一种间接效益,就是指在一定的会计期间内森林生态资产所释放出来的效用。其具有几个重要特征:(1)外在经济性。外在经济性在林业中是最普遍的现象。当森林生物多样性发挥涵养水源、保育土壤、固碳制氧和保护物种及基因多样性等多种生态效益的时候,这种生态效益却被非林业经营部门乃至全社会无偿地享用,而不必为此付出相应的费用。(2)非减性。森林生物多样性直接效益的发挥,意味着森林生物资产的减少。而森林生态效益的实现,并不意味着一定要减少森林生态资产。(3)模糊性。森林生物多样性的直接效益随着木材、蘑菇、动物毛皮等的出售而实现,并可用货币直接计量。但森林生态效益没有物质载体,无法对其效益进行准确的计量,只能通过估计来反映。因此,森林生态效益的确定具有模糊性。

(二)森林生态效益的会计确认长期以来我国传统林业会计中核算的收益部分只是对市场上可以进行交换的货币收益进行确认,对林业生产经营活动所引起的生态效益外在性不予确认,使得大量的森林生态效益价值游离于会计循环之外,严重阻碍了森林生物多样性资源可持续效益的发挥,危及了林业自身的生存和发展。因此,作为林业经济经营组织必须考虑林业生产经营活动对外部产生的影响,会计上应反映这一巨大的森林生态效益,将森林生态效益外在经济性作为收入要素纳入核算体系(温作民,2003),从而进一步转化为林业经营组织的环境效益,真实地评价其业绩。根据财务会计的收入定义,收入是一种经济利益的总流入。显然,森林生态效益外在性部分并没有形成经济利益的流入。因此,传统财务会计确认收入的流入和流出概念不能满足将森林生态效益完整地纳入会计核算体系的要求。要将森林生态效益作为收入要素纳入会计系统,其确认可以根据其标准进行:(1)符合定义。符合森林生态效益定义,森林生态效益作为一种间接效益,是指在一定的会计期间内森林生态资产所释放出来的效用。(2)可计量性。据有关部门测算,森林生态效益是其经济效益的13倍。国外特别是发达国家对森林生态效益每年都要进行准确的核算。(3)相关性。森林生态效益会计核算提供了关于森林生物多样性非木材价值的更多的信息,这些信息将有助于投资者和决策者对森林生态功能重要性留下深刻的印象,特别是可以为林业主管部门或财政部门进行相关决策或制定相关的会计制度与准则提供依据,适应新时期我国林业跨越式发展的需要。(4)可靠性。模糊性虽然增加了森林生态效益计量的难度,但是只要是估计的合理,仍然具有可靠性。因此,凡是符合森林生态效益的定义,能够用货币计量,并且具有相关性和可靠性的森林生态资产所释放的效用,都可确认为森林生态效益。

四、森林生物多样性价值的会计计量

(一)森林生物多样性价值的计量尺度计量包括货币计量与非货币计量。就货币计量而言,其计量单位笼统地讲就是货币,由于货币能把经济业务全面、综合地反映出来,所以货币成为会计统一的计量尺度。森林生物多样性价值的计量应同时采用货币计量和非货币计量两种形式。这主要是由森林生物多样资产的特点和森林生态效益的特点决定的。森林生物多样性资产的两重性、价值的多无性、产品的公共性和市场的无形性以及森林生态效益的外在经济性、模糊性等特征,一方面反映了对其价值计量过程的不确定性和复杂性;另一方面,即使它们的价值通过一定的方法得以计量,但在其计量结果的公众认可度上目前仍存有争议。因此,对森林生物多样性价值的计量完全以货币作为统一的计量尺度目前仍存在着较大的困难。为了满足提供森林生物多样性方面的会计信息,使其具有较强的可理解性,应当尽可能多地考虑运用非货币计量尺度。在非货币计量形式中,可同时使用包括实物计量、劳动计量、混合计量等多种形式。运用货币计量形成一些财务指标,运用非货币计量则会形成实物指标、劳动指标、技术指标、技术经济指标和文字说明等,从而提供信息使用者决策有用的会计信息。

(二)森林生物多样性价值的计量属性以历史成本为基础计量是一项广为流行的会计惯例。对于一般实体资产来讲,在没有通货膨胀或通货膨胀较小的情况下,其历史成本与其价值的差异是较小的。然而,森林生物多样性资产是一项特殊资产,以历史成本计价却是森林生物多样性一个致命弱点,这主要是由于森林生物多样性资产大部分是由自然力作用形成的。少部分是由自然力和人力作用形成的。因此,它们往往没有或只有较低的历史成本。另外,它们又是有生命力或活动力的,其价值随着时间的变化而不断在变化,只有在交易的那一刻才能暂时相对固定其价值。因此,如果仅按目前的历史成本会计模式来计量,它们的价值计量会偏低,违背了会计信息相关性的原则,不能达到为决策者提供有用信息的目的。因此,在可持续发展理念下,森林生物多样性价值的计量属性,不应局限于传统的单一历史成本计量,而应包括面向市场、未来、风险和不确定性的公允价值在内的多种计量模式。公允价值是一种复合的会计计量属性,从狭义上看,其表现形式有:现行市价、现行成本、可变现净值和以公允价值为计量目的的未来现金流量的现值。历史成本固然可以提供可靠的会计信息,但有时为了管理或决策上的需要,要求会计可以提供以公允价值反映的更为相关的会计信息。另外,象森林生态资产一类的历史成本原本就没有,用公允价值反而可以更可靠地反映它们的真实价值。在这些情况下,用公允价值代替历史成本对森林生物多样性资产进行计量也是可行的。当然,用公允价值计量所带来的一个负面影响是公允价值的确定避免不了主观因素的影响,这对会计信息的可靠性的影响不容忽视,因此怎样提高和增强公允价值的可靠性是一项需要进一步研究的课题。从目前我国会计现实来看,公允价值的运用条件尚不具备(张心灵等,2004),森林生物多样性价值的会计计量属性可以选择以历史成本计量为主,辅之以公允价值的计量模式。具体计量时,应分别不同资产及不同阶段加以考虑。森林生物资产的初始计量应按历史成本进行计量;森林生态资产的初始确认应按公允价值计量;森林生物资产及森林生态资产报表日计量应采用公允价值计量。公允价值可以通过如实际市场价法、费用支出法、旅行费用法、替代花费法、机会成本法或条件价值法等,对森林生物多样性资产进行评估取得。从发展的角度看,公允价值计量模式极有可能成为21世纪的主流(黄世忠,1997),那么森林生物多样性资产将来应主要选择公允价值的计量模式,即采用“公允价值+历史成本”模式。

[参考文献]

[1]国家环保局:《中国生物多样性国情研究报告》,中国环境科学出版社1998年版。

[2]国际会计准则委员会:《国际会计准则》,中国财政经济出版社2003年版。

[3]黄世忠:《公允价值会计:面向21世纪的计量模式》,《会计研究》1997年第12期。

[4]温作民:《环境外在性的会计核算》,《财务与会计》2003年第11期。

[5]于富生、黎来芳:《论会计信息的相关性和可靠性》,《上海会计》2000年第8期。

[6]岳上植:《森林资产的特殊性及其确认与计量研究》,《会计研究》2002年第11期。

篇10

[关键词]生物多样性;环境影响评价;有效性评估

中图分类号:X176 文献标识码:A 文章编号:1009-914X(2015)11-0275-01

随着我国社会经济的不断发展,人们对生态环境的保护也越来越重视。而生物多样性保护作为生态环境优化建设中重要的组成部分,在当前我国城市化建设中,生物多样性也受到了一定的程度的破坏,因此我们相关部门在生态环境建设的过程中,就应该采用相应的技术手段,来对生物的多样性进行保护,从而对我国环境生态系统起到一个很好的保护作用。另外,伴随着时代的不断进步,而我们在环境影响评价有效性评估的过程中,也建立相关的环境影响评估制度,以确保生物的多样性不会受到破坏,进而促进我国社会经济建设,实现了人与自然的和谐相处。下面我们就对生物多样性保护的环境影响评价有效性评估的相关内容进行介绍。

一、我国生物多样性保护的环境影响评价发展

在当前我国社会经济发展的过程中,对生物多样性保护是很重要的,因此我们相关部门也颁布并实施了相关的规范制度,来对其进行规划,以确保现代化生态环境建设的相关要求。目前,我们在对生物多样性影响评价时,主要是按照我国相关的法律规范,来对其生态环境进行质量,以确保生物的多样性,从而对相关的数据信息进行采集。而且随着社会的不断发展,人们为了使得生物多样性保护和环境影响评价的可靠性得到提升,也将一些新型的管理理念和方法应用到其中,使得生物多样性保护的效果得到进一步的保障。

随着时代的不断进步,人们也建立了相关的生态环境影响评价系统,来对相应的数据信息进行采集,通过将人类生活活动和环境保护有效的融合在一起。不过,从我国环境影响评价的实际情况来看,虽然已经建立了一个比较完善的管理评价体系,但是其评价标准和方法还存在着一定的局限性,这就导致人们在评价系统建设的过程中,评价结构的准确性无法得到很好的保障。因此在我国现代化环境影响评价的过程中,我们也逐渐引进了国外先进的管理体制,来对其进行相应的优化处理,这就使得生物多样性保护达到一个理想的状态,满足现代化生活环境保护的相关要求。

二、生物多样性保护环境影响评价有效性评估结构

1、评估思路

实现其有效性评估的要求就需要具备完善的制度、 评价方法和行政管理能力,其具体表现在对政策要求环境下的执行效果。政策效果就是与环境影响评价有直接关系的生物多样性保护效果。这一政策标准也是保护生物多样性的最终目标。要实现其有效性评估,其思路可以从政策要求到评估内容,然后根据实际情况提出相应的理论原理和方法,结合理论方法对评估范围内的评估主体和评估对象进行科学合理的评价,按照执行标准对案例进行研究和分析,结合环境影响评价的管理标准进行实证研究,最后得出评估结论,并根据要求提出相关的政策性建议。

2、执行状况评估指标体系

评估指标体系要遵循完整性、 规范性、 有效性三个原则,执行状况评估指标体系在评价过程、 评价期限、 生态环境状况调查、 生态现状评价、 影响预测、 生态影响的防护恢复及替代方案以及公众参与中的完整性,对于其评价等级确定、 范围确定、 经济损益分析中要符合规范性,在生物多样性的防护、 恢复及替代方案和公众参与过程中要体现其有效性。这样才能保证执行状况评估指标体系在整体实施过程中发挥其作用效果。

