发布时间:2023-10-22 10:30:28
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇电磁感应的案例,期待它们能激发您的灵感。
【关键词】电磁感应 综合问题 观点 效用
电磁学是高中物理课程教学中的重点和难点,电磁感应与力学综合题是每年高考必考试题之一,这类试题多数以压轴题的形式出现,对学生的逻辑思维能力要求较高,给不少学生带来了麻烦;笔者从自身的教学实践出发,借助于几道典型的案例分析,从三个角度重点阐述处理这类问题的具体方式与手段,希望能给读者带来一定的帮助。
一、根据“力学的观点”处理电磁感应与力学综合试题
只要涉及到速度、加速度、运动状态的判断等情况,应当牢牢树立“瞬时”的意识,分析清楚受力情况,进行清晰的受力分析,并通过牛顿第二定律和运动学公式列出方程求解。并且在这个过程中要特别注意无具体数据时产生的多解情况。
例1:如图1所示,导体棒 可在竖直平面内足够长的金属导轨上无摩擦的滑动,导轨间距 ,导体棒 的电阻为 ,质量 ,匀强磁场垂直于纸面向内且 ,当导体棒自由下落 时,立即接通电键 ,试求:(1)分析电键接通后 棒运动情况;(2)最终 棒匀速下落的速度为多少?
解析:(1)电键 闭合的瞬间 速度 则 大于重力 则 即 向下做加速度不断减小的加速运动,直至安培力等于重力时变成匀速直线运动。(2)匀速运动时: 即
点评:本题主要考查力与运动相关知识和规律,解题的关键在于利用牛顿第二定律分析导体棒 运动特点,抓住瞬时速度和加速度发分析,值得注意的是导体棒切割磁感线构成回路时棒存在一定的初速度,必须要先判断安培力与重力的关系,才能确定运动的特征。
二、根据“能量的观点”处理电磁感应与力学综合试题
能量守恒定律是自然界的普遍规律之一,在电磁感应与力学综合试题中应该充分认识到:“摩擦力做功,有内能升高;重力做功,可能有机械能参与转化;安培力做功就实现电能与它形式的能转化”,利用能量守恒定律进行处理综合试题是可取的办法之一。
例2:如图2-甲所示,放置在光滑绝缘水平面上的正方形金属线框边长 ,质量 ,整个装置放在方向竖直向下,磁感应强度为 的匀强磁场中,线框的一边与磁场边界 重合,线框在水平力作用下由静止开始向左运动,经过 线框被拉出磁场,线框中电流与时间的变化图像如图2-乙所示,在此过程中:(1)通过线框导线截面的电量和线框的电阻;(2)水平力 随时间变化的表达式;(3)若在线框被拉出的 过程中水平力 做功为 ,则在此过程中线框产生的焦耳热为多少?
解析:(1)由 图像可得在 内通过线框导线截面的电量为图线与 轴围成的面积, ;由于 则 ;(2)感应电流 即 ,由 图像可知 则 ,根据牛顿第二定律得到: 即 ( );(3)线框从磁场中拉出的瞬时速度 ;根据能的转化和守恒定律,线框中产生的焦耳热
点评:本题涉及牛顿运动定律、电磁感应、运动学规律、能量守恒、图像知识等方面的考查,综合性比较高,题目中加速度恒定是本题的明显特征之一,对学生利用所学知识处理实际问题的能力要求较高,提醒一线教师在平时的教学中应该注意培养学生的综合素质能力。
三、根据“动量的观点” 处理电磁感应与力学综合试题
例3:如图3所示,质量为 的金属杆放置于导轨间距为 的光滑的平行导轨上,导轨左端连接的电阻阻值为 ,其他电阻不计,磁感应强度为 的匀强磁场垂直于导轨平面,现给金属杆一个水平向右的初速度 ,然后任其运动,导轨足够长,试求:(1)电阻 上产生的最大热量;(2)金属杆在导轨上向右移动的最大距离是多少?
