当前位置: 首页 精选范文 思维品质如何培养范文

思维品质如何培养精选(五篇)

发布时间:2023-11-10 11:02:45

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇思维品质如何培养,期待它们能激发您的灵感。

思维品质如何培养

篇1

关键词:中职生;数学;思维品质

一、应体现中职数学的教育观,培养学生的数学思维品质

中职数学观下的数学教育首先面临的应是数学教育观念的转变,切实培养和发展中职学生的数学思维品质。因此,在教学过程中,针对不同的教材内容,有目的、有意识、有计划地培养和发展学生的思维品质,使学生了解数学之特点,明确数学之应用 ,体会数学之美妙,形成对数学的基本思想、方法和算法的认识。作为中职毕业生,要能将学到的基本数学理论和知识在以后的工作生活中更好地发展,在社会生活中体现出良好的数学思维品质。

二、应加强应用性教学,培养学生的数学应用意识

数学的应用意识是指当学生接受一个新的数学理论时,能主动地探索这一新知识的实际应用价值,并能尝试着从数学的角度思考问题,通过计算、推理等思想方法去解决问题。

如:在讲授《等比数列求和公式》前,先引出一例:我愿意在一个月(以30天计)内每天给你1万元,但在这个月内,你必须从第一天起给我回扣1 分钱,第二天2分钱……即每一天回扣给我的钱数是上一天的2倍,有谁愿意?问题一提出,引起了学生极大的兴趣,同学们讨论、计算,气氛活跃。通过引导,学生能写出回扣的总和为1+2+22 +…+229 分。这共有30个加数,计算烦琐。这时引导出解决问题的新知识:《等比数列求和》,并提出:①什么是等比数列?②等比数列是如何求和的呢?这就充分调动了学生学习的热情,使学生能积极参与,用“错项相减法”推导出等比数列前n项和的公式:Sn=■(q≠1)。接着让学生应用公式先解答这个问题,通过计算可知S30 =■= 230-1 (约1074万元)。

这样让学生通过推理、计算等思想方法去解决实际问题,使学生进一步加深了数学在生活中的应用意识。

三、应加强层次性教学,培养学生学习的积极性

由于现在学生的文化基础知识的差异较大,在教学过程应抓住数学的基本思想,针对不同层次学生的学习要求,深入浅出,帮助学生形成数学观念,掌握数学的基本方法和技能。以成功感有效地激发学生学习的积极性和主动性。

如在讲授《二次根式的性质》:■= │a│时。因这个性质的关键和难点都是在符号上,学生容易出错,为了针对不同层次的学生学习要求,可以提出如下二类层次问题:A:(1)■= ;■= ;(2)■=(y>0);■= ( x>2);

B:判断下列式子成立的条件:■= x-4( );■= 5-y ( )。这样让学生更一步明了■的结果是由a的取值条件决定的,加深了对性质的理解和掌握。

四、应创新教学,培养学生良好的创新精神

培养学生思维的创新性,关键是在日常的教学过程中要更新教学观念,抓好创新教学。

(一)开展好问题教学,培养学生的创新能力。

在教学过程中,教师应根据教材内容,不仅要提出问题,还要积极鼓励学生去发现问题,分析问题,进而共同解决问题。

如在讲授《函数》时,结合教材内容,笔者提出下列问题:问题1:三角形的面积为一定值时,其一边与这边上的高成反比例。为什么?

问题2:等边三角形的面积为一定值时,其一边与这边上的高是否成反比例?

解完问题1之后,对问题2,很多学生认为一般三角形尚且如此,那么等边三角形也不会例外。这时向学生指出,这个答案是错误的,那到底错在哪里呢?

等边三角形面积为一定值时,这个三角形就已唯一确定了,因而也就不存在底与高是变量的问题了。当学生弄清这个道理后,再让学生思考:除了等边三角形之外,还有什么三角形也会出现这种情况呢?