3、信息机制评估指标体系

在对环境影响评价中对信息机制不能缺乏相应的监督和约束,这也为了防止权力滥用。信息使连接决策、 监督与问题责任的核心,对信息的垄断就是对决策权的垄断。因此,应该在公众和政府关系下,将信息公开化,这样能够照顾到各项受影响者的利益诉求,在监督和问责机制的完善上具有高效性。对生物多样性的信息环境影响评价信息管理过程中要保持各项工信息的完整性和有效性。

4资料来源与评估分级

4.1资料来源

环境影响评价报告书评估方法的样本容量非常多,这种大量案例相结合属于综合评估。这一研究在全国生态影响型建设项目中选取一定数量的环境影响评价报告书审批本,评价结构都是甲级。其资料选取的容量较小,主要是针对性的对一些项目进行评估,主要选取对生物多样性影响较大的行业。

4.2分级方法

对指标体系中的标准分别设立不同量度,评估采用赋值打分法,还需要构建有效性的指数计算模型,以便于执行状况和信息公开的量化评估。

5建议

5.1研究将有效性评估分为对执行状况的评估和对管理状况的评估两力一面,分别采用“生态影响型”建设项目环评报告书和行政公开信息为信息源,构建含有“原则层才指标层标准层”的评估指标体系,以赋值法构建有效性指数可对单项指标有效性进行量化评估,结合权重设计力一法的运用亦可得出多指标的综合有效性指数,可同时满足综合评估与单项评估的要求。

5.2涉及生物多样性的环评执行有效性仍须改进。因为目前环评机构执行环评的综合有效性差强人意,一些重要的指标执行状况不佳,难以避免对生物多样性的破坏。建议在建设项目受理阶段信息公布时,对各类项目性质增设“污染型”和“生态影响型”加以区分,所有生态影响型建设目的环评报告书应由环境保护部审批,评价机构的资质全部定为甲级。该类项目的环评工程师(技术负责人)应具有生态学专业背景,相关评价经验丰富。政府部门、评价机构、相关学科的科研院校之问应建立定期的培训或会议交流制度,可从全国范围考虑,建立专家库。沟通行政、科研和技术之问的新进展、新问题,促进环评实践不断改进。

5.2涉及生物多样性的环评报告书管理信息机制缺项。信息程序缺少2个信息公布阶段,分别是报告书草稿公布、项目运营后跟踪监测与评估报告公布,现有的各阶段信息公开内容达不到应有的要求,呈现出时滞性,综合决策与审批透明化体现得不足。建议进一步细化信息公开的阶段、内容,延长信息公布期。

三、结语

总而言之,在现代化人类社会发展的过程中,生物多样性保护有着十分重要的意义,这不仅为有利于生态环境的优化建设,还满足了人们生活和生产的相关要求。而我们在对生物多样性进行保护的过程中,我们也要注重环境影响评价的有效性,也将许多先进的科学技术和管理方法应用到其中,这就很好的满足了现代化生态环境建设的相关要求,从而对相关的数据信息进行采集。

参考文献

[1] 张礼兵,金菊良,吴贻名,丁晶. 确定水资源工程环境影响评价指标权重的方法[J]. 农业系统科学与综合研究. 2002(03)

篇11

关键词:宜宾市;生物多样性;保护规划

中图分类号:TU984文献标识码: A

城市是人类最主要的生活空间,亦是人类彻底改造自然的一种人居环境。在城市生态规划中一条重要的原则是乡土及生物多样性原则(Native diversity),它强调城市绿地系统是生物多样性保护的最后堡垒之一,城市绿地系统的保护与建设已经引起社会的日益关注,因为它是城市生态系统的还原组织,在城市生态规划中起着重要的作用。城市绿地作为生物的栖息之地,其结构与动态都与生物多样性保护密切相关。

本文主要的研究对象是生物(以植物为重点)多样性保护规划,研究范围是市域――宜宾市行政辖区范围内的两区八县,全境面积13298平方公里;中心城区――宜宾市中心城区现状城市建设用地主要分布在翠屏区、南溪区和宜宾县,现状中心城区建设用地面积1268平方公里。通过对宜宾市生物多样性的调查,了解其资源状况、生物多样性保护的优缺点,提出生物多样性保护规划原则和目标,探讨不同空间层面的生物多样性保护规划的主要内容和规划布局。

1 宜宾市自然概况和生物(以植物为重点)多样性总体现状分析

1.1 宜宾市自然概况

宜宾市位于四川盆地南缘,地处金沙江、岷江和长江的三江交汇处,属于四川、云南、贵州三省结合部,被誉为“万里长江第一城”。市域东西最大横距153.2千米,南北最大纵距150.4千米,总面积约13283平方公里,素有“川南形胜”的美誉。地貌以中低山地和丘陵为主体,整体地貌呈西南高、东北低的态势。属中亚热带湿润季风气候区,低丘河谷地区兼有南亚热带气候特征,立体气候明显。

1.2 宜宾市生物(以植物为重点)多样性总体现状

1.2.1 物种多样性现状

宜宾市植物物种较丰富,是“植物王国”、“香料之都”、“药物宝库”、“茶叶世界”、“天然竹海”。全市拥有乔灌木86科205属435种,竹类13属59种,属国家或省级保护的树种有22种,其中有6种国家一级保护野生植物:银杏、伯乐树、珙桐、光叶珙桐、红豆杉、苏铁;12种国家二级保护野生植物:金毛狗、厚朴、水青树、红椿、香果树、桫椤、梓叶槭、油樟、润楠、楠木、红豆树、任豆,4种国家三级保护野生植物:川桂皮、化香树、鹅耳枥、罗汉竹。全市现保存各类名木古树1065株。

1.2.2 遗传多样性现状

宜宾具有极为丰富的生物资源,因此其遗传多样性也非常丰富。宜宾市目前的遗传多样性仅仅还只依赖于物种的多样性,并未建立细胞库、基因库等保护遗传信息的相关机构。

1.2.3 生态系统多样性现状

由于多样化的地貌和气候类型,为生态系统的多样化创造了条件,全市境内主要有森林、湿地、农田以及城市等多种生态系统类型,包括各种低山常绿针叶林、阔叶林、竹林植被群落,亚热带阔叶林、灌丛、草丛植被群落,亚热带水果植被群落,亚热带竹林植被群落等。

1.2.4 景观多样性现状

由于宜宾独特的自然环境和地理气候条件决定了其具有丰富的自然景观,景观多样性表现出丰富的层次。此外,宜宾市城市绿地涵盖了生态绿地、公园绿地、道路绿地、附属绿地、防护绿地、生产绿地等多种绿地类型,使得城市绿地的景观类型呈现出丰富多样的特点。

1.3宜宾市生物多样性保护存在的问题

根据对宜宾市生物多样性总体现状的分析研究,总结出其生物多样性保护存在的问题主要有以下6点:

(1)绿化植物种类单一,绿地结构简单;

(2)景观绿地的破碎化和片段化;

(3)自然生态系统弱,人工生态系统占主体;

(4)城区绿地组成结构不完善,空间布局不均匀;

(5)生态环境恶化,限制生物多样性发展;

(6)乡土植物保护的公众意识较弱。

2 生物多样性保护规划原则

2.1 科学分区原则

根据区域范围高程,坡度,坡向,植被等各项因素的影响,分析区域范围敏感性,并依据敏感性的高低进行敏感性分区,划分生物多样性保护区域。

2.2 保护优先原则

根据规划区生物多样性保护的特点和物种濒危程度,优先保护对维护整体生态平衡有关键作用的物种、珍稀濒危物种、古树名木及面临严重破坏的生态系统和原始生境,最大限度满足生物多样性保护的要求。

2.3 地域性原则

规划要根据规划区实际情况,保护对象的分布状况,保护和构建具有地域性特征的生态系统,充分挖掘开发利用好乡土植物,反映地域生态特征。

2.4 景观生态原则

以景观生态学理论为指导,创造差异化生境明显的缩影式景观,增加生物共存和密集程度。建立生物多样性保护的网络系统,充分发挥生物多样性的生态和服务功能。

2.5 分类保护原则

对生物资源的保护主要采取就地保护与迁地保护两种,就地保护为主,迁地保护为辅;就地保护的措施是建立自然保护区、风景名胜区和文化遗址等,而迁地保护则是利用少量的生产绿地,如苗圃、花圃和城市公园等场所。两者做到统筹兼顾,并与生境的保护相结合。

3规划目标

2.3.1 近期目标

采用建立宜宾市植物园、花木基地和珍稀植物迁地保护中心等方法,收集和保护乡土园林植物种群,强化乡土植物的引种、栽培、驯化与珍稀植物的保护管理工作。园林植物从400种增加到600种,其中乡土树种占到50%以上,突出地方植物群落的景观特色,使景观结构更加合理并促进鸟类等野生动物在城市绿地等植物群落中繁衍、生息,初步建立起乡土植物收集、保护和繁育的研究体系,为城市园林绿化提供较强的技术支撑。

2.3.2 中长期目标

进一步丰富城市绿地的生态类型及其植物种类,有意识地增加鸟类的栖息地、动植物迁地保护数量和种群;同时积极开展科普宣传活动、建立长效管理机制,强化对外来物种的管理,全面提高宜宾市生物多样性保护工作水平。园林植物种类力争达到700种,其中乡土树种占到60%以上。

2.3.3 远景目标

继续强化城市生物多样性规划的实施,达到城市绿地生态类型齐全、生物多样性结构合理的目的,使城市园林绿化植物种类达1000种,其中乡土树种占70%以上,建立起地方特色显著、城乡绿地系统相互融合,生物多样性特征明显的山水园林城市。

3 不同空间层面的生物多样性保护规划

4.1 生态敏感性分析

生态敏感性是指生态系统对人类活动干扰和自然环境变化的反映程度,说明发生区域生态环境问题的难易程度和概率大小。敏感性高的区域,生态系统容易受损,应该是生态环境保护和恢复建设的重点,也是人为活动受限或者禁止地区 。

以地理信息系统(GIS)为主要支撑手段,采用具有强大空间数据处理分析功能的GIS软件和遥感图像处理软件ERDAS为平台对宜宾市市域和中心城区范围进行生态敏感性分析,并且运用景观生态学原理和城市空间发展格局理论,以此作为生物多样性保护规划的科学依据。