解析:(1)金属杆在安培力的作用下,最后处于静止状态。由能量守恒得电阻 上产生的最大热量为: ;(2)金属杆运动至最大距离的过程中通过导体棒截面的电量 ,对棒运用动量定理可得: 即 则
点评:本题主要考查能量守恒、动量定理等知识和规律,解题关键之处是确定通过金属棒的电量,从两个方面求出电量,建立等量关系进行求解,要求学生平时注重物理规律的理解和应用。
总而言之,高中物理电磁感应与力学综合问题是高中物理的难点,对于物理问题的处理,以上三种观点的处理方式并不是孤立的,在处理实际问题的时候,常常会综合、灵活的运用它们,从而获取最佳的解题方案,作为一线的高中物理教师在平时的教学中,应该多角度引导学生理解处理问题的有效方法与规律,进而促进课堂教学效率的提升。
【参考文献】
摘 要:在综合复习电磁感应章节时,很多同学都提出不会处理双杆切割问题,其涉及到知识点多、问题类型多样。为此,笔者以本文和大家共同探讨双杆切割问题,希望能给同学们些许帮助。
关键词:双杆切割;电磁感应;安培力;合外力
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)28-160-02
导体棒切割模型是电磁感应的重点,是高考题的常客,我们必须熟练应用,本文将就双杆切割问题的基本知识和遵循的基本规律,介绍解题的基本方法和基本思路,归纳常见的题型及主要关系,培养解决电磁感应中的切割类问题的能力。
电磁感应中的切割类问题是电磁感应的基本问题,可以从四个常规角度:1、研究对象的选取:可分为三种类型,即单杆切割类、伪双杆切割和双杆切割类模型。其中单杆切割是基础模型。而伪双杆切割问题却是考察的重点,要求较高。伪即不是,很多类似问题中有双杆存在,但是真正切割的只为其一,而另一个往往是静止状态,可是很多同学分析这类问题时,随即采用右手定则,殊不知这是可怕的误区。双杆切割是难点,在近几年高考中有所降温,但能更好的诠释电磁感应的本质。2、电磁学中的基本规律,法拉第电磁感应定律、楞次定律,而安培定则Ⅰ(对应直线电流)、安培定则Ⅱ(对应环线电流)、左手定则、右手定则的循环使用要求很高,本文中将逐题逐步说明其方法和技巧。这些规律对应的重点问题有:感应电流方向的判断、安培力方向的判断。3、电路的基本规律,如闭合电路欧姆定律,串、并联电路中电流、电压、电阻、功率关系等。此规律对应的重点问题是:等效电路图的得出、路端电压的求解。4、力学规律,如运动学公式、牛顿运动定律、功能关系、动能定理、动量定理、动量守恒定律和能量守恒定律。此规律对应的重点问题有:正确的受力分析、牛顿第二定律理解、动能定理的应用。鉴于难点的突破,笔者将从以下双杆案例加以分析:
一、伪双杆切割(笔者的“伪”字,是为了强调,即不是双杆切割,此类问题会导致学生犯错,尤其是左、右手定则的混淆。此题的导入希望会帮助学生区分)
二、双杆切割
2、水平面双杆模型:如图2所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后( )
A.金属棒ab、cd都做匀速运动
B.金属棒ab上的电流方向是由b向a
C.金属棒cd所受安培力的大小等于2F/3
D.两金属棒间距离保持不变
解析:对两金属棒ab、cd进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒 速度小于金属棒cd速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab上的电流方向是由b到a,A、D错误,B正确;以两金属棒整体为研究对象有:F=3ma,隔离金属棒cd分析F-F安=ma,可求得金属棒cd所受安培力的大小,C正确;因此答案选B、C。
3.竖直面双杆模型:如图3所示,两固定的竖直光滑金属导轨足够长且电阻不计.两质量、长度均相同的导体棒c、d,置于边界水平的匀强磁场上方同一高度h处.磁场宽为3h,方向与导轨平面垂直.先由静止释放c,c刚进入磁场即匀速运动,此时再由静止释放d,两导体棒与导轨始终保持良好接触.用ac表示c的加速度,Ekd表示d的动能,xc、xd分别表示c、d相对释放点的位移。下列图中正确的是( )
关于双杆切割,属于电磁感应中较复杂问题,笔者在此归纳了以下常见模型,以供读者参考。
类型一:初速度不为零,不受其它水平外力的作用
关键词:750千伏架空输电线路;感应电压;感应电流;预防措施
中图分类号:TM621文献标识码: A