经过学生的思考,最后得出的结论是:对于两个角确定,或两边及其夹角确定,或三边确定的三角形,其一边与这边上的高不成反比例;对于一个角确定或底边及腰长确定的等腰三角形,其一边与这边上的高不成反比例;对于有一个锐角确定或两边确定的直角三角形,其一边与这边上的高也不成反比例。

(二)适时抓好开放题的教学,培养学生的创新能力。

开放题的特征是题目的条件具有多样性,进行开放题教学时,要引导学生认真分析问题,启发学生应用知识,沿着不同的方向去思考,去发现新的方法和途径,从而解决问题。

如:下列是关于x的方程:x2+2(m-1)x +3m2 -11=0。试问这个方程有没有解?要使方程有实根,应添加什么条件?要使方程没有实数根,又要添加什么条件呢?

这道题可以这样思考:方程有没有解,主要是由根的判别式决定的。而此题的判别式= 4(m - 1)2-4(3m2-11)= - 8(m2+m-6)。要使方程有实数根,则≥0,即-8(m2+m-6)≥0,可解得:当-3≤m≤2时,方程有实数根;反之,当≤0时,可解得:m≤-3或 m≥2时,方程没有实数根。

这样就给学生提供了更广阔的思维空间,知识的理解、应用得到提高的同时,思维的创新也得到了锻炼。

五、抓好解题教学,培养学生思维的敏捷性

培养学生解题的敏捷性,可以利用教材中的“一题多解(证)”等题型进行教学。

如:在讲授《平面直角坐标系》的练习课时,有道题:

已知:三点A(1,-1),B(3,3),C(4,5)。求证:这三点在一条直线上。

同学们经过讨论、分析,较多同学采用如下三种证法:

证法一:利用两点间距离公式。先求∣AB∣、∣BC∣、∣AC∣,证明其中最长的一条线段长度是其它两条线段的长度和;

证法二:利用两直线的斜率相等,即证过A、B;A、C两点的两条直线的斜率相等。

证法三:利用直线方程的两点式,求出过A、B、C中任意两点的直线方程,证明第三点的坐标适合此方程。

由此可以看出,通过抓好一题多解(证)的教学,增强了学生知识间的纵横联系,使知识系统化,进一步开拓了学生的思维,培养了学生解决问题的灵活性和敏捷性。

篇2

关键词:创新,思维品质,教学理念

“创新是一个民族进步的灵魂,是国家兴旺发达的不竭动力”,而创新能力又是以思维为核心,所有能力必须通过思维能力才得以实现。而思维品质是思维能力强弱的标志,培养良好的思维品质是发展智力的突破点,是提高中学化学教学质量的重要途径。笔者仅就化学学科谈谈对学生思维品质的培养。

一、创设良好的课堂氛围

创设良好的课题氛围,是培养思维能力的基础。良好的课堂氛围的创设,是教师的教学艺术的体现。首先,教师得精心设计导语,良好的开端是成功的一半,好的课堂导入语的设计,其实就是成功的课堂教学的开端。精彩的导入往往能创设良好的课堂氛围,成为激发学生思维的动力。例如我在给学生讲《钠》时,我的导入语是这样的“同学们,我们都知道水火不相容,在我们生活中的很多火灾都是用水来灭火的,请问水一定能灭火吗?另外我们生活中的很多金属投入水中都会沉入水底,有能浮在水面上的金属吗?”从生活出发,从实际出发,把学生引入今天要学的内容上来,增强学生的学习兴趣,提高学生的思维能力。

二、善抓本质,培养思维的深刻性

思维的深刻性,就是善于透过纷繁的现象发现问题本质的思维品质。它集中表现在具体进行思维活动时善于深入地思考问题,抓住其本质和规律,从而圆满地解决问题。化学是一门具有严谨科学性的学科,学生具备思维深刻性是学好这一学科及正确答好高考化学试题的必备素质。可见,要简明扼要地解决问题,最主要的应分析问题的实质,找出问题的关键所在。既要抓住题目“题眼”作为思维突破点,又要选点准确,使思路畅通,问题解决显得“敏捷而迅速”。如何在高考复习中,培养学生思维的深刻性,可根据知识间的内在联系,由浅入深,由表及里,由简到繁,由易到难去设计多层次练习题,进行一题多解,一题多变的训练,加深对知识的理解和掌握知识的内在联系,以灵活运用知识,提高解题能力。