4.1.1 市域生态敏感性分区

宜宾市市域生态敏感性分为四个等级。市域南部地形较复杂,植被完整度高,生态敏感性高,自然保护区和水源保护区以及森林公园、风景名胜区也是生态敏感度较高的区。由南向北为山地,丘陵,平原;生态敏感性也呈南北向递减分布。在城市建设区范围生态敏感性最低。基于空间分析得出市域生态敏感性分析图,将宜宾市敏感性分为四大区即高敏感区、敏感区、较敏感区和低敏感区。

高敏感区――生态功能保护与禁止开发区,包括西南部的自然保护区,森林公园,风景名胜区以及水源保护区。该区生态最敏感。环境最脆弱的区域,其自然条件较好,具有丰富的动植物种类,是宜宾市重要的就是保护区域及生态屏障。

敏感区――生态功能保护与限制开发区。主要以林业用地、农业用地和牧业用地为主,为过渡带,此地区自然条件较复杂,植被长势较好,是生物多样性的连接纽带。

较敏感――生态功能协调区,主要为农业用地和牧业用地。该地区地形较简单,植被受到一定程度的人为干扰与破坏。动植物物种多样性较低。

低敏感区――生态功能协调区,引导建设区。主要为城乡建设用地,植被受人为干扰破坏较严重。是生态敏感性低的区域。该区主要进行迁地保护与生态修护。

4.1.2 中心城区生态敏感性分区

宜宾市中心城区生态敏感性也为四个等级。基于空间分析得出中心城区生态敏感性分析图,将城区生态敏感性分成四大区,即高敏感、敏感区、较敏感区和低敏感区。

高敏感区――生态培育、生态建设的首选地。包括城区内主要的自然山体、水源保护区。自然条件较好,生态敏感性较高,具有丰富的动植物种类,是宜宾市城区范围内主要的生态屏障。

敏感区――该区植被受到一定程度的人为干扰,但该区在城区生物多样性维护上起着联结纽带的作用。该区主要以林业用地为主,规划时应该提高绿化覆盖率,增加生物栖息的场所。

较敏感区――该区以农业用地为主,生态敏感性较低,自然条件较差,受人为影响较大,动植物各类和生物多样性较低,对该地主要进行迁地保护和生态修护。

低敏感区――主要为城市建设用地,生态敏感性低,受人为干扰和破坏极大。对该地部分区域主要进行生态修护。

4.2 市域生物多样性分区保护规划

4.2.1 山地生物多样性保护区

以生态高敏感区为主,包括宜宾市西部和西南部的大部分地区,如屏山县、珙县、高县、筠连县和兴文县等地。该区域多属中山地貌,目前自然环境的整体状况保存较好,因而本次规划将该区作为宜宾市生物多样性的就地保育区。此类区域生物多样保护的要求是维持其原有的生态过程和植物演替过程,除特殊情况(如出现森林火灾、大规模病虫害等)外,一般应尽量减少人工干预。具体工作的方法,可采用按生态承受能力设立自然保护区、风景名胜区或森林公园的方法,并按国家相关法律法规的要求进行保护和管理,控制外来物种的进入,以达到保护生态、维持生物多样性水平与特征和发展自然旅游的双重目的。

4.2.2 丘陵生物多样性培育区

以生态敏感区为主,主要包括宜宾市东北部和东部的整个市域低山和丘陵地带,如南溪区、江安县等地。就整个市域的角度看,该区域气候温和,热量充足,雨量充沛,无霜期长,适合植物生长且有一定的植被丰富度(如越溪河省级风景名胜区、越溪森林公园、云台山森林公园和青峰寺森林公园等地),但由于长期人类开发建设的影响,该区域自然生态状况破坏较大,宜将该区作为生物多样性的抚育区。此类区域生物多样性的保护要求,一是保护目前生长状态较好的天然林,采取封山育林、限制旅游人数、控制建设用地选址与规模等手段,力争现有天然林质量不再降低、数量稳中有升;二是对目前质量较差的林地加强抚育,同时大力开展植树造林活动,按照周边自然山林的植被构成状况补充毁损的林木,提高生物多样性水平。

4.2.3 平坝及城镇生物多样性恢复区

以生态低敏感区为主,主要包括宜宾市域城镇体系涉及的各级城镇规划区,尤其以宜宾中心城市和区域二级城镇以上的城镇建设区为主。从分布上看,此类区域穿插在市域山地和丘陵之中,呈散点分布状态,并与周边自然环境有较多交叉.相对于整个市域,此类区段的生物多样性一般较为贫乏,物种相对比较单一,宜作为生物多样性的恢复区。此类区段的生物多样性保护要求,除全力保护城镇周边残留的少数森林斑块和特征性绿地外,主要是控制区域存在的农业面源污染,杜绝高污染的工业门类布局,以便为该区域的植被恢复和生物多样性水平的逐步提升创造条件;在城镇建设的过程中积极采用乡土树种、改变城镇绿化单纯追求园林绿化色彩美和形式美的现状,尽可能在城镇周边山系、城镇内的公园绿地、防护绿地等处模仿自然,组织较多植物组成的、乔灌草搭配的生态群落,使城镇内部的生物多样性水平逐渐得到提高。

4.3 中心城区生物多样性分区保护规划

4.3.1点

(1)区域主体、自然环境特点与多样性状况

点――面积和范围都比较小,绿化形式较为简单,树种和生物多样性不丰富。主要以城市中街头、广场、道路、防护绿地等范围面积较小的绿化单元为主体。

(2)保护措施

①尽量增加点状绿化的数量,使整个城市绿量增加;

②选择抗性较强,对有害气体和物质具有较强吸收能力的树种,增加城市生态效益,从根本服务于整个环境改变;

③尽量模仿自然的生境,采用自然的植物群落,提倡乔灌草合理的搭配。

4.3.2线

(1)区域主体、自然环境特点与多样性状况

以线状或带状形式存在,在很大程度上直接影响块状绿化间的连通性,影响块间物种、营养物质和能量的交流。线状绿化给物种的空间扩散提供一个连续的网络系统,可以增强体系的连接性。在本次规划中,该部分主要由河流廊道、主要道路绿化组成,并且绿色廊道的宽度控制在一定范围之内(表1)。由于宜宾市水系分布范围广,其作为主要“线”状系统,河流滩谷更是部分生物生存的必要环境,因此对河流廊道的保护和规划尤其重要。

表1 绿色廊道宽度控制范围

名称 宽度 作用

河岸植被带 ≥30米 降低温度,增加河流中生物食物的供应,控制水土流失,有效过滤污染物。

道路绿化带 ≥60米 满足动植物迁移、繁衍和传播以及生物多样性保护。

环城区防护林带 600-1200米 减弱城市对自然环境的影响,创造自然化、物种丰富的景观结构。

高速公路两侧防护林带 50-100米 给动植物物种交换建立通道,满足动植物迁移、繁衍和传播,降低斑块的破碎度。

国道、省道、快速路两侧防护林带 20-50米 同上

铁路两侧防护林带 20-50米 同上

区域水源保护生态敏感区 水系及沿岸150米范围 减少水土流失,保证水源质量以及城市用水安全。

(2)保护措施

①沿河流廊道增加滨河公园,线状绿地,增大河流廊道的宽度,重视对水生生物的培育和应用,不仅从观赏性更从生态学的角度出发,模仿自然生境,提倡乡土植物的运用和乔灌草多层次合理配置,尽可能少用纯林、草坪,增加园林植物品种。

②对于道路绿化,应当按道路,所处位置,合理规划树种,或实施一街一树的道路绿化建设方法。对有隔离带的道路,配置时除了满足行车安全外,应当实施多层次绿化,增加道路绿量,对整个中心城区的保护起到积极的协调作用。

4.3.3块

(1)区域主体、自然环境特点与多样性状况

它的类型、形状、面积、数量、组合、动态等因素在一定程度上对生物多样性的保护产生影响,其组合与数量影响着其景观功能的发挥,是城市的不可或缺的生态屏障,在宜宾城市生态环境保护和社会经济可持续发展中,具有重要战略地位,最终形成遍布城区的“绿岛”。

该范围块状绿化主要包括几个类别:第一,城市公园类:市级公园和区级公园。第二,风景名胜区、自然保护区和森林公园。第三,主要为周边自然环境的原生态程度高,人为破坏活动较少,保留有较多原始生境栖息地的生态绿地区域,是宜宾城市水源涵养、生物多样性就地保护、区域生态平衡的关键区域,是宜宾城市的不可或缺的生态屏障,在宜宾城市生态环境保护和社会经济可持续发展中,具有重要战略地位。

(2)保护措施

①生境与生物多样性恢复重建

在公园建设规划中,重视对自然生境的恢复;在生境的保护基础上,对现有的次生灌丛开展森林恢复重建,增加植物多样性;对低效的单一的人工林进行疏伐,降低乔木层密度,补植乡土阔叶大苗,促进复杂的生态系统与丰富的物种生存环境的逐步形成;沿河流湖泊水源涵养林等生态公益林与村落生态环境的建设,以提高区域植被水源水土保持能力,恢复植被。在满足公园休闲娱乐等社会功能的同时,尽可能为生物多样性的保护提供较为完整的生态环境。

②完善现有自然保护区、森林公园、风景名胜区,强化管理

一些保护区虽然开展了有效的保护,但由于生境相对孤立,物种交流不畅,需要将本区域进行更为细致的总体规划,建立增加保护景观斑块,通过廊道规划与建设,将各类保护区有效联结。完善保护区不健全的管理机构,增强执法力度。

保护现有生态系统和特殊生境,如山地生态系统等典型生态系统,湿地、河流、湖泊生态系统等;保护自然保护区以外的其他生境和物种,如择伐森林、次生灌丛、放牧场、农田等广大地区的生物多样性需要结合天然林保护工程与退耕还林工程,强化管理。

4.3.4面

(1)区域主体、自然环境特点与多样性状况

主要是在规划中占面积最大,链接度最强,对景观控制作用最强的景观要素,作为背景,控制和影响着生境斑块之间的物种迁移。本次规划中主要由农田、农林模式、林牧业用地组成。

(2)保护措施

主要以保护农田生态系统和农业景观为主,大力营造各类水土保持林、速生林,调整优化树种结构,完善提高农田林网,全面提高生态系统和农田景观的多样性建设。强化对农田生态系统的管理,防治源污染。

结语

通过本次宜宾市绿地系统生物多样性保护规划的编制,针对其生物多样性保护存在的6点问题,提出了解决的方法。首先,建立点、线、块、面相结合的城市生物多样性网络,在城市公园绿地、生产绿地、防护绿地、附属绿地以及河流等的建设过程中,配置多层次、混交复层结构和生物多样性丰富的植物群落,注重乔、灌、草以及层间植物的多层次搭配,组成近似天然的植物群落。其次,在空间布局上,以中心城区与周边8个县为核心逐渐向外扩展,形成迁地保护向就地保护过渡的分布格局;市域内人为干扰较小的山地及各类保护区等区域作为以林地及自然保护区、风景名胜区为主的生境及乡土生物多样性就地保育中心,而中心城区与周边8个县则以园林绿地多样性及乡土生物多样性迁地保育为重点。最后,严格执行绿地系统规划,控制城市绿线,确保生物多样性规划落到实处,以广泛开展生物多样性保护的科普活动、政策宣传和强化法律的方式呼应生态园林城市的发展目标,提高广大人民群众和各级领导干部的生物多样性保护意识,建立起宜宾市生物多样性的保护规划的主要内容。

在今后的城市生态建设中,应针对现状存在的某些不足,运用新的理论和方法加以解决。唯有如此,城市生物多样性特色才能获得更好地运用,城市化进程才能更好地迈入可持续发展的轨道。

参考文献

[1]俞孔坚. 从世界园林专业发展的三个阶段看中国园林专业所面临的挑战和机遇[J] . 中国园林,1998 ,14 (1) :18 - 21.