随着750kV输电线路的迅速发展,超高压线路走廊不断拥挤,线路的同塔架设、并行架设、交叉跨越不断增多。由于停电线路的空载导线形成一个巨大的电容器,处于工频交变强电磁场中,会耦合产生感应电压,对作业人员的安全造成较大的威胁。近年来,多处地方都出现过感应电伤人的事件。由于人们对感应电的认识普遍不足,认为感应电压虽高,碰到感应电只会有麻手的感觉,不会危及人的生命。实际上,通过触电伤人的诸多事件告诉我们,这是十分危险的,需要引起高度的重视,我们必须通过认真分析研究感应电的产生机理,抓住感应电的本质,方能采取切实可行的防范措施。
1.电磁感应现象
(1)电磁感应现象:闭合电路中的一部分导体做切割磁感线运动,电路中产生感应电流。
(2)感应电流:在电磁感应现象中产生的电流。
(3)产生电磁感应现象的条件:
①两种不同表述
a.闭合电路中的一部分导体与磁场发生相对运动
b.穿过闭合电路的磁场发生变化
②两种表述的比较和统一
a.两种情况产生感应电流的根本原因不同
闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。
穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流称为感应电流或感生电流。
b.两种表述的统一
两种表述可统一为穿过闭合电路的磁通量发生变化。
③产生电磁感应现象的条件
不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。
条件:a.闭合电路;b.一部分导体 ; c.做切割磁感线运动。
2.超高压输电线路感应电
现阶段,电力系统供电是一种单相不对称的供电系统。其在供电时,高压输电线路会在邻近空间产生高压电场,同时,交流电流又会在环绕其周围的空间产生很强的未被平衡的交变磁场。因此,处在超高压输电线路下方的线路或长形导体会产生静电感应和电磁感应现象。由于电容耦合,带电导体在该物体上会感应出电压(对地),迫使导体处于一个悬浮电位,该电压称为感应电压。感应电包括电磁感应而产生的感应电压和感应电流。如果产生感应电的输电线路不接地,则只有感应电压存在;一旦线路接地,将产生入地的感应电流。运行中的输电线路对附近线路的感应电一般来自两方面:一是电磁感应,它与互感有关;二是静电感应,它与电容有关。
2.1 静电感应电压
电容耦合,又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。超高压输电线路和下方导体与大地之间存在耦合电容,当超高压输电线路有高压交流电压时,将在邻近空间产生高压电场,从而使空间各点具备一定的电位。处于电场中的停电线路或者长金属导体,由于电容效应产生静电耦合,出现静电感应电压。若系统三相对称,且运行线路对停电检修线路或导体的三相分布电容平衡,则三相感应电压的矢量和为零。实际系统中,由于运行线路三相导线对检修线路的距离不相等,三相分布电容不可能完全平衡,三相感应电压的矢量和不为零,线路上即出现静电感应电压。
2.2 电磁感应电压
电磁感应耦合:又称磁场耦合,是由于内部或外部空间电磁场感应的一种耦合方式。超高压输电线路中的交流电流在其周围空间会产生未被平衡的交变磁场。根据电磁感应原理,其电流产生的磁力线切割相邻的电力贯通线时,将产生纵向感应电动势。由于电磁耦合三相互感不平衡,在停电线路上感应的对地零序电压,即为电磁感应电压。因三相距离不相等,则互感各不相同,运行线路的磁场在检修线路上感应的电动势也不相等,相加所得电压的矢量和即为检修线路或长导体的电磁感应电压。
3.感应电的危害
3.1案例
2011年7月18日,750千伏吐哈一线停电检修,并行750千伏吐哈二线带电运行。在封挂好线路两侧固定接地线后,工作班成员梁某、王某穿着全套合格屏蔽服开始上439#杆塔作业,王某将防坠器通过0.3米长绝缘绳圈挂设在杆塔横担上部,梁某开始沿软梯进人导线端,下软梯过程中,防坠器金属绳线部分已与杆塔横担下部接触,当梁某脚触及导线端均压环时,被感应电击倒在均压环上,身上衣物迅速燃烧,经现场人员放至地面后,已无生命特征。
案例分析:从技术层面来讲,本次事故可以终结为两点:一是感应过大,人体承受不了;二是作业人员操作步骤错误,未使用个人保安线,便进入导线端,且防坠器将人体直接串入回路。
3.2感应电分析
3.2.1感应电的大小
架空输电线路中的感应电现象是由电磁感应产生的,特别是同塔双回和平行架设的输电线路尤为突出,带电线路可以提供持续的工频电场,致使停电线路产生感应电。当停电线路不接地,则只有感应电压存在,一旦停电线路接地,将产生入地感应电流。
针对750千伏输电线路,依据电磁分析仿真计算软件-ATP(Alternative Transients Program)计算得到运行回路在正常运行负荷下,对停电回路的感应电压最大为0.85kV。当停电回路间隔8基杆塔的两端分别加挂临时接地线后,停电回路临时接地线间的感应电流最大值为6.04A。当运行回路输送2000MW负荷时,停电侧感应电压可达1288V.