思维深刻性的另一方面,可以在选择题中体现出来。中学生受认知水平,心理特征和学习态度等因素影响,往往对概念理解不透,记忆不深或仅凭印象进行机械推理,造成知识的负迁移,在思考问题时常常不细致,不深入,或产生思维定势,从而导致出错,教师在指导学生练习时,不仅要分析对的选项,也要分析错的选项,错在哪里?为什么错了?只有分析透彻,学生才能掌握得更牢固。这样才能达到有意识地培养学生思维的严密性和深刻性之目的。

三、善于变通,培养思维的灵活性

思维的灵活性是指善于根据事物发展变化的具体情况,审时度势,随机应变,及时调整思路,找出符合实际的解决问题的最佳方案。在遇到难题时,能多角度思考,善于发散思维,又善于集中思维,一旦发现按某一常规思路不能快速达到目的时,就要立即调整思维角度,以期加快思维过程。高考试题大多是灵活性很强的题目,只有善于应变,触类旁通,方能越关夺隘,攻克难题。所谓难题大致分为两类:一类是信息迁移试题,另一类是计算题。它们主要侧重考查学生的发散思维能力。

四、逆向思维,培养思维的逻辑性

思维的逻辑性是指思考问题时,条理清楚,推理准确,有因有果,严格遵循逻辑规律。逻辑思维性强的考生答题时分析论证问题层次分明,推理严谨,令人无懈可击。解题时,运用逆向思维,是培养学生思维逻辑性的一条重要途径。中学化学教材中许多内容是培养学生逆向思维的好教材,只要教师在备课时,深入钻研教材,精心设计问题以启发学生逆向思维,持之以恒就会收到奇妙效果。

五、标新立异,培养思维的独创性

思维的独创性表现为思路开阔,灵活新奇,独特,有丰富的想象,善于联想,长于类比;在心理上还表现为有强烈的创造愿望。知识的发展有待于创造,只有创造才能在竞争中生存,思维的创造性品质是当今时代最为重要、最可贵的一种品质。

近几年高考化学信息迁移题的命题可以看出,试题涉及的化学理论知识,由原来的高中基础知识略加延伸,到现在的大量取材于高等化学、社会生活及工业生产中的实际问题、新科研成果,就能力测试而言,由着重考查学生从现有知识、原理出发,分析、判断、推理解决“老”问题的能力,向考查考生自学新材料、新理论,运用新观点、新方法创造性解决“新”问题能力方向发展,有利于培养并选拔创造型人才。诚然、信息迁移题难度系数比较大、但它不“超纲”,重点考查学生的“现场自学”能力,知识迁移能力,创造想象能力。在复习教学中,不能丢开书本,花大精力,耗费时间去补充“超纲内容”,既浪费了精力,又增加了学生负担。重在多注意培养学生的自学能力,特别是“现场自学”能力,以及知识迁移能力,创造想象能力。

易受传统解题方法的约束,不能接受那些违反“常规”的解题捷径,也是缺乏思维独创性的表现。计算题教学中若把计算为主,推理为辅,转化为推理为主,计算为辅,也能很好地培养学生思维的敏捷性和独创性。

思维功能高效率的基础是思维结构的高度完善,促进学生形成最佳思维结构,最大限度地发挥思维的创造。而善于构造,是创造性思维能力的重要表现,各种类型的题目、解法均有繁简之别。许多学生满足于做出来,而不愿在解题技巧方面作深入探讨、致使解题速度缓慢,这是广大考生的弱点,不能不引起教师的高度重视。如果在解题中多留神各种解法,多启发诱导,尽可能让学生自己总结出一些简捷明快的解法,这本身就是一种创造。如果照本宣科,照析例题,硬套公式,题愈做愈死,越学越怕,思路越走越窄。故此应鼓励学生打破常规,发挥独创性。

