当前位置: 首页 精选范文 模块化设计技术范文

模块化设计技术精选(五篇)

发布时间:2023-10-13 15:38:01

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇模块化设计技术,期待它们能激发您的灵感。

模块化设计技术

篇1

摘要:

随着我国社会经济的快速发展,科学技术水平的日益提高,我国制造业发展水平也日益凸出,其中,飞机制造水平已经取得了长足的发展。飞机装配型架作为飞机制造水平的关键指标,在整个飞机研制过程中起着相当重要的作用,其设计结构决定了工装制造的周期与费用,进而影响着飞机研制的成本和周期,同时也对产品装配的准确度与协调性起着决定性作用,最终影响飞机制造的整体质量。

关键词:

飞机装配;型架设计;模块化设计

飞机装配主要是通过将产品零件结合相关的设计要求和技术指标进行组装,最终形成装配件和整机的过程,其产品尺寸、零件数量及形状复杂程度等影响着飞机的制造工作量,所以对机装配技术的提高越来越得到飞机制造商的广泛关注。由机零件制造和装配精度都有很高的要求,制造和装配过程中的难度很大,装配型架作为飞机装配必要的工艺装备,在保证飞机质量稳定性和可靠性等方面需要进行严格的要求,飞机制造质量与装配型架的设计和制造过程息息相关,而且是把握产品质量的唯一尺度,直接影响着产品制造和装配的精度,所以本文对飞机装配型架模块化设计相关技术的研究分析具有重要的现实意义[1][2]。

1传统型架的设计方法

对于传统型架的设计方法,通常可以分为设计前期准备工作、方案设计、详细设计和最终设计等四个阶段。工装设计人员还应结合以往的设计经验和具体要求对工装的强度和刚度进行校核,在保证工装功能的同时还要尽可能的节约材料,确保产品装配的协调性。对于前期准备工作,主要包括熟悉产品图纸等设计资料,了解工艺方案和装配方案,考虑是否采用标准工装和模线样板作为协调依据,以保证产品的制造精度和互换协调性。在装配型架结构方面通常采用刚性结构,每套型架只用于一个装配对象,所以飞机制造过程中装配型架的数量很多。型架上安装有多个定位器,以保证产品装配的精度和结构的稳定性。通常而言,飞机的研制周期需要占飞机研制周期的一半以上,因而,装配型架对缩短整个产品的研制周期具有重要意义[3]。在产品设计完成后,都希望飞机生产用工装能够快速投入使用,而对于型架的结构数据,又需要标准样件和模线样板协调。传统的型架设计通常在产品设计完成后才进行,采用串行的设计制造方法,大大延长了整个工装的研制周期。

2现代装配型架设计的新技术

随着科技的快速发展,市场竞争的日益激烈,各国在航空制造领域都取得了快速的发展,传统的型架设计方法在成本、质量、周期、环保、服务等方面已经无法满足市场发展的要求,设计师通过不断研究新的设计方法和工具来提高工装技术水平,减少制造周期和成本,其中,并行设计方法使得产品设计的工艺性得到了很大提高,也大大缩短了工装设计周期,智能设计系统和有限元分析使零件和组合件的设计达到了很高的精度,优化了装配型架的结构。

2.1飞机结构和工装的并行设计方法

工装和产品并行设计的一个基本思路是改变传统的工装结构,将其划分为独立于产品设计数据或只需要基本数据的标准结构和依赖于最终产品数据的专用结构两部分[4]。装配型架的标准结构部分主要有立柱、底座、辅助支撑等,标准结构尺寸相对较大,需用专用大型加工设备,制造周期长。专用部分主要有卡板、接头定位件等,专用件一般尺寸较小,设计、制造周期短,不需要专门的大型专用设备。因此,在产品设计的初期就可以进行工装标准结构件的设计与制造,当产品最终版本发放后,只需设计制造专用结构就可以进行型架装配了。