[2]McNeely J A, Miller K R et al. Conserving the world’s biological diversity. Gland, Switzerland, 1990.

篇12

论文关键词 生.物多样性 环境立法 改革完善

随着近年来我国环境的变化,生物多样性保护工作面对的环境状况出现了诸多的问题和挑战。因此,我们要认清楚自然生态环境对生物多样性保护的重要意义,推动环境立法的有序进行,做好生态多样性保护工作。

一、环境与生物多样性

(一)生物多样性内涵

生物多样性定义众多,内容广泛,包括了动植物资源多样性,物种多样性和生态系统多样性等多个方面。它是地球生物资源丰富性的具体体现,反映了生物之间和生物与环境之间的复杂关系。生物多样性也是生物之间及其与环境形成的生态复合体,以及相关的各种生态过程的综合构成。其中的物种多样性是指自然环境中存在的生物形式多样;生态系统多样性是指生物圈内生物群落和生态过程的多样性;遗传基因多样性是指生命体内决定性状的遗传因子及其组合的多样性 。

(二)保护生物多样性的意义

生物多样性为经济社会发展和居民生活提供了众多的生产和生活原料,维持生物多样性能够保证食品物种的丰富和材料来源的丰富。同时,生物多样性还能保持土壤肥力,保证水质以及调节气候,从而保障和改善人类生存的自然环境。生物多样性的维持还有益于保持地球物种的丰富多样,保护地球生命物种的基因库。防止濒危物种带来的生物基因库匮乏。

二、环境恶化对生物多样性的影响

(一)生态环境退化,物种多样性锐减

由于长期的经济发展 ,不合理过度开发利用引起我国生态环境急剧恶化。森林面积减少,草场退化、沙化,湖泊湿地减少,河流干涸以及水体污染等多种原因造成生态环境的整体恶化。同时加上滥捕、滥猎,导致我国动植物数量急剧减少,濒危物种逐渐增多。

(二)遗传基因多样性受环境影响而降低

大量的动植物资源丧失,必然会导致遗传基因的减少,从而导致遗传基因多样性降低。长期的保护不利和过度开发,我国众多地区的动植物资源明显减少。以野生水稻为例:早期调查中的野生稻分布点已经由16个减少到现在的3个,分布面积也大幅缩小。

(三)环境恶化造成生态系统多样性和景观多样性丧失

环境恶化对生态系统的破坏尤为明显。大量的人类活动改变了生存环境,草场变耕地,山林成农田水泊,导致原来的生态系统发生重大变化。生态系统的剧烈变化也会导致系统内的生物构成和生存方式发生变化。此外,许多自然生态系统被改造成人工生态系统,造成了生态系统单一,同时在改造过程中也导致生物物种多样性大量丧失 。

总之,由于对自然资源的过度开发和索取,我国现存的生态环境日益恶化,生物多样性迅速丧失。生态系统的破坏和生物物种的减少,最终会威胁人类自身的健康和社会发展。由此,我们需要加强环境保护,为生态多样性的丰富创造良好的外部环境。

三、环境立法的意义

(一)环境立法是保障生态环境安全的需要

生态环境的迅速恶化使得生态安全问题日益突出,而生物物种安全涉及的物种多样性、遗传多样性和生态系统多样性的保护工作与环境保护关系紧密。这就使得做好生态环境的保护工作成为实现其他目标的基础 。

(二)环境立法是可持续发展的需要

生态环境的改善和生物多样性的保持,是社会长远发展的必需要素。经济社会的迅速发展和生产需求,对环境的破坏增加,对生物多样性的威胁加剧,导致濒危物种灭绝的速度加快。长期偏重于经济发展,忽视自然环境的保护和生物资源的合理利用,使得我国的生物多样性严重受损,无法满足经济社会的长远发展要求。只有通过相关的环境立法,保持良好的生存环境,从而为众多的生物存在创造条件,并以此为基础,科学合理地利用自然生物资源,保障人类社会健康持续发展。

(三)环境立法是健全我国法律保护体系的需要

加强环境立法,完善生物多样性保护工作的法律依据,使得我国的生物多样性保护工作有法可依。建立一个健全合理的法律保护体系,能够从制度层面和法律层面为生物多样性保护工作的开展创造良好的宏观环境 ,同时使具体的保护工作能够有明确的规范和指导。填补了法律空白,也提高了保护工作的有效性。

四、加强环境立法的基本原则

(一)环境立法要以科学发展观为指导

科学发展观是经济社会发展的长期战略思想。我国社会发展的要求和自然资源的消耗需要有长远的规划和发展预期,需要有符合发展规律的发展思想科学合理地进行指导。

(二)环境立法坚持物种平等原则

任何物种在自然生态环境中欧冠都有其独特地位和功能,是不可或缺的组成要素。无论物种的生命形式和功能大小,都应该得到尊重。人类与其他物种在生态环境中应该是互相平等相互联系依赖的关系,我们要尊重其他物种存在的合理性和平等性,不能自居高等,要通过科学细致的环境立法,保护物种共同生存的自然生态环境,促进物种间的平等协调发展。

(三)环境立法要结合地区实际状况

自然生态环境是个复杂的系统,在不同的地理条件下呈现出多样的地域特点,衍生的生物链、生物物种也各不相同。例如我国高原地区存在其他地形下没有的独特动植物资源,沙漠环境中的生物物种和生态链也与平原地区差别很大 。因此,要针对各地区的独特自然环境和生态系统,研究本地区生物多样性保护中存在的突出问题,因地制宜地制定切实可行的环境保护法律法规。

(四)环境立法要充分考虑公众的可参与性

人类活动对自然环境的影响作用很大,从而显著改变了环境中的生态系统和生物多样性。因此,做好生物多样性保护工作主要就是控制好人类活动的不良影响以避免产生生态破坏。在制定环境法规时,要综合考虑当地居民的生活生产特性,以明确地法规制度控制当前活动对生态环境不良影响。同时,从方便居民活动角度出发制定符合地区居民发展特点的环境保护法律,从而引导居民科学合理地开展日常活动达到与自然生态环境的和谐共存、共同发展。如果制定的法律与当地的实际状况不符,保护工作的可操作性和公众的参与积极性都会降低,限制自然环境和生物多样性保护工作的实际效果。

(五)环境立法要注意吸收借鉴先进成果

相较于发达国家的发展水平,我国的环境立法工作比较滞后,存在很多不足。对于国际上已经取得的环境立法工作成果,我们应该积极引进运用以完善自身的立法工作;对于暴露出的一些问题和教训也要相应地吸收借鉴,防止类似问题的产生。此外,引进相关人才,促进经验技术交流也是加强工作中切实可行的方法。但是在吸收借鉴当中,我们要充分结合我国的国情和现实条件,不能盲目照搬,要重视理解消化 。

五、环境立法中的问题和改进措施

(一)环境立法存在的相关问题

1.环境立法目的不明确难以适应发展需要。现行的环境立法工作比较注重对于对自然环境和自然资源的保护,忽视了生态环境中的生物多样性保护工作。立法目的不明确造成了后续的环境法律制定工作重心偏离,制定的法律法规不能满足实际工作需要从而影响法律法规的执行实施效果,导致生物多样性保护工作开展不力。以往法律片面注重动植物资源的保护和开发,而不是以改善自然生态环境、保护生态系统和生物多样性为主要目的。这样的认识需要改变,要从宏观上树立系统保护、全面保护的长远保护思想。

2.环境保护法律法规存在漏洞。现行的法律条款制定的时间较长,已经落后于现实发展需要。陈旧的法律规定不符合当前的工作条件和实际状况;部分法律只有大略的规范,缺乏明确可依的具体条文规定,造成具体实施困难。此外,一些地区性的环境保护法规与国家性的法律不协调一致,甚至产生矛盾。这就造成环境保护的具体实施工作难以开展,取得的保护效果不明显。

3.环境立法在多领域存在法律缺位问题。相关的环境保护法律法规主要针对个别的环境问题进行法律规定,没有系统性地对整个生态环境改善和生物多样性保护做出整体协调规划,造成一些重要领域的法律规范不健全、不完善。比如对进来突显的外来物种入侵问题和基因库保护问题都缺少系统合理的法律规定,导致相关工作不到位。

4.法律执行机制不完善。体制不健全和执行不到位等原因使得我国的法律执行效率低下。部分地区和部门存在无法可依、有法不依和执法不严等问题,而且相关检查部门、执法部门和监督部门之间协调管理不善,权责划分不清晰且缺少必要的执法条件,这些问题共同作用导致环境保护法律的执行难以实现,对产生的有关问题找不到责任人或者处罚不当,妨碍了生态保护和生物多样性保护工作。

(二)改进环境立法工作的措施

1.纠正环境立法的目标偏离,完善法律规定 。从环境立法目标认识上,加强对生态系统和生物多样性保护工作的重视,制定全面规范的法律条文切实指导相关工作的实行。对不符合生态系统保护目标的陈旧条文及时修订,使得制定的法律条款能顺应自然生态发展的现实需要。针对实际保护工作中出现的新问题,及时制定相关法律以指导生态保护和生物多样性保护工作,填补法律上的空白。