化学教学中,如何使学生很好地掌握基础知识和基本技能,提高灵活运用知识的能力,关键狠抓思维的启发、诱导、训练和发展,以达到培养能力,开发智力的目的。因此,培养中学生化学思维能力,已成为中学化学教学的一项重要任务、如何在化学教学中采取行之有效的方法,进行有计划有步骤的化学思维训练,正需要我们深入研究,并落到实处。

参考文献

篇3

关键词:学生思维品质自觉性敏捷性灵活性

一、培养思维的自觉性

1、创设问题情境,激发学生思维情趣

教师在教学过程中,要注意创设问题情境,让学生发现问题,诱发学生的求知欲望,引发思考,激发学生学习和思考情趣。

创设问题情境,还要在一些教学内容和学生求知心理之间适当创设一种“人为障碍”的现象,把学生引入与问题有关的情境中,激发学生产生弄清未知事物的迫切愿望。如教学第二册“元、角、分的认识”。老师在黑板写1、10、100,然后问:谁能在每个数后面加上单位名称,并用等号把这三个数量连起来?这时学生对问题感到新奇:100总比10和1大,怎样用等号连起来呢?学生陷入深思!接着教师把学生的求知欲望引导到本节课教学的内容上。

2、要重视说的训练,提高思维的自觉性

(1) 读说训练

小学生好说好动,善于模仿,开口读的记忆方法比默记的效果好,多种感官同时参加学习的效率高。思维的发展和语言的表达有着密切的关系,人们思维的结果,认识活动的情况都是通过语言表达出来的。反过来,由于语言的经常磨练,也促进学生思维的发展。因此要充分利用小学生在学习上的这此有利特点和根据思维的发展与语言训练的辩证关系,注意加强说的训练。提高学生思维的自觉性,培养良好的思维习惯的有效手段,在于引导学生认真阅读课本,说算理、讲思路。

(2) 说理训练

计算与解答应用题,要适当引导学生进行说理训练。如14―9=?要求学生不仅能正确迅速说出得数,还会讲出是这样想的:9加5得14,14减9得5。这样有利于培养学生简单的判断推理能力。开始解答简单应应用题时,就要注意指导学生读题训练,如第二册第90页例6:“有黄花5朵,红花比黄花多3朵。红花有几朵?”图示是实物图和文字表达的长方条形图结全。图分成哪两部分?怎样算红花的朵数?”在教师的指导下,借助直观图示和操作活动,按照“想”的三个问题,让学生依次说出:红花的朵数多。红花的朵数可以分成两部分,一部分是与黄花同样多的5朵,另一部分是比黄花多的3朵;要计算红花的朵数,就是把红花中两部分的朵数结全起来。

(3) 表述整数四则坚式计算方法。

培养学生能根据法则,结合竖式计算,口头表述演算过程。有条理的边想、边说、边算。既帮助学生从抽象的法则中顺利步入运算之门,保证多数学生初期运算的正确性,又有效地促进学生逻辑思维能力的发展。如教学第二册的两位数加两位数中的进位加例3:34+28=( ) 。竖式的下面写上:“个位上4加8得12,向十位进1,个位写2。”学生开始计算进位加时,容易忘记进上来的1,为了避免遗忘,强调要把进上来的1先加上,但仍有部分学生要忘记。为此,在教学的初期,可教给学生口头表述演算过程的方法:个位上4加8得12,向十位进1,个位写2;十位上1加3得4,再加2得6,十位上写6;和是62。

在学习新知识时,体验到独立思考的乐趣。学生思维的自觉性就会逐步提高,这是进一步培养学生思维品质的前提。

二、培养思维的敏捷性

思维敏捷性是指思维活动的速度,思考问题严密、敏捷、反应迅速等。培养思维的敏捷性很重要,从一年级起就要注意培养,要重视双基训练。教学时,要注意引导学生认真思考,想出合理、敏捷解决问题的方法。

