发布时间:2023-11-27 16:04:36
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇化学工程与化学工艺的区别,期待它们能激发您的灵感。
【关键词】化学工艺学 教学改革 石油化工
【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2012)16-0001-02
广东石油化工学院坐落于中国南方最大的石油生产基地——广东省茂名市,为华南地区唯一一所石油化工特色院校。学校的化学工程与工艺专业是国家级特色专业建设点,毕业生遍布全国各地的石油化工行业,就业具有很强的针对性,深受用人单位欢迎。广东石油化工学院化学工程与工艺专业人才培养的目标是为社会输送具备化学工程与工艺基本理论、基本知识和基本技能,具有较强工程实践能力、良好的创新意识和较高综合工程素质的人才。毕业生能在石油炼制、石油化工、能源、环保、材料等部门从事工程设计、技术开发、生产管理等方面的工作。化学工艺学作为该专业一门重要的专业课,是基础化学、化工热力学、化学反应工程、化工原理等课程的综合应用。通过该课程的学习,要求学生掌握化工生产的基本原理、主要化工产品的生产方法、工艺流程等。在化学工艺学课程教学中,应注重强化学生的工程意识和基础知识的实际应用能力。
一 结合石油化工特色,创建课程群
从人才培养的角度看,石油化工高校培养的毕业生应具有较强的工程实践能力、良好的创新意识和较高的综合工程素质,以适应石油炼制或石油化工等相关行业的人才需求。毕业生不但要懂得某一专业的基础理论,还要具有某一岗位所需要的生产操作和组织能力,并能在现场进行技术操作和改进,解决生产实际问题。因此,广东石油化工学院石油化工专业所培养的人才具有基层性、实用性和技术性,这是本专业区别于其他普通高校教育的一大特色。根据本专业的特点和学生的基础及接受能力,以培养学生的综合实践操作能力和创新能力为主线,可将石油炼制工程、石油化工产品分析技术、石油产品应用技术与开发、石油储运基础等课程创建一个课程群,围绕本专业人才培养目标,对各课程的主要内容进行精选优化,调整化学工艺学的教学内容。可从这些主干课程中选择一些典型的石化产品,作为化学工艺学的教学案例,分析这些石化产品的生产方法、工艺流程、工艺参数、条件影响等。这种处理方式对课程群里面其他的课程教学可起到辅助和巩固的作用。
二 优化和更新化学工艺学的教学内容
根据教学大纲对教学内容进行处理,把各章节内容按照了解、掌握、应用、设计等不同要求作详细的定位。例如,对于工业生产中已经不采用的生产方法,只要求学生了解某种工业过程可能有多种生产方法即可;对需掌握的内容,可以要求学生对各种生产方法进行比较,分析其适用范围、效果、操作条件、能耗等,从技术经济的角度选择生产方法。学生不仅要掌握教材介绍的几种基本化工产品的生产,而且其生产--方法要会应用,能够举一反三,要能设计出一些简单的生产工艺。例如,在讲授合成氨时,可以先引入哈伯法合成氨工艺的历史及哈伯本人的一些简介,既可以提起学生对合成氨工艺的学习兴趣,又可以了解一些名人的事迹。当学生有了兴趣之后,可以从不同的原料角度,引入不同的生产工艺,如以煤为原料,以天然气为原料,以重油为原料的合成氨工艺,其各自的工段均有所不同,可以在讲授完后让学生总结各不同原料合成氨工艺的异同,这样学生学完之后印象深刻,可以吃透这部分内容。
另外,在组织化学工艺学教学内容时,应着重突出石油化工特色。在第一次化学工艺学讲授过程中,让大家认识到本门课程的针对性、重要性及实用性。在第一章“绪论”部分组织讲授材料的时候,可以结合茂名炼油产业链,围绕几个关键词如石油化工、石油炼制、乙烯工业、茂名乙烯、石化工业区等展开内容学习。例如,乙烯工业是指以石油馏分为原料裂解生产乙烯为主,同时生产丙烯、丁烯、芳烃等产品的生产过程。乙烯是石油化工的基本有机原料,目前约有75%的石油化工产品由乙烯生产。乙烯主要用来生产聚乙烯、聚氯乙烯、苯乙烯等多种重要的有机化工产品,乙烯产量已成为衡量一个国家石油化工工业发展水平的标志。再如,对乙烯产品结构的介绍(塑料类、合成橡胶类、液体化工类);对长三角、珠三角、环渤海湾大型炼化一体化企业集群及沿长江产业带分布的介绍等,这些内容可以让学生清晰地认识未来的就业方向、就业区域和就业前景。在这种情况下,学生会充分认识到化学工艺学这门课程的针对性和重要性,在后面的时间里自然会重视这门课程的学习,因为这些内容的学习与他们未来的就业息息相关。
围绕本专业人才培养目标,针对毕业生的就业特点,广东石油化工学院的化学工艺学这门课应该调整教学内容,注重重点内容的凝练。其重点内容应围绕乙烯工业展开。
如以茂名石化乙烯为例,学习乙烯生产原理、工艺技术、产品应用等基本知识;以茂名石化工业区为例,学习乙烯下游产业链、产品应用等基本知识。
乙烯生产原理主要包括乙烯生产过程中的化学反应规律、反应机理、热力学及动力学分析,乙烯生产的工艺参数和操作指标(如原料性质及评价、裂解温度、烃分压、停留时间、裂解深度等)及乙烯生产的工艺过程等。