案例线路系统参数为:标称电压750kV,最高运行电压800kV,操作过电压倍数1.8,最大输送功率2300MW,事故时最大输送功率4000MW。由此可见,理论上停电线路的感应电电压应大于1288V,但经现场实际测量,当停电回路间隔20基封挂接地线后,感应电压大于2000V。
3.2.2人体感知水平
电击对人体的危害程度,主要取决于通过人体电流的大小和通电
时间长短。电流强度越大,致命危险越大;持续时间越长,死亡的可
能性越大。能引起人感觉到的最小电流值称为感知电流,交流为1mA,直流为5mA;人触电后能自己摆脱的最大电流称为摆脱电流,交流为10mA,直流为50mA;在较短的时间内危及生命的电流称为致命电流,如100mA的电流通过人体1s,可足以使人致命,因此致命电流为50mA。在有防止触电保护装置的情况下,人体允许通过的电流一般可按30mA考虑。
人体对电流的反映: 8~10mA 手摆脱电极已感到困难,有剧痛感(手指关节);20~25mA 手迅速麻痹,不能自动摆脱电极,呼吸困难;50~80mA 呼吸困难,心房开始震颤;90~100mA 呼吸麻痹,三秒钟后心脏开始麻痹,停止跳动。
根据欧姆定律:
(I=U/R)
可以得知流经人体电流的大小与外加电压和人体电阻有关。人体电阻除人的自身电阻外,还应附加上人体以外的衣服、鞋、裤等电阻,虽然人体电阻一般可达5000Ω,但是,影响人体电阻的因素很多,如皮肤潮湿出汗、带有导电性粉尘、加大与带电体的接触面积和压力以及衣服、鞋、袜的潮湿油污等情况,均能使人体电阻降低,所以通常流经人体电流的大小是无法事先计算出来的。因此,为确定安全条件,往往不采用安全电流,而是采用安全电压来进行估算:一般情况下,也就是干燥而触电危险性较大的环境下,安全电压规定为36V,对于潮湿而触电危险性较大的环境(如金属容器、管道内施焊检修),安全电压规定为12V。这样,触电时通过人体的电流可被限制在较小范围内,可在一定的程度上保障人身安全。
3.2.3感应电小结
(1)感应电持续存在,与停电线路是否接地无关;
(2)感应电很大,远超人体承受能力;
(3)如果不做防感应电措施,人体将受到感应电严重伤害,甚至死亡。
3.3个人保安线分析
3.3.1个人保安线的正确
(1)应在线路停电、验电、接地工序完成之后
(2)作业人员在进入导线端前,应使用个人保安线,先接接地端,后接导线端,确保各连接点牢固可靠;拆除时,顺序相反。
(3)个人保安线应使用具有透明绝缘护套的软铜线,截面积不得小于16mm2。
3.3.2个人保安线的正确认识
3.3.2.1案例中未使用个人保安线
等效电路图
U:感应电压
R1:人体接入回路电阻
I1:感应电流
750千伏吐哈二线正常运行负荷2000MW,假设停电线路两端均已挂设接地,感应电压U=1200v,屏蔽服导通电阻0.1Ω,人体电阻1500Ω,不考虑接地电阻值。当人体并入回路后,第一时间电流值I1=1200/0.1=12000A,因现行三类屏蔽服的导流能力30A,屏蔽服各部位连接点会瞬间熔断,人体直接并入电路,则I1’=1200/1500=0.8A。
结论:人身触电死亡。
3.3.2.2假定案例中使用个人保安线
示意图
等效电路图
U:感应电压
R1:人体接入回路电阻
R2:个人保安线电阻
750千伏线路个人保安线采取不小于16mm2的铜绞线,长度为10米,而铜材料电阻率铜1.75 ×10-8(Ω・mm2/m),电阻近似为零。
结论:作业点导线与横担端几乎无电压降,人体所处回路被个人保安线回路短接,人体进入导线端仅有麻电感觉,不会导致人体触电死亡。
3.3.3个人保安线小结
(1)个人保安线可以短路电流;
(2)个人保安线可以增加接地点,降低区段感应电压;
(3)个人保安线可使作业人员确信线路可靠接地。
4.感应电预防措施
根据长期的运行检修积累和相关理论填充、研究,针对750千伏架空输电线路停电检修作业过程中,针对感应电的预防采取了以下措施。