1、基础题要教好练透。

使学生弄清算理,掌握计算思路。在此基础上,组织一系列的有效训练,使学生能正确地、比较迅速的进行口算和简便计算。

2、简缩口算思维过程,提高口算速度。

简缩思维过程,就是口算时中间环节的计算要短暂地保留在记忆中,这需要一定灵敏的瞬时暗记能力。开始小学生缺乏这些能力,通过训练,就能逐步适应,从而提高口算速度,达到了口算训练过程培养学生思维敏捷性。例如第四、六册的减法与乘法口算例题:58―26=32(想:58―20=38,38―6=32),14×3=42(想:10×3=30,4×3=12,30+12=42)。

以上两道例题,分别是两步和三步的口算题,先让学生按照教材要求进行口算训练,到了适当的时候,引导学生把口算中间环节――口算结果暗记来来,以最后一步口算出得数。

3、抓联系找规律,培养学生思维的敏捷性。

数学是一门规律性很强的学科,在教学时要注意引导学生观察比较,找出其知识之间存在着的内在联系、规律性的东西。如20以内的进位加法,学生学习9加几。初学时9+3需要详尽表述口算过程(9和1凑成10,把3分成1和2,9加1得10,10加2得12)。经过一些练习,学生掌握口算步骤以后,引导学生在题组9+2、9+3、……9+9的练习中,找规律简化思维过程。经过观察比较,学生就会领悟到“9”加几,只要把加上的数分出1与9凑成10,剩几就是十几。找出了规律,最后省略思维过程,直接得出结果。这样既 使计算准确又提高了速度,同时也培养了学生思维的敏捷性。

三、培养思维的灵活性

思维灵活性是善于从不同角度和不同方向进行思考,能根据条件和问题的变化灵活地转换思路和解决问题的方法,能灵活运用知识来处理问题,学习时能举一反三,迁移能力强。

1、综合训练

例如,教学了运算定律和一些性质后,在学生掌握了各种简算方法的基础上,可设计一些综合训练题。如1÷125、1.25×8.8、180÷4÷5、18.74-1.45×2-1.51等让学生运用口算和简算综合进行计算:

1÷125[想:(1×8) ÷(125×8)=8÷1000]=0.008

1. 25×8.8=1.25×8+1.25×0.8=10+1=11

180÷4÷5[想:180÷(4×5)=180÷20]=9

18.74-1.45×2-15.1=18.74-2.9-15.1=18.74-(2.9+15.1)=0.74

以上的综合练习题,学生进行计算时,需要进行观察分析、综合、判断等较复杂的思维活动,需要灵活、准确地应用学过的运算规律、运算顺序与性质及充分运用口算能力,才能算得合理、正确和迅速。

篇4

根据以往的教学实际,我认为思维品质的培养可以从以下几个方面入手。

一、重视“说理”,培养学生思维的概括性和敏捷性

思路清晰、有条理,思维敏捷、具有概括性,是培养学生创造性思维的前提。新教材中将“解决问题”依附于计算教学和其他领域中,不分类型地出现应用题,但不同类型的应用题会同时出现;应用题多以图画形式出现,信息和问题在画面中,不同序的应用题特别多,原本有序的应用题编排被打乱了。

例如,一年级下册《练习七》中有这样一道“解决问题”的题目:图上画了12只小狗,文字信息为:有9只小黄狗,有几只小花狗?这道题目只有图文结合,才能将两个已知条件找齐,然后根据问题计算出结果。由于低段小学生思维的局部片面性,大部分学生往往能从文字信息中找到一个已知条件,对另一个需要从图画中数出来的条件反应不够迅速,“说理”时经常忽略对图画的解释,缺乏图文结合的概括能力。

在日常教学中,只有将说图意、说算理等放在重点位置上,并且经过启发诱导,使“说理”逐渐从叙事形态上升到概念形态,找出一类问题所有的共性,并达到熟练的程度,才能有效解决问题,增强思维的概括性和敏捷性。