三 适当引入双语教学
关键词:化学工程;节能;绿色化学;工程工艺
中图分类号:TE08 文献标识码: A
前言:进入21世纪以来,环境问题越来越严重,而且,随着人口的继续增加,能源的持续减少,不可再生资源已经临近枯竭,生活垃圾核工业污染物也在无情的破坏着生态环境,人与自然的矛盾就这样不断被激化。在化学生产过程中,通过不再使用有毒、有害的物质,不再产生以及处理废物,生产无污染无伤害的目的正是绿色化学的设想。这虽然只是设想,但通过改进化学技术和方法,是可以达到减少有危害的化学产物的,绿色化学工程与工艺正是为了保证人类健康、生态环境,为促进化学工业节能目标而实施的。
一、绿色化学工业的概念
总结我们前面所阐述的,我们可以把其定义为无污染化学,所以在进行绿色化学工艺的过程中所产生的某种手段就是绿色化学工业技术,利用其原理从根源对普通化学反应产生的破坏进行整治。就绿色化学的特点来说,有以下两点,第一,绿色化学的本质就在于适中保持人与自然的和谐相处,近几年的快速发展而导致的环境破坏也就加速了绿色化学的快速发展;第二呢,绿色化学形成的结果是对环境友好的,绿色化学可以渐渐对付各种环境中产生的不利人类和自然发展
的因素。
但是究其根基,绿色化学是对环境的保护以及防范;而我们所说的环境化学就是对预防之后而无法达到效果的环境进行进一步的革新和处理,所以绿色化学和环境化学在起点和终点都是不一样的。那么在其反应过程中,对于有害物质进行摈弃,就可以制止不利产物的生成,但是在当前发展来看,这种想法只停留在表层,但是我们相信,通过科学家们的不断努力,这种想法终究会实现的。
二、传统化学与绿色化学的根本区别
化学可以理解为是研究从反应物向其生成物转化的的科学。传统化学在一定程度上是以资源过渡消耗和环境严重污染为代价的先污染后治理的化学工艺,其导致的危害是资源不可再生和环境污染,严重地威胁着人类生存和可持续发展,如目前全世界每年产生的废物达3-4 亿吨;而绿色化学(也称为环境友好化学)是从源头上防止环境污染的新兴科学。虽然传统的化学与绿色化学都为人类生活做出了巨大贡献,但绿色化学的根本思想是运用高选择性和原子经济性的反应,使用无毒无害的助剂、原料,生成环境友好的产品,而且经济合理,从而在节约资源的同时变废为宝。
绿色化学是对传统化学思维模式的革新和发展,也就是说,绿色化学可简单地描述为在化工生产反应过程中,改变了传统化学的“先污染后治理”,是“从源头上消除污染”,尽量不使用有毒有害物质,并减少或不生产废弃物和有毒有害物质。近年来的绿色化学发展,充分体现了绿色化学与可持续发展之间的密切关系,
因此,绿色化学也被称为“绿色与可持续化学”。
三、绿色化学应遵循的基本原则
1、污染预防优于末端治理污染;
2、尽可能的不用分离溶剂、试剂等辅助物质,若是不得已使用时,也应该是无毒、无害的;
3、在采用生产方法中尽量不使用和不产生对人类健康和对环境有毒有害的物质;
4、合成方法应具原子经济性(atom economy),原料分子中的原子更多或全部地进入最终的产品是原子经济性的核心目标。绿色化学的原子经济性有两个显著有点:一是最大程度地利用了原材料,二是最大程度地减少排放废弃物;
5、使用高选择性的催化剂优于化学计量试剂;
6、生产过程能耗应最低且在温和的压力和温度下进行;
7、设计具有高使用效益、低环境毒性的化学品;
8、在技术可行和经济合理的前提下,尽可能地使用可再生原料;
9、尽量减少或避免非必要的衍生反应步骤(如使用物理化学过程、屏蔽基团、保护复原的临时性变更等);
10、选择参与化学过程的物质,尽量避免发生意外事故的风险;
11、化学产品在使用完后应能降解成可以进入自然生态循环无害的物质;
12、发展适时分析技术以监控有害物质的形成。
四、绿色化学工程与工艺的开发
传统的化学工程与工艺对有害污染物的处理很被动,有滞后性,并且达不到根除污染物的效果,不但治理成本高,而且治标不治本。比如利用烟气除尘、脱硫,虽然净化了气体,却把污染物转化成了废渣废水,不但没有解决问题,反应复杂了处理方式。绿色化学工程与工艺,以零排放、清洁生产为原则,从化学反应着手,对污染进行有效的防止和控制。
1、采用绿色化学原料
化学生产原料是决定化学生产流程和工艺的主要因素,传统化学工程采用的绿色原料大多为不可再生能源,选取这种化学材料,不仅增大了我国不可再生能源的消耗量,同时也增加了化学生产污染物质的排放量,所以采用绿色化学原料是绿色化学工程重点研发项目,选用可再生、无污染的化学原料,如自然物质、绿色化学物质等。苞米杆、芦苇、纤维植物等农副产品废弃物,这些物质是典型的绿色化学原料,将其投入到化工生产中,可以转化成醇、酮、酸类的化学品,在转化过程中,这些化学原料只会产生氢气,不会产生任何有毒、有害物质。
2、采用高效高选择性的反应原料