2.2装配型架的柔性设计方法

柔性装配工装是基于产品数字量尺寸协调体系的、可重组的模块化、自动化装配工装系统。提高工艺装备“柔性”的方式有三种,一是拼装型架方式,用标准化、系列化的型架元件来拼装型架,实现工装快速设计与制造;二是可卸定位件方式,即型架骨架基本不变,而分布于骨架上的定位器做成可拆卸的,当产品对象发生变化时,只需要更换定位器;三是通过数字化技术、模块化结构和自动控制技术,使工装具有快速重构调整的能力,一台工装可以用于多个产品的装配[5]。柔性工装的快速重构功能使飞机工装的设计制造等准备周期大大缩短,同时其“一架多用”的功能大幅减少工装数量及占地面积,具有很好的经济效益。

2.3装配型架的内定位装配设计方法

所谓内定位装配设计方法,指的是在刚性较好的骨架零件上预先制出坐标定位孔,装配时在装配型架中以骨架零件上的坐标定位孔按相应定位器进行定位的一种方法。装配型架结构设计可以大量采用孔定位件。在刚性好的结构件上,直接利用结构孔定位或者事先在结构件上留取工艺孔。此外,型架的整体结构可以采用多支点可调支撑形式,以便将地基的不均匀变形对装配型架精度的影响限制在局部范围内。这是一种“以动制动”的制约方式,型架结构也变得轻巧,焊接框架的截面尺寸普遍减小。另外,采用多支点可调支撑给吊装、搬运带来很大的方便。

2.4装配型架的数字化设计方法

装配型架的数字化包括数字化设计、数字化制造和数字化检测。型架的数字化设计是指在三维环境下,进行型架结构的零组件设计和数字化预装配。数字化制造是应用数字化设计的工装模型,采用数字化加工设备,对工装的关键特征型面、互换协调交点等进行加工和装配。数字化检测则是采用数字化测量设备对型架进行检验测量[6]。装配工装采用数字化设计,是依据产品外形数模和结构模型,利用设计软件在计算机上进行工装三维模型的数字化定义,应用有限元软件进行工装刚度强度校核,应用仿真软件对产品装配过程进行模拟,从而避免工装结构刚性不足或刚性过剩,消除工装结构与产品的干涉以及装配不协调问题。

2.5装配型架的模块化设计方法

型架的模块化设计是基于工装设计的各种数据库的建立和完善,包括标准件库,工艺数据库,工装典型结构库,参数化模型等。模块化设计对提高工装设计效率是一条简单而有效的途径。此外,针对所使用的设计软件开发辅助设计工具,将设计师从繁琐的操作和重复劳动中解放出来,对提高设计效率也是非常有效的。在数据库的开发过程中,应充分考虑目前工装设计的主流平台,使不同的系统能够互相无缝连接。

参考文献:

[1]李庆利.飞机装配型架快速设计技术研究与实现[D].南京:南京航空航天大学,2012.

[2]刘平,魏莹,邱燕平.现代飞机装配型架设计新技术[J].洪都科技,2007(3):17-21.

[3]邹仁珍.飞机装配型架设计约束求解技术研究与实现[D].南京:南京航空航天大学,2009.

[4]丛培源.数字化测量技术在型架装配中的应用研究[D].杭州:浙江大学,2015.

[5]张云华.飞机壁板装配柔性工装设计与优化技术研究[D].沈阳:沈阳航空航天大学,2014.

篇2

关键词:模块化设计 无损检测 模块化设计在无损检测中的应用

引 言

随着生产技术的迅速发展和日趋激烈的市场竞争,以及用户个性化的设计需求,会对制造企业的批量生产造成巨大冲击,制造企业生产方式会由传统的少品种大批量转变为多品种小批量生产。这就会给机械设计人员及企业造成许多的困扰。如何既能为顾客提供个性化产品,又能保证生产周期,保质保量地完成客户的需求,提高企业服务水平和客户满意度,已成为制造企业及设计人员追求的目标。模块化设计是解决这一矛盾的有效方法。模块化设计可以在保证产品通用性的同时,提供多样化配置,既能满足用户个性化需求,又不降低企业效益。从而使个性设计和批量生产这对矛盾得以解决。与传统设计方式相比,模块化设计可降低设计风险,提高产品可靠性,缩短产品研发周期。模块化产品设计可以以少变应多变,以尽可能少的投入生产尽可能多的产品,以最为经济的方法满足各种要求。因此,模块化设计在各个领域已广泛应用。