二、解题方法多样化,培养学生思维的广阔性

解题方法多样化,实际上就是指一题多解,以一年级数学教材为例,表现最突出的就是算法多样化和统计方法多样化。但在具体的学习过程中,还有许多解题难点,也应该鼓励学生多角度、多方面地寻求解决问题的方案。

一年级下册《认识人民币》这一单元中,人民币的换算成了学生的学习难点,例如“1张10元可以换成( )张1元和( )张2元”,许多学生束手无策,于是猜答案。根据低段学生思维具体直观性的特点,我引导学生用不同方式解决问题。

1.计算法

1+1+1+1+2+2+2=10(元)

1+1+2+2+2+2=10(元)

……

2.画图法

从算式和图画中,我们可以直观看到1元和2元面值的人民币分别有几张。这种类似的方法,同样适用其他解题过程,如解决数的组成问题时,我们可以通过画简单的数位表来解决,也可以联想几个十表示几捆小棒,几个一表示几根小棒等等。

三、鼓励学生质疑,培养学生的批判意识

思维的批判性是指善于评价、批判他人和自我的一种智慧品质。具有批判性思维的儿童,善于发现问题,并能解决问题,不会人云亦云。

例如在学习“20以内退位减法”的过程中,教师鼓励学生算法多样化,学生的算法有:倒着往回数,想加做减,破十法等等。但部分学生将这几种方法进行比较后,很快发现破十法比较简单,而倒着往回数显然在后续学习中会很快被淘汰。有学生提出了将减数分成两部分,用连减的方式计算,即:17-9=17-7-2=8,他们觉得这种方法在运用中比老师重点讲解的破十法更方便。这就是学生思维的批判性。而缺乏批判意识的学生,计算方法会长时间停留在数数阶段,即便理解了破十法,也很难较快运用到解决问题的实际过程中。因此,我们可以在解题方法多样化的基础上,通过引导学生比较解题方法的优劣,讲实讲透例题,或者指导学生在不同的情境中采取适宜的方法解决问题,来培养学生思维的批判性。

四、巧用学具,发掘有关历史,引导学生开展创造性活动

在进行计算教学时,为了巩固计算方法,提高计算速度和准确率,老师让学生带扑克牌到学校,利用扑克牌进行计算游戏和小组竞赛。开始时,学生的兴趣比较浓厚,但随着计算的熟练,学生慢慢对游戏失去了往日的热情。

为了充分发挥教具的辅助作用,我查找了有关扑克牌的资料,发现扑克牌历史悠久,牌的花色和点数蕴含了不少知识。我向学生介绍有关扑克牌的奥秘,学生感叹:原来作为娱乐工具的扑克牌,还有那么多我们不知道的知识呀,真是让人大开眼界!我还带领学生一起验证了扑克牌的张数、点数与日期之间的关系,如每一种花色正好是13张牌,代表每一季度基本上是13个星期。这13张牌的点数加在一起是91,正符合每一季度91天。4种花色的点数加起来, 再加上小王的一点正好是一年的365天。

在学生感叹古人的聪明才智时,教师鼓励学生利用扑克牌进行与数学有关的创造活动。在教师引导下,学生通过合作探究发现:我们可以利用扑克牌的花色和点数进行有规律的排序,可以进行更复杂的计算,可以利用扑克牌玩抽数游戏,制作出统计表和统计图,还可以依据扑克牌的点数口头编应用题等等。

篇5

思维是认知的核心成分,思维的发展水平决定着整个知识系统的结构和功能,思维品质主要包括思维的灵活性、广阔性、敏捷性、深刻性、独创性和批判性等几个方面。数学的学习中尤其要注意思维品质的培养,这样不仅不怕题海的深渊,更能在题海中自由遨游。