对于化学工业来说,化学反应是决定化学工业生产过程中生产成本和生产难度、充分利用化学资源等各方面的重要性因素。可以降低工业生产的成本,而且能够提高产物纯度,减少无效反应产物的排放,节约化学资源,在化学工业中,有机物的反应复杂,研究机制不确定,所以选择合适的反应原料,不断提高工业技术是对化学工业的发展有着重要的意义。
3、提高化学反应的选择性
烃类选择性氧化是一类具有强放热性的反应,石油化工工业中时常发生这种反应,但是,它的生成物不稳定,很容易被进一步氧化,生成H2O和CO2。在各类的催化反应中,此反应一般不会被选择,因为有时生成物中还会存在同分异构提,不利于得到最终产物,所以,为了简化生产,一般都会使用选择性高的试剂。这样不仅可以降低分离产品和纯化产品的难度,还提高了反应的选择性,还能够起到降低成本,节约资源,减少环境污染的作用。所以加强这一方面的研究会有很强的实用性,比如开发载氧能力强、选择性好的新型催化剂,就可以应对不同的烃类氧化反应。
4、采用无毒无害的化学催化剂
近年来,化学反应越来越多的应用到了工业化的生产中,而催化剂对提高反应速率有着明显的效果,所以开发新型高效、无毒无害的催化剂以成为绿色化学工艺的发展方向之一。如今,相关部门都在研发新的烷基化固相催化剂,此外,分子筛催化剂也得到了很好的开发和应用。
五、寻找高效绿色的化学催化剂对提升工业生产水平的作用
1、 污染治理
目前,化学工业有其是石油、化工、煤炭等重工业对环境造成重大污染,危害生存环境,破坏原有生态平衡,威胁人类生存。引起国际上广泛关注,美国
1996年设立“绿色化学挑战奖”表彰在绿色化学领域中做出贡献的人。绿色化学的目标就是从化学生产的源头上实现环境治理,消除环境污染,绿色化学改变了传统化学工业先污染后治理的模式,实现预防、监测、零污染,预先环境治理,保护环境,资源可持续发展。
2、优化资源
化学工业绝大多数工艺都是上个世纪开发的,受技术发展的限制,化工领域是劳动密集型产业,高耗能、重污染、浪费原料、劳动力成本高,对大气、水和土壤等环境排放高。使产品成本中附带原料浪费、能源消耗、污染治理等成本。据统计,美国化工业1992年用于环保经费达1150亿美元,治理污染经费达7000亿美元,化学品销售中资源节约和环境治理成本提升。绿色化学从约资源方面,提高使用效率,减少环境破坏,降低新产品经济成本,有利于倡导节约型社会。
3、节能减排
节能减排就是节约能源、降低能源消耗、减少污染物排放。世界各国都制定了相关计划来实现这一目标,美国绿色化学目标:2020年将废弃物减少40-50%,化学生产行业消耗原材料降低20-25%。日本制定新阳光计划,在环境化学领域倡导绿色技术,减少环境污染,发展减排新技术应用。中国2006年提出降低能源消耗和对外石油依赖,希望2010年,单位GDP能耗比2005年降低两成、主要污染物排放减少一成。2013年国家发改委表示,为确保今后节能减排目标、推进绿色低碳发展,深入推进节能减排各项工作。绿色化学正是实现节能减排和环境保护重要工具。国家倡导在重点领域节能减排,推进企业节能低碳行动,开展绿色化工行动,加强环境治理,加大治理力度,引导循环经济,着力增强全民节能减排意识,实现共创和谐社会,建设美好家园。
4、化学工业中绿色化学的应用
绿色化学的核心就是要利用化学原理从源头消除污染,做到完全无公害无污染,因此它又被称为清洁化学,应用范围广泛,它涉及有机合成、催化、生物化学、分析化学等学科。工业中化学反应发生的条件一般都是高温高压,在反应过程中,只有适宜的温度和压力才能使用现代化学工业的技术,另外加上绿色化学的高效催化剂,这项工程才得以不断发展。例如上文提到的低维材料碳纳米管,催化裂解反应中有很大的化学功效。
5、化学工业中绿色化学和现代生物结合的应用。
讲到了催化剂,这就涉及到另外的技术性学科生物技术。生物技术的就是高科技与高端专业知识结合的产物,学科内又分为细胞工程、基因工程、胚胎工程等等。在化学产业中主要应用于生物化学。在化学工业生产过程中,选取有机的生物材料,主要是动植物的原料,另外也会采用他们经过上千年演变的产物―地下的煤炭等。催化剂主要由人工催化剂和自然催化剂,分别由人工合成以及采用天然动植物的生物酶。这样能够满足现代化学工业发展的需要,同时也能切合可持续发展的指导思想,节约能源,维持现在生态平衡的状态,推动化学工业发展。
六、结束语
综上所述,可持续发展在当今社会显得越来越重要,因此化学工业生产中也要遵循这个指导性思想,采用选择性高的原材料,节能减排,利用高新化学催化剂,最大程度的减少污染物排放,不断增高有效产物纯度,在资源有限的前提下,保护生态环境,维护现有的生态平衡。绿色化学在整个化学工业的发展中,有着实质性的意义,高新技术性产物催化剂的使用能改变现有产业结构和传统的生产过程,加速化学工业发展。
参考文献:
[1]于贺. 论绿色化学工程与工艺对化学工业节能的促进作用[J]. 科技与企业,2013,05.
[2]李丽,王超. 论绿色化学工程与工艺对化学工业节能的促进作用[J]. 化工管理,2014,05.