4.1 对于停电线路必须首先进行验电才可采取后续的安全措施,由于750千伏输电线路尚无标准验电器,应使用带有金属端头的绝缘绳进行验电。操作过程为,作业人员手持绝缘绳尾部,慢慢将金属部分接近导线,根据放电的声音、火花和导线对金属的排斥程度来判断线路是否停电。
4.2 停电线路两端必须使用固定接地线,作业区段使用临时工作接地,降低线路区段感应电压,已达到降低感应电流的目的。
4.3 作业点使用个人保安线,短接人体回路电流,确保人身安全。
4.4 作业人员应穿着全套合格屏蔽服,确保人体进入导线端时,不受感应电伤害,且能保证人体进入导线端后,能始终保持等电位状态,同时,已起到了电场屏蔽作用。
4.5 作业人员的防坠落措施应采用绝缘绳索或装置,增大人体回路绝对电阻,使人体进入导线端等同于等电位作业,避免通流伤害。
5.结束语
自750千伏输电线路投运以来,无论是停电作业,还是带电作业,疑问始终伴随着我们,虽然我们已经做到了能顺利完成,但还谈不上效率化,简约化。由此可见,我们对750千伏输电线路感应电的认知还很有限,预防预控手段还很粗陋,伴随着750千伏主网架的逐步成熟,感应电预防措施的进一步完善、优化急不可待。
参考文献
关键词:新课程;探究性学习;案例设计
1引言
传统的授课中,学生是在层层点拨下得出了产生感应电流的条件,结论比较牵强,学生积极性不高,是以教师为主体进行教学。针对这一问题,笔者尝试通过创设情景、提问设疑――学生实验、合作探究――讨论归纳、巩固提高,实现以学生为主体,教师为主导,探究为主线的教学模式。课堂上学生们以小组为单位,积极参与,讨论充分,达到了教学目标。
2案例的主要设计思想
在介绍法拉第发现电磁感应现象的一些事迹后,提出问题:电能产生磁,那么磁能否产生电呢?
3实验探究
1.闭合电路的部分导体切割磁感线
学生操作演示:导体左右平动,前后运动、上下运动。观察电流表的指针,把观察到的现象记录在表中。
2.向线圈中插入和拔出磁铁
学生操作演示:把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中。观察电流表的指针,把观察到的现象记录在表中。
3.模拟法拉第的实验
学生操作演示:线圈A通过变阻器和开关连接到电源上,线圈B的两端与电流表连接,把线圈A装在线圈B的里面。观察以下几种操作中线圈B中是否有电流产生。把观察到的现象记录在表中。
4分析论证
演示实验1中,部分导体切割磁感线,闭合电路所围面积发生变化(磁场不变化),有电流产生;当导体棒前后、上下平动时,闭合电路所围面积没有发生变化,无电流产生。
演示实验2中,磁体相对线圈运动,线圈内磁场发生变化,变强或者变弱(线圈面积不变),有电流产生;当磁体在线圈中静止时,线圈内磁场不变化,无电流产生。
演示实验3中,通、断电瞬间,变阻器滑动片快速移动过程中,线圈A中电流变化,导致线圈B内磁场发生变化,变强或者变弱(线圈面积不变),有电流产生;当线圈A中电流恒定时,线圈内磁场不变化,无电流产生。
通过以上一系列问题讨论,并利用表格(如下表),把三个实验产生感应电流的操作过程、实验现象和初步分析进行汇总,引导学生从个性中寻找共性,比较有感应电流和无感应电流的情况,使学生自行发现了感应电流产生的条件。
5归纳总结
引起感应电流的表面因素很多,但本质的原因是磁通量的变化。因此,电磁感应现象产生的条件可以概括为:只要穿过闭合电路的磁通量变化,闭合电路中就有感应电流产生。
6小结
本节内容使用探究式教学,通过学生的动手、动脑、合作和讨论等方式,让学生设计实验方案,增强了学生的主体活动,达到了锻炼学生探究问题的能力和实验动手的能力。在学生探究过程中让学生从表格中寻找共性,充分调动了师生的互动、交流与沟通。
参考文献:
[1]姚奇杰.学生物理探究性面临的困难及其教学策略实验研究.中国知网,2003,8.