2.制定明确清晰的法律条款,提高相关法律的可操作性。粗略笼统的法律规定严重影响相关工作的开展,使得环境保护法律执行困难,影响了法律规范纠正作用的实现。规定清晰、权责明确地法律法规,能够提高实际运用中的执行效率和实际效果,更好地促进保护工作顺利进行。

3.健全法律管理体制,加强法律执行落实。科学合理的法律法规需要健全的管理执行机制来落实施行。因此,环境立法工作还要建立健全相关的组织管理机构,协调相关部门的配合执法,使得制定的法律能够有效执行、违法者得到追究惩罚,从而提高环境保护的效果,保护生物多样性。

篇13

2002年召开的《生物多样性公约》第六次缔约方大会上通过的VI/7A号决定,要求各缔约方制定关于把与生物多样性相关问题纳入环境影响评估及战略环境评估立法或进程的准则[1]。2006年召开的《生物多样性公约》第八次缔约方大会上通过了“关于涵盖生物多样性各个方面的影响评估的自愿性准则”的第VIII/28号决定[2]。我国是最早签署《生物多样性公约》的国家之一,政府积极采取措施履行公约规定的义务。2003年9月1日起施行《中华人民共和国环境影响评价法》(以下简称《环评法》),首次提出对规划进行环境影响评价。要求“国务院有关部门、设区的市级以上地方人民政府及其有关部门,对其组织编制的土地利用的有关规划,区域、流域、海域的建设、开发利用规划,应当在规划编制过程中组织进行环境影响评价,编写该规划有关环境影响的篇章或者说明”;“对工业、农业、畜牧业、林业、能源、水利、交通、城市建设、旅游、自然资源开发的有关专项规划,应当在该专项规划草案上报审批前,组织进行环境影响评价,并向审批该专项规划的机关提出环境影响报告书”。这就意味着国家正式把针对规划的战略环境评价放在了重要位置[3]。2009年10月1日起施行的《规划环境影响评价条例》(以下简称《条例》),是在《环评法》的法律框架下,从规范管理的角度出发,对法律不明确之处予以明确,对法律的原则规定予以细化,通过进一步完善规划环评程序,明确实施主体,落实相关方的法律责任、权力和义务。《条例》的出台,表明国家对规划环境影响评价的执法力度将进一步加强[4]。其中直接归属农业部门的有农业、畜牧业专项规划,涉农的有土地、区域、流域、海域等有关规划。2010年9月环保部发文“中国生物多样性保护战略与行动计划(2011—2030年)”,在条目五“生物多样性保护优先领域与行动”中设立优先领域二“将生物多样性保护纳入部门和区域规划,促进持续利用”,要求“开展生物多样性影响评价试点”[5]。我国是生物多样性大国,生物多样性居世界第八位。我国又是世界上人口最多、约85%左右的人口在农村的农业大国,对生物多样性具有很强的依赖性。农业部门制定的农业规划以及其他部门制定的涉农规划,绝大部分是在农区实施的。农区是由原本丰富多样的生物地理就界开发而来,农区边际土地仍然是生物多样性相对富集的区域,农区生物多样性也是国家生物多样性的重要组成部分。开展农业规划环评生物多样性影响评价是农区生物多样性保护与管理的基础,也是环评不可缺少的内容。

2生物多样性影响评价基本内涵与主要内容

2.1基本内涵

生物多样性保护是生态和环境保护的核心内容之一,而环境影响评价是从源头保护生物多样性的重要途径。农业规划环评中生物多样性影响评价的基本内涵就是:农业规划实施对规划区域的遗传多样性、物种多样性、生态系统多样性和景观多样性可能带来的影响进行分析、预测与评估,提出避免、预防或减轻不良影响的对策和措施,建立监测机制并跟踪评价,持续改进达到保护目的。

2.2主要内容

农业规划生物多样性影响评价的主要内容有4方面:

(1)分析预测规划实施可能会影响到实施区域生物多样性的哪些方面。关于生物多样性影响评价的分析尺度,目前比较公认的是遗传多样性、物种多样性、生态系统多样性。随着景观生态学的发展,将景观生物多样性纳入生物多样性保护的层次;

(2)对影响可能造成的后果加以评价包括短期影响、长期影响、直接影响、间接影响、累积影响等,影响是否有利,是否可恢复等。

(3)针对生物多样性各层次的影响,需要采取哪些预防和保护措施;

(4)建立长期监测生物多样性的机制,跟踪和预测生物多样性的变化趋势。

3农业规划环境影响评价中生物多样性影响评价基本程序

根据农业规划环评中生物多样性影响评价的基本内涵,其基本程序包括规划分析、现状调查与分析、影响要素识别、影响预测与评价、预防和保护措施、监测与跟踪评价等。

3.1规划分析

规划分析首先是规划的协调性分析,规划协调性分析可以帮助了解规划政策背景[6],分析规划与相关政策法规的一致性、与产业政策的符合性、与国家及地方有关规划的符合性,同时避免不同部门、不同层次间规划缺少衔接以及冲突[7]。包括外部协调性分析和内部协调性分析。外部协调性主要是分析规划目标的合理性与限制性,内部协调性是分析规划界定的主要内容之间是否存在冲突等。其次是分析规划的有关内容,包括规划的编制背景、规划的目标、规划的对象、规划的具体内容、实施方案、实施范围、实施期限等。第三是分析规划的不确定性[8]。各级政府和部门编制的规划其协调与衔接状况对规划的实施具有不确定性、规划本身的远期不确定性、规划的具体项目的不确定性、污染物排放量的不确定性等。

3.2现状调查与分析

根据生物多样性的层次及保护需要,调查农业规划实施区域生物多样性历史演替过程和现状。重点调查分析以下区域的生物多样性:(1)具有生态学意义的保护目标;(2)具有美学意义的保护目标;(3)具有科学文化意义的保护目标;(4)具有经济价值的保护目标;(5)重要生态功能区和具有社会安全意义的保护目标;(6)生态脆弱区;(7)人类建立的各种具有生态环境保护意义的对象等[9]。

3.3影响识别、预测与评估

生物多样性影响识别是在分析农业规划目标及总体方案的基础上,通过一定方法找出农业规划所确定的某个项目或活动对生物多样性影响的各种变化指标,说明生物多样性影响的性质、程度及可能的影响范围。影响识别主要包括以下3方面:(1)影响主体识别。识别农业规划的目标、指标和总体方案及其执行主体,主要是可能给生物多样性带来影响的农业规划活动等具体的规划实施内容以及这些规划实施内容具体的执行主体。(2)影响受体识别。识别规划区域内主要的生物多样性资源:包括遗传多样性与重要农业种质资源、物种与生境多样性、生态系统多样性,如自然保护区、风景名胜区、湿地、农田、水土流失重点治理区等的组成结构、面积和分布等;景观多样性,包括景观类型多样性、斑块多样性、景观异质性和稳定性等。特别应了解该区域农业生产活动的历史与现状、是否产生过或者现在仍然存在一些严重的生态问题,因为这些生态问题往往与生物多样性直接相关。(3)影响效应识别。识别主体(农业规划)与受体(生物多样性)的相互关系,确定农业规划对生物多样性的显著影响及关键影响因子。对生物多样性影响的强度,关注影响发生的背景。影响强度包括影响范围、影响过程和影响性质(包括有利/不利、可逆/不可逆);影响发生的背景包括产生地点、影响时间以及受影响者的具体情况。在上述影响识别的基础上,结合规划的总体目标及在不同的阶段或期限予以实施的情况,预测规划实施的不同阶段或期限可能造成的生物多样性影响并进行评估。

3.4预防措施与保护方案

由于农业规划实施范围较大,具有宏观性,规划环境影响评价的生物多样性保护也需从大的范围和宏观上进行把握。制定具体的预防措施和保护方案,应依次按照预防措施、最小化措施、减量化措施、修复补救措施、重建措施序列原则进行[9]。物种及其生境(栖息地)是各层次生物多样性表现形式和基础,对于重要物种的保护要以就地保护为主,迁地保护为辅。物种与其生境具有不可分割的联系,保护原生境及其里面的生物资源是保护生物多样性及其资源永存的最符合自然规律的手段,也是“生态系统方法”的基本原理之一。迁地保护措施也很重要,但它是在原生境遭到严重破坏和就地保护已经不可靠的情况下的辅助手段。

3.5监测与跟踪评价

由于生物多样性影响的表现具有滞后性特点,应建立长期监测机制,对生物多样性保护目标动态变化进行跟踪监测,分析生物多样性变化的趋势,预防可能产生不良影响的因素,及时调整保护措施,确保生物多样性保护的有效性。

4农区生物多样性影响评价层次及特点

农业是一种直接利用生物多样性的产业,包括直接利用生物多样性的资源材料以及模拟生态系统的初级生产(植物种植业)和次级生产(动物养殖业)等全部生产过程;而且还包括进一步利用生态系统中的有机物腐解过程使之转化为农业经济作物(食用菌养殖、微生物造肥、生产沼气等)。考虑到农业规划主要是在农区实施,这里的农区不是仅局限于种植业区域的“小农区”,是包括农牧渔业生产活动范围的“大农区”,因此,就农区和农业而言,生物多样性可分为农区遗传多样性、农区物种及生境多样性、农区生态系统多样性、农区景观多样性、农业产业结构多样性几个尺度水平[10-11]。

4.1农区遗传多样性影响评价特点

遗传多样性是生物多样性的基本组成部分,是物种多样性和生态系统多样性的基础。它通常被认为是种内不同群体之间和一个群体内不同个体之间的遗传变异总和。遗传多样性是以物种为载体表现的,可以从形态特征、生理特征、细胞学特征、基因位点及DNA序列等不同方面来体现。农区遗传多样性影响评价应主要关注:

(1)农业活动使得生境破碎、消失引起物种种群缩小、消失导致遗传多样性丧失;

(2)外来物种入侵排挤当地种,使得遗传多样性丧失;

(3)农业新品种发展项目,对遗传多样性产生的影响;

(4)转基因作物可能引起的遗传多样性的变化及丧失[12]。由于受科学研究的限制,在现实中只对少量的物种进行过比较全面的遗传多样性研究,在遗传多样性层次评估生物多样性影响目前还不具有普遍意义。在环评工作中,建议把遗传多样性影响评价的内容与物种多样性、生态多样性影响评价融合在一起描述,更易于操作。