关键词:节能降耗;绿色环保;精细化工
引言:生态环境的不断恶化,不可再生能源面临枯竭,现阶段,节约能源,提高能源使用效率,发展先进能源使用技术,是我国实现经济可持续发展必由之路。
一、使用节能降耗措施的必要性
化工工艺生产对能源的需求一直都是不可忽视的,尤其是化工企业中以传统能源为主导的产业,若想持续稳定健康的发展,就必须将化工产业能源损耗的经济成本制约在必要的范围内。因此通过节约经济成本,提高企业竞争力,进一步抢占市场份额,扩大市场占有率,有益于进一步提高企业的经济效益,增强企业竞争率。对于能源损耗过高,应对生态环境破坏污染程度过深的企业项目严加把控。加强对落后能源产业的筛选力度,推广使用清洁高效的能源,建设新型绿色环保企业新模式,生产无污染或低污染的绿色产品。这些举措对于有效控制污染气体、液体、固体的排放有着至关重要的作用。同时加强监督,放弃高耗能高污染的粗放式能源利用模式,逐步改善传统落后的不健康经济结构,是发展健康绿色经济不可缺少的重要环节。
当前,节能技术在化工企业中的使用还存在很多问题,要是使用高科技技术对化学工艺进行改进并通过先进技术的引进,可以进一步的让目前企业内的节能降耗技术的实用性大大的提高。在对化工工艺进行改进的时候,首先要提高的就是反应的催化剂和添加剂的性能,以便于让化工装置的灵活性提高,从而让化学工业能源的消耗降低。其次,淘汰传统的化学工艺,这有利于发展先进的技能降耗技术,在适当的淘汰旧设备的同时,也要引进具有节能降耗性能的机械设备,这对于化学工艺的发展非常有利,让化学工艺的节能降耗技术进一步发展。
二、采用先进的生产工艺
1、在化工工艺中运用新工艺、新材料、新设备和技术
在对化工工艺生产的管理过程中新元素的应用不可或缺。受传统工艺的影响以及现有材料的制约,让化工工艺的改革步履艰难,因此更加适应现有技术水平的轻便合理性材料,应该被广泛的试用于更多化工领域,与此同时高效能的环保器械也能为节约能源提供更好的保障。通过整合各方面资源达到连续型节能减排的新型模式,从而为更多化工技术创新提供可能性。区别于通过传统落后的能源损耗模式(如通过焚烧麦秆,煤炭等不可再生能源)提供人们必不可少的生活能源,新型的化工生产工艺和技术将目光集中在新型能源(如太阳能,风能,水能,潮汐能等)的使用效率和开发力度上。
优选节能连续型的化工生产工艺,通过生产工艺的技术升级改造,提高化学产品生产的综合效益。生产工艺应尽量优选连续型、操作便捷、能量转换效率较高的工艺,这样可以有效避免间歇性生产工艺过程切换中的能源浪费。优选高效分馏塔、反应器、换热器、空冷器、电机拖动系统、加热炉等先进传质、换热、旋转等节能型电气设备,降低机械设备在运行过程中的综合能耗特别对于耗热量大的设备,采用导热性能更好的材料进行设备关键部位设计制造,广泛将余峄厥丈璞浮⒂τ帽淦灯鹘诘缟璞赣糜诖笞诨工生产装置中来。
2、改善化工反应的工艺条件,降低化工生产工艺综合能耗
首先,降低化工生产反应外部压力。合理计算确定化工生产反应的压力,一方面可以确保化学反应高效稳定的进行;另一方面还可以降低输送反应物的电机拖动系统的综合能耗,尤其可以降低气态反应物的压缩功耗,达到降耗的目的。其次,在确保化学物质正常反应环境条件的基础上,合理优化降低吸热反应温度,降低系统反应所需的整体供热量,提高系统热能利用率。再次,加快化学反应转化效率,有效抑制反应过程中的副反应作用,进而减少反应过程能耗和产品分离能耗。
三、关键性物质对节能的重要性
反应器,交换器等许多化学工艺生产过程中必不可少的器械仪器,在生产产品的过程中因为各种原因不可避免会有所损耗,会在机体部分结垢,或更进一步产生锈迹,这种情况的发生会大大降低机器的热交换功能,从而影响其传热效率。机械的传热系数下降使其换热功能减退,能源利用率降低,化工生产机器的外部压力过大,缩短了化工设备的运行周期,减少其使用寿命。而阻垢剂的使用可合理提高机器设备的能源转换利用率,降低机器完成能源转换的整体供热量,确保化工生产过程的安全,这对于化学工艺节约耗能的发展十分有利。
在化学工艺的生产过程中,添加一些关键性物质会起到意想不到催化效果。如新的类型的催化剂。催化剂可以优化化学工业生产过程中的环境,提高生产过程中能源的使用效率,同时提高这种催化剂在化学有反应中的综合反应活性,对于能源的合理配置,及节约成本方面有着十分重要的作用。
四、降低生产全过程的动力能耗
首先,采取变频节能调速降低电机拖动系统的电能消耗。采用变频节能动态调速方案对常规的阀门静态调节方案进行技术升级改造,可以确保电机拖动系统输出与输入之间长期处于动态平衡状态,尤其对化工企业装置负荷率普遍较低的问题,可以避免电机拖动系统长时间处于工频运行工况,降低无谓电能资源浪费。其次,供热系统的优化改进。供热系统在优化升级改造过程中,要打破常规单套装置界限,实现组合装置的整体优化匹配。如:在进行供热系统优化改进过程中,要根据不同温位热源的功能特点,合理地进行供热装置的匹配组合,实行装置间的联合运行,进而实现在较大范围内进行冷、热能源流的优化转换,从设备源的基础上避免“高热低用”等不利情况发生,实现热能资源的最优化利用。再次,推广污水回用技术。在实际生产施加过程中,化工企业必须高度重视水资源管理和综合利用,杜绝出现跑、冒、滴、漏和常流水等不利现象,并积极结合化工生产实际特点推广污水回用技术,降低水资源的综合消耗。做好电、热、水等资源的余能回收利用,可以大幅提高化工企业的综合节能降耗效果。利用生产工艺中的余压、余热等资源进行综合利用,通过制冷、发电等转换技术,有效节省化工生产过程中的常规能源浪费,进而实现能源资源的高效、安全可靠、经济节能、低碳环保的综合转换利用。