关键词:物理教学;案例描述;反思与评析
中图分类号:G427 文献标识码:A 文章编号:1992-7711(2013)19-080-1
一、案例描述
本节课的教学过程在于要求学生掌握法拉第电磁感应定律中的各个物理量内涵,要求学生理解并能运用E=Δφ/Δt这个公式。在教学过程中,笔者运用观察、比较与设计的手段,充分调动学生这个主体,使他们有强烈的兴趣去思考、去推理、去学习课程内容。
1.感应电动势。将图(1),图(2)用投影仪展示,并设问:图中电键S均闭合,电路中是否都有电流?为什么?
演示实验一:对照图(1)安培表指针偏转;对照图(2)电流计指针不动,但当条形磁铁位置变动时,电流计指针偏转,表明回路中有电流。
启发学生回答:图(1)中产生的电流是由电源提供的,图(2)中产生的是感应电流。
教师引导:由恒定电流的知识可知,闭合电路中有电流,电路中必有电源。对比图(1),图(2)提问,图(2)中的电源在哪里?用投影仪展示图(3),启发学生回答:图(2)中的线圈就相当于是电源,在磁铁插入线圈的过程中产生了电动势。
教师总结:(用图(1),图(2)装置进行演示说明)我们把电磁感应现象中产生的电动势叫感应电动势。
2.影响感应电动势大小的因素。演示实验二:按图(2)所示装置将相同的磁铁以不同的速度从同一位置插入线圈中,观察并比较电流计指针的偏转情况。
诱导学生观察与思考:两次插入过程穿过线圈的磁通量变化是否相同?电流计指针偏角是否相同?偏角大说明什么?原因是什么?
引导学生归纳:电流计的指针偏角大,说明产生的电流大,而电流大的原因是电路中产生的感应电动势大。由于两次穿过磁通量变化相同,穿过越快,时间越短,产生的感应电动势越大,说明感应电动势大小与发生磁通量变化所用的时间有关,且在磁通量变化相同的情况下,所需时间越短,产生的感应电动势越大。
演示实验三:按图(2)所示装置用两个磁性强弱不同的条形磁铁分别从同一位置以相同的速度插入线圈中,观察并比较电流计指针的偏转情况。
诱导思维:两次插入过程中磁通量变化是否相同?所用时间是否相同?电流计指针偏角是否相同?偏转角大说明什么?原因是什么?
引导学生归纳:两种情况所用时间相同,但穿过线圈仍磁通量变化不同,电流表的偏转角不同,而产生的感应电动势大小不同。说明感应电动势的大小还与磁通量的变化有关,即在相同的变化时间情况下,磁通量变化越大,产生的感应电动势越大。
演示实验四:按图(4)所示装置连接电路,将滑动变阻器的滑动头以大小不同的速度从一侧滑至另一侧,观察电流计指针的偏转情况。(教师介绍实验装置)
诱导学生思维:两次滑动过程中穿过线圈的磁通量的变化量是否相同?所用时间是否相同?电流表的指转角是否相同?偏转角大说明什么?其原因是什么?
引导学生分析与归纳:(1)快滑比慢滑在相同的时间里流过线圈L1的电流变化大,引起穿过线圈L2的磁通量变化大,即ΔΦ大;(2)快滑比慢滑所用的时间短,即Δt小;(3)快滑与慢滑相比,磁通量变化大而所用时间短,即单位时间磁通量变化多;(4)快滑与慢滑相比,电流计指针的偏角不同,即产生的感应电动势不同,即在单位时间内磁通量变化越多,产生的感应电动势越大。
二、反思与评析
每节物理课都有若干的教学难点,本节课有两个难点。第一:闭合电路中产生感应电流,电路中一定存在相当于“电源”的理解――即产生感应电动势的理解。第二:感应电动势大小决定因素。怎样解决这二个教学中的难点,是本课教学是否成功的关键。本课在化解难题时,采取了以下措施:
1.类比稳恒电路和感应电路,引导学生借助深知的稳恒电路要素,去理解新学感应电路的要素,使感应电路的“电源”及其“电源”主要参数――“感应电动势”这一抽象概念,立刻具体直观地展现在学生面前,这种化难为易之举,显然符合学生学习物理的心理。