4.2农区物种及生境多样性影响评价特点

在我国几千年的农业栽培和养殖实践过程中,培育了大量食用与经济性能优良的作物、果树、家禽、家畜。我国栽培作物种和亚种有600多个,其中已知约237种为我国自古以来的土生栽培种,位居世界前列,被认为是世界三大农业起源中心之一。其中粮食作物30多种,蔬菜200多种,牧草与饲料作物约400多种。果树约300种,茶品种600多个,桑有15个种,共1000多个品种。家养动物品种和类群包括特种经济动物和家养昆虫在内,品种和类群有2000多个。除了农业经济物种外,在农田、湖泊与河流等湿地生态系统及荒山草坡生态系统中还有大量野生动植物物种和类群。稻田中野生动物主要以两栖类、爬行类动物和某些鸟类为主;重要杂草约有200多种。旱地生态系统中也生长着丰富的农作物伴生物种,如有记录的农田杂草有73科、560多种,对农作物有害的动物与昆虫约1300多种,天敌生物近2000种,其中仅棉田的重要天敌蜘蛛就有21科、89属、205种[11]。这些构成了我国农区物种及生境多样性。在环评实际工作中,对农业规划实施区域内的物种及生境的全部评价是不现实的,也不符合农业规划环评宏观性的特点。在满足农区生物多样性保护要求下,物种及生境多样性影响评价应针对区域关键物种及生境进行重点评价。

(1)保护物种。被国际、国家、地方、部门或保护组织明确列入保护名录的物种。主要评价保护物种分布状态、种群结构及现存数量、保护级别、濒危程度、生境特点、对环境的敏感程度、农业规划实施对保护物种的影响程度、就地保护和迁地保。护实施的可行性等;

(2)地方特有种。其分布范围狭窄、生境条件苛刻,当分布的区域环境改变,有可能造成这些物种灭绝。主要评价特有种的特有性(国际特有、国家特有、地方特有、区域特有)、濒危程度、生境特殊性、受影响程度、就地保护和迁地保护实施的难易程度等;

(3)重要的农业种质资源。是我国农业生产活动的基础,关注其受保护的状态,受影响程度,入库保存情况;

(4)栽培和家养生物的野生近缘种和野生类型。起源于我国的栽培作物不仅种类多,而且具有野生近缘种的也多,它们是农业生物多样性的宝贵遗传资源;家养生物的野生型是潜在进行品种改良的重要遗传资源。这些遗传资源的价值难以估量,在评价中应重点确认这些物种的存在、数量、生境条件、濒危程度、受影响和潜在影响程度、保护措施等;

(5)其他物种,规划实施区域受到较多关注的物种,具有文化及文物特点的物种等。

4.3农区生态系统多样性影响评价特点

我国农区生态系统按其基本类型可以分为6类:农田(水田与旱地)生态系统、种植园(水果、干果、蔬菜、茶叶、桑、药材、花卉和其他特殊经济作物)生态系统、草原与草地生态系统、水产水域生态系统(陆地水域和海洋水域,与湿地生态系统基本类同)、集约化养殖场系统和农区边际土地生态系统[11]。农业规划实施不确定性的特征,在对农区生态系统多样性影响的质(影响性质、影响类型、影响因素)和量(影响程度、时空规律、发生概率)上有更多不确定性。农区生态系统多样性影响评价主要是:

(1)生态系统类型结构和功能完整性;

(2)生态系统的脆弱性和整体变化趋势;

(3)生态系统的服务功能及生态承载力;

(4)农业规划实施可能的影响方式、范围、强度和持续时间;

(5)受影响强度、范围和持续时间,影响的结果是否有利、是否可逆;

(6)生态系统抗干扰的能力、恢复能力和生态系统的功能维系;

(7)预防与保护措施实施的可行性。

4.4农区景观多样性影响评价特点

景观多样性是继遗传多样性、物种多样性、生态系统多样性被提出的生物多样性研究的第四个主要层次。这4个层次之间的关系依次为遗传多样性产生了物种的多样性,物种多样性与生境多样性构成了生态系统的多样性,多样性的生态系统聚合并相互作用又构成了景观的多样性。农区景观范围多指大农业或是整个农业区域,因此对具有战略定位的农业规划进行景观多样性影响评价是非常重要的。农业规划实施对农区景观多样性影响,主要关注(1)对景观类型多样性影响,景观类型的分布面积和空间结构等发生明显变化、影响强度、指标物种濒危程度、变化是否可恢复;(2)对景观斑块多样性影响,镶嵌地块间生境的异质性、连通性是影响生物多样性的重要因素。农区残存的非农作性生境,包括农田边际土地、岛状野生生境、灌木带、林地、水塘、沟渠、荒地和休耕地等受影响的程度,这些生境破碎化程度,影响强度是否可逆;(3)对景观格局多样性影响,地块内物种的异质性和共生性影响物种多样性丰富程度。农业活动方式变化、人为干扰强度、外源性物质流入(农用化学品等)、外源性遗传物质入侵(转基因种植、外来物种入侵等)的影响。

4.5农业产业结构多样性评价特点

农业产业结构多样性用以描述包括农、林、牧、副、渔各业的组成比例与结构变化,它反映着某一区域农业生产的总体状况,这也是农业规划中重要的篇章。应重点分析农业规划实施区域规划实施前后,农、林、牧、副、渔各业的组成比例与结构可能产生的变化,这一变化对当地生物多样性可能产生的影响,分析影响的范围、强度持续时间、是否有利、是否可逆等,重点评估当地生物多样性变化可能带来的经济价值变化。

篇14

关键词:GLOBIO3 模型 完善

中图分类号:X17 文献标识码:A 文章编号:1674-098X(2014)06(a)-0248-04

GLOBIO3 perfect predictive model of biodiversity - questions, suggestions and Prospects

JIANG Xintong

(Environmental Institute, Renmin University of China, Beijing 100872)

Abstract:GLOBIO3 model is one of the frontier achievements in global biodiversity assessment and forecast.Based on the dose-effct relationship,the model predicts the hardly available biodiversity data using the relatively attainable monitoring results of the environmental and social drivers.Though innovative,the model shows clear shortcomings.This paper will firstly introduce the core framework and fundamental methods of GLOBIO3 as a preparation, then focus on the analysis and resolution of the targeted disadvantages of the model.Following this logic,this paper tries to make meaningful improvements to the model and encourage more studies in related fields.

Key word:GLOBIO3 model perfect

1 引言―― GLOBIO3模型简介

1.1 基本思想

GLOBIO3[1]使用与原始环境相比的相对平均物种丰度(MSA)来表征一定环境条件下的生物多样性,这是模型需要预测的因变量。同时,GLOBIO3使用植被覆盖、土地利用程度、生态环境破碎化程度、全球平均气温、大气氮沉降量和基础设施建设量这六个驱动因子作为自变量。模型的基础是因变量与六个自变量间的六个函数关系。在对生物多样性进行预测时,先使用未来情景预测模型对驱动因子做出预测,然后将因子的预测值输入模型,其输出结果就是预测的MSA。

1.2 具体方法

对因变量与自变量的函数关系进行回归时需要使用样本数据,这些样本数据通过Meta分析得到。选取与“生物多样性和环境条件的关系”高度相关的研究,提取其中对生物多样性和环境条件进行描述的数据形成回归建模的素材。

得到自变量和因变量的函数关系后,需要对未来的自变量取值进行预测。模型中六个驱动因子的预测值依赖于对未来经济、社会和环境发展情景的预期。GLOBIO3将经济发展、植被覆盖及气候变化等领域的权威研究结果结合起来,构建驱动因子的预测模型。

将驱动因子的数值分别输入六个函数,得到每个因子影响下,生物多样性的预测值。基于驱动因子间不存在相互作用关系的假设,将六个函数的因变量值相乘,得到MSA综合预测值。

1.3 论题摘要

GLOBIO3模型的思想方法新颖、使用过程简洁。但是这不能掩盖理论分析和实践检验中显示的不足之处。为了完善该模型,该文将对三个主要问题进行分析并以此为基础提出建议。分析的三个不足之处包括:

(1)忽略重要驱动因子导致模型具有遗漏变量偏差;

(2)样本数据的收集质量不高,函数关系缺乏对某些地区和某些因子的代表性;

(3)对未来发展情景的预测结果单一,结论不够稳健;

以下三个部分将对这些问题分别进行分析。

2 忽略影响生物多样性的重要因子

2.1 问题分析

GLOBIO3的基础是六个驱动因子(植被覆盖、土地利用程度、生态环境破碎化程度、全球平均气温、大气氮沉降量和基础设施建设量)与生物多样性(平均物种丰度MSA)的剂量反应关系。其中,土地覆盖变化、土地利用强度、生态环境破碎化程度、气候变化、大气氮沉降因子源于评价全球环境的综合模型(IMAGE;MNP 2006)[3];基础设施建设因子源于GLOBIO2模型。通过参考IMAGE团队、MNP和GLOBIO2的研究成果,GLOBIO3模型比较全面地体现了现有研究中对生物多样性具有显著影响的因子。

但是,通过文献分析找寻驱动因子的方法容易受到文献选择的制约,产生遗漏变量偏差。解决遗漏变量偏差的最佳途径就是通过更加深入的研究将以往未注意到的显著因子纳入模型。对发展问题的关注,使得很多研究注重贫困和生态的关系。已有一些研究发现,贫困地区与生物多样性热点地区高度重合(Brendan Fisher 2007)[7],而且在经济发展水平较低的时期表现得尤其明显。这符合贫困导致生物多样性减少的理论预期。这一现象促使我们在完善GLOBIO3模型时,应当首先纳入被遗漏的“贫困水平”驱动因子以减小预测的偏差。或许“贫困水平”只是诸多遗漏变量中的一个,纳入它并不能使得这个模型足够全面。但是通过纳入“贫困水平”来完善模型却是探索更多遗漏变量的良好开端。