五、结语
化工工艺的节能降耗技术在整个化工产业的科学研究中占据主导地位,落后的产业技术模式会消耗大量的资源,也会对环境造成不可逆转的伤害。对资源进行综合的利用,以及高效的使用能源已经成为快速推动国家经济发展的重大课题。阻垢剂,催化剂等等新物质的使用也逐渐成为节能降耗工艺发展不可或缺的助力。越来越多的人将目光放在了如何提高能源利用率这一问题上。合理调配资源,发展绿色经济,提高能源利用率,将成为我国未来经济发展的重中之重。
参考文献:
[关键词]丁二烯;化工工艺;NMP
中图分类号:TQ221.223 文献标识码:A 文章编号:1009-914X(2014)27-0114-01
早在半个世纪以前,西德就采用N一甲基毗咯烷酮(NMP)作溶剂,裂解萃取蒸馏丁二烯。以后,在世界各地陆续采用并加以改进。NMP法萃取蒸馏丁二烯工艺,具有溶剂的选择性高、无毒、无腐蚀、水解稳定性和热稳定性高、沸点高、常温蒸汽压低,丁二烯收率高、纯度高,以及整个工艺综合技术经济效果优越。
如今,根据所采用的萃取溶剂的不同,丁二烯抽提生产工艺主要分为3种:NMP法、DMF法和ACN法。与NMP法和DMF法相比,ACN法具有一定的优势,但乙腈溶剂毒性较大,随着人们的环保意识日益加强,该工艺逐渐被淘汰。而NMP工艺由于其诸多的技术优势,文中对NMP法和DMF法2种工艺进行对比,阐述了NMP工艺的综合优势。
一. NMP法丁二烯抽提工艺比较
N一甲基毗咯烷酮(NMP)是一种性能优良的高沸点溶剂,具有强极性、惰性、低粘度、溶解能力强、稳定性好、无腐蚀、挥发性低等特点,目前已在许多工艺路线中取代了其它溶剂。其生产工艺可以采用y一丁内醋与甲胺缩合路线,它是目前可靠而成熟的工艺生产路线。各个厂家大致相同.NMP目前主要用于回收丁二烯。高温裂解制取乙烯副产品馏分中含有较多的烯烃。而NMF法不但毒性小、无腐蚀、萃取效率高,而且省却了抽余液加氢脱炔烃工艺,可节能一半。用NMP从含有环戊二烯的裂解馏分粗品回收异戊二烯纯度可达到99%r。世界采用NMP法回收异戊二烯已占总生产能力的10%。NMP法丁二烯抽提 工艺从反应压力可分为高压法工艺、中低压工艺等。
1.1 高压法工艺
这一技术的发展最早。其工艺分锅式法和管式法2种,除反应器不同之外,其他的过程基本相同。在丁二烯高压法聚合反应属于自由基聚合反应,反应过程包括链出发,链增长,链终止和链转移。低密度聚丁二烯工业生产中通常采用高压气相聚合法,该法生产的低密度聚丁二烯的最重要的方法,因此低密度聚丁二烯被称为高压聚丁二烯的历史。它以纯度达到99.95%的丁二烯为原料,采用微氧,偶氮化合物有机或无机过氧化物,使引发剂,进行自由基加成聚合气相高的压力下。当反应压力为100 ~ 350MPa,聚合温度150 ~ 30℃。由于其反应温度高,易发生链转移,因此产品支链多曲线的大分子。聚合度主要由反应压力、反应温度、引发剂用等因素影响的量,分子量调节器。在釜式法工艺的材料是近似在整个交流,压力温度相同时,产物的分子量分布窄,支链的链许多,因此产品的冲击强度很高;在管式法工艺反应物料近似于柱塞类,温度压力梯度大,产物的分子量分布宽,支链少,更适合生产膜类。
1.2 中低压工艺
该工艺主要有浆(悬浮法),溶液法,气相法3种。浆工艺的工业化时间早,技术成熟,产品质量好,丁二烯的转化率超过90%。分为搅拌式反应器和管式反应器2种工艺,根据反应器形式。欧洲和日本广泛使用的搅拌釜式淤浆聚合工艺的代表;管反应器淤浆聚合工艺,代表公司为美国飞利浦。溶液法可能产生的熔融指数为0115 ~ 150g/10分钟每种产品,本产品质量好,胶体灰份低,产品的密度范围为0191 ~ 0.96g/cm3.solution聚合时,单体和生产聚合物溶解在惰性溶剂,聚合温度和压力高。
1.3 两种工艺的比较
高压法需要专门的技术和设备,工作压力高(150 ~ 400MPa级),投资大,虽然近年来低密度聚丁二烯LLDPE LDPE的市场冲击,但其采光质量,灵活性和易性好,仍有一定的竞争力,其处理技术仍在发展。所有的使用溶剂的淤浆法、溶液法,生产成本高,生产效率受到限制。在淤浆聚合一些低密度聚合物的溶解度大的溶剂溶解时,后张使反应体系的粘度增加,造成操作困难,溶液法生产的高分子量产品溶液的粘度的增加,搅拌困难,限制了生产力的提高。由于气相流化床工艺不在粘度限制溶液法和淤浆法工艺的溶解度极限,投资和运行成本低,原材料和宣传项目耗能低,产品范围广,操作弹性大等优点而发展迅速,目前新建装置约70%使用气相法工艺。这是PE工艺的发展方向。流化床工艺可以生产HDPE、LLDPE,特别是LLDPE成了短支链主链的植物,从一棵树边,结晶度高于LDPE,HDPE和LDPE性能具有空间频带之间填充LLDPE与LDPE相比,具有突出的抗穿透性,抗冲击和抗拉伸性能,可广泛应用于薄膜,如包装,李宁膜农用膜。此外LLDPE高于LDPE的抗剥离强度,可在域等压缩成型和油管,因此LLDPE在过去的20年里,消费量持续增长。气相流化床工艺可生产熔融流动指数范围非常宽的产品,从70年代初开始迅速成为聚丁二烯主导工艺。