青少年时期是个体发育、发展的最宝贵、最富特色的时期,然而这个时期同时又是人生的“危险期”。他们的身心急剧发展、变化和成熟,学习的内容更加复杂、深刻,生活更加丰富多彩。这种巨大的变化对高中学生的思维发展提出了更高的要求。作为高中数学教师,应抓住学生思维发展的飞跃时期,利用成熟期前可塑性大的特点,做好思维品质的培养工作,使学生的思维得到更好的发展。因此,开发高中学生的思维潜能,提高思维品质,具有十分重大的意义。

一、引导学生对题目特点进行分析,逐渐深入探讨

如教材上在数列的学习中有等差和等比数列的时候,可知它的定义分别是后一项与前一项之差或自比是定值,即an-an-1=d或=q,就等差数列为例:a2-a1=d,a3-a2=d,……,an-an-1=d ,将这n-1个式子相加得an=a1+(n-1)d,这就是等差数列的通项公式。同样方法可求等比数列的通项公式,于是给学生道出数列中后一项与前一项之差或之比为定值,都可用此方法,这就是迭加法。如一道题数列{an}中a1=1,an+1=2an+1,求an,此题解法较多,典型的就是由线性数列可构造等比数列求解,但从题目的特点可知an=2an-1+1,两式相减可构造等比数列,然后用迭加法可求。所以笔者认为教材中的东西是值得我们好好商榷的;它看似简单,但给予我们挖掘的东西太多了。

灵活的构想独特巧妙,数形结合思想得到充分体现。所以在教学中比较注重学生解题思路的独特性、新颖性的肯定和提倡,充分给予尝试、探索的机会,以活跃思维、发展个性。

二、 理解书本知识实质,做到触类旁通

数学教学的最终目的是为了使学生能运用所学的数学知识解决问题。因此,通过例题教学,要让学生在掌握基础知识、基本方法、基本技能的前提下,学会从多个角度提出新颖独特的解决问题的方法,培养他们解决问题的实践能力,发展他们的创新思维,使他们具有敏锐的观察力、创造性的想象、独特的知识结构以及活跃的灵感等思维素质。在解题中引导学生打破常规,独立思考,大胆猜想,质疑问难,积极争辩,寻求变异,放开思路,充分想象,巧用直观,探究多种解决方案或途径,快速、简捷、准确地解决数学问题。

学生数学思维障碍的形成,不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重突破学生的数学思维障碍就显得尤为重要。

三、 寻求高中学生数学思维障碍的突破

问题解决能力就是“创新精神与实践能力”在数学教育领域的具体体现,是一种重要的数学素质。寻找“问题解决”能力培养与课程教材知识体系学习之间的互补与平衡,形成稳定简明的教学理论框架及其操作性较强的数学课堂教学模式,促进学生的数学意识、逻辑推理、信息交流、思维品质等数学素质的提高,为学生的自主学习、发展个性打下良好基础。

1.创设问题情境,激发学生探究兴趣

从生活情境入手,或者从数学基础知识出发,把需要解决的问题有意识地、巧妙地寓于符合学生实际的基础知识之中,把学生引入一种与问题有关的情境之中,激发学生的探究兴趣和求知欲。

2.尝试引导,把数学活动作为教学的载体

学生在尝试进行问题解决的过程中,常常难以把握问题解决的思维方向,难以建立起新旧知识间的联系,难以判断知识运用是否正确、方法选择是否有效、问题的解决是否准确等,这就需要教师进行启发引导。

3.自主解决,把能力培养作为教学的长远利益

让学生学会并形成问题解决的思维方法,需要让学生反复经历多次的“自主解决”过程,这就需要教师把数学思想方法的培养作为长期的任务,在课堂教学中加强这方面的培养意识。

4.练结,把知识梳理作为教学的基本要求

根据学生的认知特点,合理选择和设计例题与练习,培养主动梳理、运用知识的意识和数学语言表达能力,达到更好地掌握知识及其相互关系和数学思想方法的目的。适时组织和指导学生归纳知识和技能的一般规律,有助于学生更好地学习、记忆和应用。

四、对题目讲解采用逐渐推进的方法