2.2 解决措施

(1)准确选取贫困水平的测度指标

将“贫困水平”纳入GLOBIO3模型的前提条件是找到合适的指标量化贫困水平。根据不同的研究目的,以往研究中使用的贫困测度指标包括生活水平、财产、教育水平、健康状况、营养条件等(Azariadis 2005[4],Bowless 2006[5],Carter MR 2006[6])。由于在GLOBIO3中纳入“贫困水平”因子是从经济和环境的关系入手分析人类的福利水平变化,其测度应当既包括反映经济水平的货币指标,又包括反应环境变化的非货币指标。例如:选取劳动力人均收入直接度量贫困水平(Huib Hengsdijk 2007)[7];或选取人群健康和死亡率指标间接度量贫困水平。

(2)在充分论证的基础上选择函数形式

“贫困水平”具有显著的经济发展阶段性特征,在描述它与生物多样性的关系时,许多学者以环境经济学为基础提出:应当使用库兹涅茨曲线的函数形式(Stern et al. 1996)拟合这种函数关系。这种想法来源于保护生物多样性会提高经济活动的机会成本的基本理论(M.Norton-Griffiths et al.1995)[8],表示早期生物多样性会随着经济增长而降低;而到达一定临界状态后,生物多样性又随经济发展而升高。更多研究在试图应用这一函数形式时发现:该种形式成立的条件是生物多样性保护政策和经济发展政策协调实施,而这种双赢关系通常难以实现(D.Hulme 2001[9], C.B.Barrett 1995[1],M.Wells 1992[10])。所以,在拟合生物多样性与贫困水平的函数关系时依然应当采用简单线性回归模型。

(3)在适合的尺度上使用模型

“贫困水平”的地区异质性(T.Kepe 2004)限制了模型应用的尺度条件。正如对库兹涅茨曲线临界点的计算结果常因所选取的研究地区不同而产生巨大的差异(Panayotou 1993;Cropper and Griffiths 1994[12]),经济变量受制度因素的影响极大,在不同国家和地区对生物多样性的影响差异显著。(Southgate 1990[13], Mendelsohn 1994[14], von Amsberg 1994[15])可以说,“贫困水平”因子作为该模型中对经济水平的代表,对全球尺度生物多样性的影响效果已经很不明确了。因此,纳入“贫困水平”后的GLOBIO3模型应当在较小的空间尺度上使用,比如在某一国家或地区共同体范围内。

3 样本数据的收集缺乏代表性

3.1 问题分析

GLOBIO3模型中驱动因子与生物多样性的因果关系是通过Meta分析从已经发表的文献中收集数据并拟合回归得到的。GLOBIO3团队先从SCI等权威数据库中搜索以“生物多样性与驱动因子的关系”为主题的研究;然后,从这些研究中提取驱动因子和生物多样性的数据;最后,利用这些数据建立驱动因子和生物多样性的对应关系。在实际检测技术受到限制,监测数据缺失严重的情况下,Meta分析方法能够间接帮助研究人员获得数据(G?ran Arnqvist et al.1995)[16],但是其精确度低、数据代表性不足等问题降低了研究的指导意义。下文将着重讨论如何通过建立更完整有效的网络来获取并综合利用数据来拟合函数。

GLOBIO3在拟合函数时使用的数据通过Meta分析得到,其中存在的问题主要有:第一,对不同区域的代表性不均。在温带和北半球的大多数区域,人类活动的历史较长,难以找到未受人类干扰的参照情景,所以计算相对物种丰度存在困难。这一问题使得GLOBIO3中热带地区的数据丰富程度远高于温带和北方区域,导致模型对不同地区的代表性不均匀。第二,对于不同物种的代表性不均。分析基础设施建设影响的研究多以鸟类或哺乳动物为研究对象;而分析大气氮沉降的影响的研究则主要以温带植物为研究对象。第三,数据的统计精度差异为综合利用带来困难。比如:不同利用类型的地块分布数据既可以从FAO(FAO 2006)得到,又可以通过卫星影像数据获得,两种来源的统计精度不同;不同地区的基础设施统计精度也有较大差异。这都为这些数据在同一个模型中的整合利用带来困难。

3.2 解决措施

(1)综合利用监测数据和文献数据,增强数据体系的丰富度和代表性。

首先,扩大Meta分析的文献覆盖范围,增强对弱势物种和弱势因子的代表性。比如:欧洲地区的数据对植物物种的代表性不足,可以将对欧洲植物物种(Bakkenes et al.2002)[17]和生物群系(Leemans and Eickhout 2004)[18]的研究成果纳入Meta分析,增强对植物物种的代表性。再如:气候变化因子的建模依据只有IMAGE2.4模型,在文献分析中占比较少,属于弱势因子。借助生物对气候变化适应行为的研究成果(Peterson et al.2002[19]; Thuiller et al.2006[20];Arau jo et al. 2006[2])为气候变化因子的建模提供更强大的理论支持。其次,将实地监测与Meta分析结合使用,增强对弱势地区的代表性。例如:GLOBIO3在温带和北方地区的数据较少,可以使用瑞典的国家生物多样性监测数据(BDM 2004)作为GLOBIO3数据的补充,因为BDM中的取样点主要位于温带阔叶混交林和温带针叶林(Laura De baan et al.2013)[22]。该数据的实用性也在一些“生命周期影响评价”的相关研究(Koellner and Scholz 2008)中得到证实。

(2)完善监测体系,打好数据基础。

目前,全球已有很多国家致力于生物多样性的实地监测,但因检测标准尚未统一、监测成本过于高昂,导致数据的监测质量很低,难以综合利用。为了提供比Meta分析更为有力的数据支持,必须尽快完善数据监测网络。首先,改进和统一实地监测方法。目前,在陆地生物多样性监测中,比较先进的检测体系是in situ系统,它对物种、环境因子和人类活动的空间分布综合监测。为了增强监测数据的有效性,不同的检测地点的监测频度、方法和物种应当一致(Ferrier et al.2011)[23]。其次,应当注重样地监测和遥感监测的结合。in situ系统监测成本较高,使得很多地区多项数据严重缺失。使用卫星遥感数据以及其他的远程监控数据作为对in situ监测数据的补充可以在一定程度上弥补数据空白。为了使样地监测和遥感监测结果更好地配合,应当积极发展GEO BON这样的科研项目,探索整合利用in situ及遥感监测数据的方法(Scholes et al.2008)[24]。为了促进不同地区之间的数据综合利用,应当积极构建以跨国NGO为中心,包括其他NGO组织、研究机构和大学、保护区管理机构和森林管理机构的多渠道数据收集和利用网络。

4 对未来发展情景的预测不够稳健

4.1 问题分析

情景预测对生物多样性的预测具有决定性作用(Pearson et al.2006)[25],因此情景预测的准确性和稳健程度至关重要。目前的生物多样性预测研究通常在常用的情景预测模型中选择一个加以使用,有时会援引其他研究支持自己所选用的模型(Olden,J.D.and Jackson,D.A.2002;[26]Anderson.R.P.2004[27]);GLOBIO3模型也使用了类似的方法,但并没有预测模型的选择依据进行论证。具体而言:GLOBIO3使用IMAGE2.4模型预测一定社会经济发展框架下土地利用的变化,以Global Land Cover 2000地图作为补充以提高精度;使用FAO和世界土壤地图预测全球氮沉降和超额氮负荷;用Digital Chart of the World数据库(DMA 1992)预测道路和管线建设的分布情况;根据土地利用的变化计算群落面积未来的变化(代表生态破碎化程度);用IMAGE模型预测全球平均气温的变化情况。不加论证地选择预测模型的问题是说服力不足(Schmit et al.,2006)[3];用单一而确定的预测结果取代多种潜在预测路径的问题是预测的稳健型和全面性缺失。

4.2 解决措施

(1)对多种模型的预测结果进行交互验证

情景预测模型有很多范本,但是不同研究对象地理条件和自然禀赋的差异使得从理论层面对比研究模型的适用性很难;而通过实地监测结果对模型有效性进行验证的成本又高。为了在不违反成本有效性的前提下增强预测结果的稳健程度,建议综合使用多种预测模型,并且将模型的输出结果进行交互验证。

为了给这种交互验证提供素材,这里对处于国际前沿的情景预测模型及其主要思想进行回顾。IMAGE综合评价模型通过模拟全球贸易情景判断对农林产品的需求变化,从而间接计算农、林用地的面积变化。其优势在于充分考虑到预测范围之外的国际因素,适合开放条件下的情景预测(MNP 2006)[29]。Dyna-CLUE模型充分考虑用地需求、地理位置、管理政策、用地改变的难易程度等多重因素的交互作用,其中不同利用方式在同一地块上相互竞争的假设很符合日趋紧张的用地预期(Yongyut Trisurat et al 2010)[30]。但是该模型变量较多,数据需求高,只在小尺度研究中有较强的模拟能力。(Castella and Verburg 2007; Pontius 2008[31]; Verburg and Veldkamp 2004[32])该模型包含40种具体的气候变化情景。已经初具概率预测的意义,其最新进展Post-SRES还考虑了政策选择与发展情景的交互作用(Strengers et al.2004)[33]。GCMs (Global Climate Models)模型可以分析气候变化情景预测的不确定性(Polvani et al.2004[34])。人类足迹模型通过预测人口密度、对生态系统的干扰程度(Cardillo et al.2004[35])、人类活动足迹(Sanderson et al.2002)和对初级产品的分配方式来预测未来环境的变化。(Imhoff et al. 2004)[36]。

因为难以捕捉影响未来环境经济情景的所有因素及影响机理,任何预测模型给出的结果都是不尽准确的。但是,这些模型从不同的角度提出的经济与环境发展的假设都是基于一定的历史趋势,因此模型间应当存在对未来情景预测的共性。如果能够比较这些模型的预测结果,剔除造成预测结果差异的变量,就能够在一定程度上找到这些模型对未来发展情景的公共认知并以次为平台构建未来的宏观图景。这一宏观图景就是分析在未来某一时点的生物多样性变化驱动因子的基础。模型预测结果之间的交互验证能够使用比较分析的方法推进对潜在发展路径的全面探索,增强预测结果的稳健性。

(2)利用“集合预测”和“一致预测”方法

预测情景是多方面输入条件给定后的一个输出结果,其核心层面包括“基年情景”、“模型类别”、“参数设定”等。每个方面在不同的发展模式假设下都会有不同的预测结果,将各方面的多种预测结果排列组合能够形成一系列综合预测图景。虽然难以在繁多的组合情景中筛选出最为准确的一个,但是从这些组合中体现的总体趋势却会在很大的概率上接近真实的发展情景。