二. DMF 法及其与NMP法的区别
DMF 法又称 GPB 法, 目前是生产丁二烯的各种方法中产量较高的 1 种。DMF 工艺中, 萃取系统的每个塔都设置了再沸器, 并且部分再沸器有在线备用, 数量较多。NMP 工艺在生产过程中不会产生影响产品质量的胺类杂质, 在生产运行期间具有较大的节能优势。NMP 的选择性、溶解度、闪点、空气中爆炸范围、等性能均优于 DMF。但 NMP 的粘度大于 DMF。由于萃取蒸馏塔的板效率和物料的粘度成反比, 所以 DMF 的塔板效率要优于 NMP。NMP 法的废水、废气和废渣量较DMF 法低很多。DMF 职业性接触毒物危害程度为Ⅲ级 , 在水存在下会分解, 且含 DMF 的废水不易被生物降解。DMF 对人体的毒性是累积性的, 无法从体内排出, 而且装置的允许泄漏点较多, 因此DMF 对装置员工的健康危害较大。含 DMF 的废水也会危害周围环境, DMF 落到水泥地面后极难清除, 而且 DMF 法每次排放焦油都会对周围空气产生较大污染。NMP 基本无毒, 用水很容易冲洗干净。热稳定性和化学稳定性极好, 即使发生微量水解, 其产物也无腐蚀性。废水中含有微量 NMP, 也易于生物降解, 有益于环境保护和人身健康, 具有环保优势。
三. 结语
尽管 NMP 工艺存在一定的不足, 但综合来看, 该工艺还是优于DMF 工艺, 尤其在装置的能耗、溶剂的性能、防聚合和环保等方面具有明显的优势。在今后新建丁二烯抽提装置的技术选择方面, NMP 工艺越来越为人们所接受。
参考文献
[1] 汤晓东.国外气相法PE工艺进展[J].合成树脂及塑料.2012(01).
[2] 李贺,王.气相法聚丁二烯工艺技术进展[J].弹性体.2010(01).
[3] 任红,卢晓,达建文,张廷山,桂祖桐.聚丁二烯工艺及催化剂新进展[J].化工时刊.201112).
[4] 张勇.气相法聚丁二烯技术新进展[J].合成树脂及塑料.2011(02).
[5] 沈菊华.醋酸丁二烯生产技术发展动向[J].上海化工.2012(16).
[6] 宋国全,刘俊广.N-甲基吡咯烷酮生产工艺影响因素分析[J].河南化工.2006(09).
[7] 白玉杰.聚丁二烯基吡咯烷酮(PVP)的生产应用与市场前景[J].化学工程师.2003(04).
[8] 韩慧芳,崔英德,蔡立彬.聚丁二烯吡咯烷酮的应用[J].精细石油化工进展.2003(11).
关键词:化工工艺设计;实践环节;教学改革
为适应国家战略发展需要,2013年教育部、中国工程院联合出台了《卓越工程师教育培养计划通用标准》,为高等院校培育工程技术人才提出了新的标杆,也提供了新的契机。在众多工科专业中,化工专业涵盖过程工业的各个部门,对高质量各类型的工程技术人才需求十分迫切。化工工艺设计课便是培养化工专业优秀工程技术人才的一门不可多得的课程,在高等工程教育的深化改革中越发展现出其在本科教学课程体系中无可替代的作用和地位。
1化工工艺设计课简介
化工工艺设计课(以下简称“工艺设计课”)目前在国内大多数设立化学工程与工艺专业的院校都有开设,一般安排在本科四年级,是在学生学完专业基础课之后,综合运用专业基础课、制图以及经济、安全等方面的专业知识解决问题的一次训练,更能够迫使学生从做题的情境切换到工程实际的情境,因而能加快学生的思维向工程思维转变,能切实提高学生处理工程实际问题的能力。因此,与本专业的理论课相比,工艺设计课在优秀工程技术人才的培养方面具有独特的优势。然而,由于多种原因,工艺设计课还存在着不少问题,这门课的优势还远未被充分发掘,应有的教学效果还远未达到。
2工艺设计课存在的问题及原因剖析
纵观国内开展工艺设计课的高等院校,目前该课程教学过程中发现的主要问题可归纳为以下五点。
2.1设计要求和难度一降再降
工艺设计课教学效果难以达到预期,很大程度上源于设计要求和难度的一降再降。一方面,信息时代生活节奏越来越快,压力越来越大,很多本科生为了提高自己的竞争力,不得不分心考研、考证、实习、联系出国、进实验室、参加学生工作和社会实践,难以专注于专业课程学习本身。因此,学生们能真正投入到工艺设计课中的时间越来越少。例如,每年都有大量学生参加考研,考研之后紧接着就是毕业设计,使得学生很难充分重视工艺设计这门课。另一方面,化工设计工作量巨大,真正的设计从来都是团队共同作业才能完成。但在实际教学中,为防止学生抄袭而催生的“一人一题”的强制要求,也使得教师很难提出由多人共同完成一个设计任务的设想,因而也不得不降低对个人的要求和难度。
2.2设计题目缺乏精心设计
设计题目的合适与否对教学效果影响甚大,但从目前情况看,不少设计题目缺乏精心设计,衍生出如下几类问题。(1)与《化工原理》、《反应工程》等经典先修课程脱节严重。近年来,有一部分带设计课的指导教师认为,设计应该做真题,不应该做所谓的“假题”,甚至于设计题目就是指导教师团队正在做的工程项目。这就使得设计题目中所涉及的核心反应和分离单元经常不是经典的反应器和单元操作(如吸收、精馏),有时会大量涉及气体吸附、膜分离、结晶、离子交换等非传统的化工的单元操作,有时甚至还因为新技术保护的原因无法获得设计所必需的数据。此外,即便有些题目来源于经典的传统化工工艺,但如完全忠实于实际项目,没有必要的简化处理,也必会造成工艺系统过于庞大、题目过于复杂,使学生感到一下子难以承受,不利于短学时性质的工艺设计教学。(2)“一人一题”设计的考虑不够周全。“一人一题”的初衷是限制学生抄袭。然而,很多设计题目,设计变量很少,甚至只有生产强度一个变量,使得学生的设计题目之间没有本质区别,无法杜绝学生抄袭。只要有个别学生做出来,其他学生只需简单地线性变换,仍可效仿,无需经过足够的个人思考。(3)未充分体现“整体设计”,仅是单元操作的简单组合。工艺设计课的工艺计算过程,应充分体现过程、工艺的整体设计。然而,目前的许多设计题目,其设计条件没有涉及单元之间的耦合,使得学生无需深刻认识过程和全流程,便可迅速进入到各个单元操作的计算阶段,其教学效果约等于化工原理课程设计,缺失了对学生大局观的培养。
2.3缺乏高效的“过程管理”
目前很多院校完全采用“结果管理”的教学模式,存在很大问题。所谓完全采用“结果管理”,即设计开始阶段做一次较为充分的宣讲,对设计过程不甚关心,完全以最终的报告和图纸定成绩。有些教师迫于科研压力,不愿在设计课上投入时间精力实施过程管理,甚至以“设计课以学生为主、学生自己完成”为理由,过度精简了设计过程中的师生互动环节。当然,也有很多教师非常重视过程管理,投入了大量的精力,但效率不高,其重要原因就是容许学生自由发挥的地方过多,学生的设计计算结果五花八门,教师很难对学生的阶段性进展做出高效反馈,甚至会打击青年教师的信心。诚然,设计没有标准答案,充分开放的设计题目更有利于启发学生,但这更多是针对设计大赛或是毕业设计。对于学时有限的工艺设计课教学,笔者不敢苟同。
2.4指导教师与真实设计资料的接触非常有限
近年来入职的青年教师,受到目前高等院校大环境影响,学术型的居多,大多没有经历过多少设计实践,自身工程设计底子薄。即使是有一定经验的教师,也有很多没接触过真正的、有代表性的设计资料。笔者所在的教研室只是收藏了一些早期的纸质版的图纸供学生学习,能反映当今化工厂、化工车间设计成果的图纸(特别是CAD电子版的图纸)还非常有限。学生们从未见过规范的设计文件和图纸,他们上交的报告和图纸都与行业规范相差甚远。
2.5先修课程缺乏对工艺设计课的铺垫
工艺设计课是一门综合运用所学专业知识的实践性课程,应该让学生能够在学习过程中将所学知识充分用到解决实际问题中去,这样会激发学生内心中的成就感,更加明白终身学习的重要性。然而,从目前看,学生学过的先修专业课程,对工艺设计课的铺垫不够,常常与设计题目脱节严重,这会使得“大学上的课没用”的思潮抬头,学生听课的积极性大减。例如,《化工工艺学》和《化工设计》这两门课是工艺设计课的直接先修课,但这些课程间的沟通合作还远远不够,从而不能将工艺设计题目中涉及的工艺流程在这些先修课上有所伏笔,提高了学生们面对工艺设计题目时要迈过的门槛。又如,认识实习、生产实习等实习环节,也是理论与实际联系的重要桥梁,但也很少跟工艺设计课之间建立紧密的关联[5]。我们常常不能将工艺设计题目中涉及的过程、车间和设备在实习阶段就让学生有所了解,这就使得工艺设计只能停留在课堂教学而没有实习支撑。
3改进工艺设计课的若干措施
笔者结合自己的教学实践以及在学生阶段的一些设计经历,尝试总结了一些可能对解决上述问题有所改善的措施,分五点陈述如下。
3.1精心安排设计时间
(1)尽早动员,尽早布置题目。《化工工艺设计》的全员动员应在四年级上学期开学即进行,最好能和另一门设计类实践课《化工原理课程设计》的全员动员合并进行。这样做好处有二:①学生通过一次集合就知晓大四的设计开课整体情况,便于其合理安排时间;②这样安排可以使得在《化工原理课程设计》结束后顺理成章地布置《化工工艺设计》的题目,给学生更多的准备时间应对难度更大的《化工工艺设计》。
(2)尽量避开考研冲刺期。可考虑将官方的开课时间定在春季学期,实际教学则可以跨年度。具体地说,是从考研结束之后那一周算起,完整进行4~5个自然周。笔者所在教研室一直推行这个方针,最大限度地减少了考研对工艺设计课的影响。
(3)给学生较为充足的报告撰写时间。在教学环节结束后,推迟1~2周(甚至整个寒假)收缴报告和图纸,给学生充足的报告撰写时间。如果寒假之前时间不够,则顺延到年后,但无论是否顺延,都统一在春季学期的第一周做完并上交报告,以减少对《毕业设计》环节的干扰。