“集合预测”方法同时考虑由不同的“基年情景”、“模型类别”、“参数设定”等多种条件组合生成的众多发展情景组成的情景预测集合。依据统计学的方法,以预测集合为样本数据,“集合预测”可以划定未来发展情景的变化区间并给出估计的可靠程度。使用“集合预测”方法建立气候变化―生物多样性预测模型(Pearson, R.G.et al.2006[37];Thuiller,W.et al.2004[38])的尝试可以认为是将这一方法应用于未来情景预测的范本。统计学的研究证实,集合预测能够比任何一种单一的预测方法产生更小的平均误差。(Cramer .W. 2001)

由“集合预测”发展而来的“一致预测”可以认为是在“集合预测”给出的大概率范围中求得一个未来发展情景的期望值作为最终的预测结果。目前,“一致预测”方法已经在建立气候变化情景的概率分布模型中有较好的应用(Stainforth.D.A et al.2005[39]),在此基础上,将“一致预测”推广到情景预测的其他方面需要更多持续的研究。同时,“一致预测”的研究人员强调使用这一方法的一个条件是尽量穷尽可能的组合情景,因为只有当这些组合全面地覆盖未来的发展路径,才能维持稳定的概率分布,从而得出更加稳健的预测结果。(Allen, M. et al. 2002[40])

5 结语

GLOBIO3模型是对生物多样性进行预测的创新性方法,为了完善该方法,本文从纳入“贫困水平”驱动因子、增强建模数据的代表性和提高未来情景预测的准确程度三个方面入手,分别提出具有针对性的解决办法。在纳入“贫困水平”驱动因子时,应当使用货币指标与非货币指标相结合的方法来测度贫困水平、使用简单线性模型并在较小的地理尺度上应用改进后的模型;为增强数据的代表性,一方面发掘已有的文献数据和监测数据,提高对弱势因子、弱势物种和弱势地区的代表性,另一方面发展综合检测体系为以后的研究提供更加准确的数据基础;在预测未来情景时,既可以对不同模型的预测结果进行交互验证来发现共同的趋势,又可以使用不同条件的多种取值排列组合形成的预测集,划定未来发展情景的变化范围并求得期望趋势。

该文的建议主要针对三个比较明显的问题,但是GLOBOI3模型的完善仍需要对更多潜在的不确定性进行深入讨论。比如:同样没有包含在GLOBIO3模型中,却可能对生物多样性有重大影响的因素还有“生物交换”和“大气CO2聚集”等(R Leemans et al.2007)[41],对这些因子影响的认识还很粗浅,只有通过更大力度的文献分析来逐步加深对他们的理解才能在此基础上建立合适的函数模型。再如:在深入挖掘现有的数据时,以何种方式将样地数据和遥感数据进行完美结合仍然需要探讨;在构建数据监测体系时面临的现实问题就是政策选择只对监测频度高,从而时间序列数据全面的物种有利(M de Heer, 2000),这就为发展定量方法,确定不同物种在数据收集时应当占据的权重提出诉求。只有继续推进相关领域的深入研究与国际合作才能为这些潜在的问题提出更明确的探索方法和更准确的答案。

参考文献

[1] Rob Alkemade,Mark Van oorschot,Lera Miles,et al.Globio3: a Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss[J].Ecosystems,2009,12(3):374-390.

[2] MNP. Integrated modeling of global environmental change. An overview of IMAGE 2.4.(2006).Bilthoven,the Netherlands: Netherlands Environmental Assessment Agency (MNP).

[3] Fisher,B.,Christopher,T. Poverty and biodiversity: Measuring the overlap of human poverty and the biodiversity hotspots[J]. Ecological Economics, 2007,62(1):93-101.

[4] Costas Azariadis,John Stachurski.Poverty Traps[J].Handbook of Economic Growth, 2005,1(2):295-384.

[5] Samuel Bowles,Steven N Durlauf,Karla Hoff.Poverty Traps[M].[S.l.]:Princeton University Press,2006.

[6] Michael R Carter,Christopher B Barrett.The Economics of Poverty Traps and Persistent Poverty: an Asset-based Approach[J].The Journal of Development Studies,2006,42(2):178-199.

[7] Huib Hengsdijk,Wang Guanghuo,Marrit M Van den berg, et al.Poverty and Biodiversity Trade-offs in Rural Development: a Case Study for Pujiang County, China[J].Agricultural Systems,2007,94(3):851-861.

[8] Michael Norton-griffiths,Clive Southey.The Opportunity Costs of Biodiversity Conservation in Kenya[J].Ecological Economics,1995,12(2):125-139.

[9] David Hulme,Marshall Murphree.African Wildlife and Livelihoods: the Promise and Performance of Community Conservation.[M].[S.l.]:James Currey Ltd,2001.

[10] Christopher B Barrett,Peter Arcese.Are Integrated Conservation-development Projects (icdps) Sustainable? on the Conservation of Large Mammals in Sub-saharan Africa[J].World Development,1995,23(7):1073-1084.

[11] Michael Wells,K Bradon.People and Parks:Linking Protected Area Management with Local Communities[M].[S.l.]:World Bank,1992.

[12] Maureen Cropper,Charles Griffiths.The Interaction of Population Growth and Environmental Quality.[J].American Economic Review,1994,84(2):250-4.

[13] Douglas Southgate,John Sanders,Simeon Ehui.Resource Degradation in Africa and Latin America:Population Pressure, Policies, and Property Arrangements[J].American Journal of Agricultural Economics,1990,72(5):1259-1263.

[14] Robert Mendelsohn.Property Rights and Tropical Deforestation[J].Oxford Economic Papers,1994:750-756.

[15] Joachim Von amsberg.Economic Parameters of Deforestation[R].The World Bank,1994.

[16] G?ran Arnqvist,David Wooster.Meta-analysis: Synthesizing Research Findings in Ecology and Evolution[J].Trends in Ecology & Evolution,1995,10(6):236-240.

[17] M Bakkenes,JRM Alkemade,F Ihle, et al.Assessing Effects of Forecasted Climate Change on the Diversity and Distribution of European Higher Plants for 2050[J].Global Change Biology,2002,8(4):390-407.

[18] Rik Leemans,Bas Eickhout.Another Reason for Concern: Regional and Global Impacts on Ecosystems for Different Levels of Climate Change[J].Global Environmental Change,2004, 14(3):219-228.

[19] A Townsend Peterson,Miguel A Ortega-huerta,Jeremy Bartley, et al.Future Projections for Mexican Faunas Under Global Climate ChangeScenarios[J].Nature,2002,416(6881):626-629.

[20] Wilfried Thuiller,Guy F Midgley,Greg O Hughes, et al.Endemic Species and Ecosystem Sensitivity to Climate Change in Namibia[J].Global Change Biology,2006,12(5):759-776.

[21] Miguel B Araujo,Antoine Guisan.Five (or So) Challenges for Species Distribution Modelling[J]. Journal of Biogeography,2006,33(10):1677-1688.

[22] Laura De baan,Rob Alkemade,Thomas Koellner.Land Use Impacts on Biodiversity in Lca: a Global Approach[J].The International Journal of Life Cycle Assessment,2013,18(6):1216-1230.

[23] Simon Ferrier.Extracting More Value From Biodiversity Change Observations Through Integrated Modeling[J].Bioscience,2011,61(2):96-97.

[24] RJ Scholes,GM Mace,W Turner, et al.Toward a Global Biodiversity Observing System[J]. Science, 2008,321(5892):1044-1045.

[25] Richard G Pearson,Wilfried Thuiller,Miguel B Araújo, et al.Modelbased Uncertainty in Species Range Prediction[J].Journal of Biogeography,2006,33(10):1704-1711.

[26] Julian D Olden,Donald A Jackson.A Comparison of Statistical Approaches for Modelling Fish Species Distributions[J].Freshwater Biology,2002,47(10):1976-1995.

[27] Robert P Anderson,Miroslav Dudík,Simon Ferrier, et al.Novel Methods Improve Prediction of Species’Distributions From Occurrence Data[J].Ecography,2006,29(2):129-151.

[28] Christian Schmit,Mark DA Rounsevell,Isidore La jeunesse.The Limitations of Spatial Land Use Data in Environmental Analysis[J].Environmental Science & Policy,2006,9(2):174-188.

[29] AF Bouwman,Tom Kram,Ke Klein goldewijk.Intergrated Modelling of Global Environmenthal Change: an Overview of Image 2.4.MNP,2006.

[30] Yongyut Trisurat,Rob Alkemade,Peter H Verburg.Projecting Land-use Change and Its Consequences for Biodiversity in Northern Thailand[J].Environmental Management, 2010,45(3):626-639.

[31] Robert Gilmore Pontius jr,Wideke Boersma,Jean-Christophe Castella, et paring the Input, Output, and Validation Maps for Several Models of Land Change[J].The Annals of Regional Science,2008,42(1):11-37.

[32] Peter H Verburg,Paul P Schot,Martin J Dijst, et al.Land Use Change Modelling: Current Practice and Research Priorities[J].Geojournal,2004,61(4):309-324.

[33] Bart Strengers,Rik Leemans,Bas Eickhout, et al.The Land-use Projections and Resulting Emissions in the Ipcc Sres Scenarios Scenarios as Simulated By the Image 2.2 Model[J]. Geojournal, 2004,61(4):381-393.

[34] Lorenzo M Polvani,RK Scott,SJ Thomas.Numerically Converged Solutions of the Global Primitive Equations for Testing the Dynamical Core of Atmospheric Gcms.[J].Monthly Weather Review,2004,132(11):2539-2552.

[35] Marcel Cardillo,Andy Purvis,Wes Sechrest, et al.Human Population Density and Extinction Risk in the World’s Carnivores[J].Plos Biology,2004,2(7):24-35.

[36] Marc L Imhoff,Lahouari Bounoua,Taylor Ricketts, et al.Global Patterns in Human Consumption of Net Primary Production[J].Nature,2004,429(6994):870-873.

[37] Richard G Pearson,Wilfried Thuiller,Miguel B Araújo, et al.Model-based Uncertainty in Species Range Prediction[J].Journal of Biogeography,2006,33(10):1704-1711.

[38] Wilfried Thuiller,Miguel B Araújo,Richard G Pearson, et al.Biodiversity Conservation: Uncertainty in Predictions of Extinction Risk[J].Nature,2004,430(6995):145-148.

[39] David A Stainforth,T Aina,C Christensen, et al.Uncertainty in Predictions of the Climate Response to Rising Levels of Greenhouse Gases[J].Nature,2005,433(7024):403-406.