3.2精心制定设计题目
(1)设计题目应更强调过程和整体。应通过设计条件的合理设定,使得任何一个单元操作都不可能独立求解,籍此强化过程物料衡算和过程设计的概念,使学生认识到过程设计不是单元操作设计的简单加和,有利于培养学生的大局观和主人翁意识。
(2)拉开“一人一题”设计条件的差异。通过设置不同的设计条件参数,对设计题目分组,使组与组之间在一开始便存在较大差别。这样即便无法完全杜绝抄袭,但也增加了抄袭的难度,迫使试图“偷懒”的学生不得不思考别人的结果哪些可以借鉴,哪些不能简单照搬,在这样的“询问他人+自我思考”中也潜移默化地达到了教学的目的,“少数人栽树、多数人乘凉”的状态得到有效的遏制。
(3)设计的前期计算应有相对确定的参考答案。设计的物料衡算、热量衡算和设备工艺尺寸计算部分,应有相对确定的参考答案,作为指导教师进行过程控制的重要依据。原因有四:①由答案反推过程,有利于及时纠正低级错误,有利于引导学生主动思考;②结合结果控制的管理,当有严格时间限制时,往往比纯过程控制效果更好;③能提高当面交流的效率,有利于提高学生的学习体验,也有助于提升青年教师信心,使其快速成长;④设计的开放性体现在多个方面,诸如PID设计就能充分训练学生的发散思维,没必要从工艺计算就开始发散。
(4)避免重复训练。设计题目最好应包括反应器设计。如果没有反应器,指导教师还应充分注意所带班级《化工原理课程设计》的题目,使得核心单元操作与《化工原理课程设计》有所区别。
3.3完善成绩评定方式
最终成绩应是设计步骤(设计过程)、答辩(测验)、说明书撰写、图纸绘制等环节的成绩总和。其中,设计步骤(设计过程)环节是过程监控性质的,应规定学生在每个节点必须完成的任务,且对其完成情况作出快速、准确的评估;答辩(测验)环节也是过程监控性质的,是教师了解学生投入情况的另一个重要窗口,是对抄袭行为的必要威慑。
3.4加强设计类课程的中青年教师培养
(1)提高准入门槛。首先,从事化工设计实践环节教学的教师,必须有化学工程与工艺的专业背景,最好是参加过设计大赛或本科毕业设计题目为设计型题目。其次,青年教师接手设计课也必须有听课、助课等自我修炼的过程,特别是没有时间较长、强度较大的实践经历的青年教师。
(2)鼓励设计课相关的教师“走出去”访问学习。鼓励工艺设计课相关的教师,包括从事《化工设计》理论课教学的老师,多去化工专业排名前列的院校走访,听听那些口碑较好的老师的《化工设计》理论课,了解其授课内容,学习其先进的课堂组织方式和授课方式。笔者本科阶段上过天津大学王静康院士负责的《化工设计》课,深刻体会到:把《化工设计》理论课上好,是调动学生兴趣的第一步;否则,学生就会本能地对设计实践课产生抵触情绪,很难谈得上有兴趣。
(3)下大力气收集、整理真实的设计案例。学院和教研室应设法为一部分指导教师创造去设计院实训的机会,积累一些真实的设计案例,至少是获得一些标准规范的PID、平立面布置、设备、配管设计等图纸,加以分类,做好资源共享管理。
3.5加强不同专业课教师之间的沟通、协作
在此笔者有两个特别建议:
①特别建议带设计的指导教师参加实习。比如,在生产实习过程中,要求学生认真体会工艺设计相关的工艺和单元操作,了解厂区总图布置、设备布置、管线走向、监控室设计等,学习工程实际中的反应器和多组分分离系统。
②特别建议《化工工艺设计》的指导教师也从事《化工原理课程设计》的教学,甚至是带同一个班。同一位老师带班,更有利于讲清楚这两门设计课的相通点和不同之处,使得工艺设计课能够尽量多涉及过程和整体,避免在单元操作的局部中纠缠不清。笔者已通过这种模式连续带班了2届学生,效果良好。
4结语
工艺设计课是化工专业设计类实践环节的典型代表,综合性和应用性都很强。在高等工程教育深化改革方面,工艺设计课是大有可为的,应引起相关专业、相关院校和相关部门的高度重视。一方面,必须从学校、学院和教研室层面重视起来,为支持设计课的发展、构筑合理的专业培养体系精心谋划、大胆创新;另一方面,这门课以及化工设计相关的指导教师应当意识到自己身上的责任和使命,下大力气提高组织教学的水平和业务水平。如此经过全方位多角度的改进,工艺设计课的教学质量才会不断提高,才会在培养高层次工程技术人才方面发挥更大的作用。
参考文献
[1]冉茂飞,张嫦,刘东,等.基于卓越工程师计划的“化工设计”课程教改初探讨[J].广东化工,2015,42(14):228-229.
[2]赵云鹏,周敏.化工设计课程教学改革与实践[J].广州化工,2014,42(8):193-194.
[3]梁克中,黄美英,赖庆柯,等.大学生化工设计竞赛对化工设计课程教学改革的促进作用[J].职业时空,2014,10(8):76-77.
[4]张刚,涂军令,傅小波,等.化工设计课程教学中的问题与改革尝试[J].广州化工,2016,44(6):181-182.
[5]陈效宁,张艳辉.关于生产实习与化工设计类课程相结合的探讨[J].广州化工,2015,43(23):255-256.