1.模块化设计的概念及其意义

1.1.模块化设计的概念

模块化是以可完成独立功能的模块为基础。具有通用化、系列化、组合化的特点,是可以解决复杂系统多样化与功能多变要求的一种标准化形式。

模块化设计(Modular Design,MD)是指模块化设计是指在对一定范围内的不同功能或相同功能不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,通过模块的选择和组合可以构成不同的产品,以满足市场的不同需求的设计方法。

1.2.模块化设计的意义

采用模块化设计具有以下优点:

1.2.1.有助于提高产品研发质量

1.2.2.提高工作效率和节省生产周期

1.2.3.节约生产成本

1.2.4.有助于改进企业管理。

1.2.模块化设计的意义

基于上述模块化设计的优越性,模块化设计这一新的设计概念和设计方法迅速在各个领域得到广泛应用,它的竞争优势主要体现在两个方面:一方面解决品种、规格的多样化与生产的专业化的矛盾;另一方面也为先进的制造技术、提高设备的利用率创造必要的条件,实现以不同批量提供顾客满意度的产品,进而使企业实现产品多样化和效益统一。

2.模块化设计在无损检测技术中的应用

2.1.无损检测及其作用

无损检测技术即非破坏性检测,就是在不破坏待测物质原来的状态、化学性质等前提下,为获取与待测物的品质有关的内容、性质或成分等物理、化学情报所采用的检查方法。无损检测技术在现代许多领域中,不仅起到保证产品质量与安全监督作用,还在节约能源和原材料资源、降低生产成本、提高成品率和劳动生产率方面起到积极的促进作用。作为一种新兴的检测技术,其具有以下特征:无需大量试剂;不需前处理工作,试样制作简单;能进行在线检测;不损伤样品,无污染等等。所以无损检测是现代工业许多领域中保证产品质量与性能、稳定生产工艺的重要手段。

模块化设计原则

模块化设计的原则:

2.1.1.力求以少量的模块组成尽可能多的产品,并在满足要求的基础上使产品精度高、性能稳定、结构简单、成本低廉,模块间的联系尽可能简单;

2.1.2.模块的系列化,其目的在于用有限的产品品种和规格来最大限度又经济合理地满足用户的要求。

模块化设计有两种情况,一种是在对各种不同类型、不同规格产品进行分析的基础上,从中提炼出较强的共性。据此设计模块,其目的不仅是为满足某种产品要求,更是为了在更广的范围内通用,称为模块创建;另一种是为完成某种复杂产品功能。选用设计合适的模块确立它们的组合方式,称为模块组合。产品进行模块化设计时,根据用户需要,将模块合理组合,通过不同的组合方式,就可以设计出千变万化的产品。

2.2.模块化设计在无损检测技术中的应用

基于模块化设计的优点,模块化设计现在已广泛地应用于各个领域。以下就是机构模块化设计在超声波检测中的应用的实例。超声波检测是无损检测技术应用最广泛的手段之一。超声波检测适用于适合于金属、非金属、复合材料等多种材料的无损检测。针对不同的被检测物需要有不同的机械辅助机构,这将给设计、生产以及周期上的带来种种不便,模块化设计可以有效地解决这一问题。

引用模块化设计后,被测零件可以千变万化,而机构的模块化设计可以保持不变或者是稍有改变,这样可以大大节省设计时间和生产周期,从而节约成本。

3.结论

设计师运用模块化设计思想开发检测系统的辅助机构的设计,通过严谨细致的全面思考,充分利用已建立和考验过的实践经验,最大程度地降低了各方面的研制风险,节省了开发费用、缩短了研制周期,提高了产品质量和可靠性。随着客户对产品个性化需求的增加,产品定制化趋势越来越明显,模块化设计可以使产品在保证高通用性的同时,提供多样化配置,这是解决制造企业产品的标准化、通用化、定制化及柔性化之间矛盾的可行方案。模块化产品的可分解性、模块的兼容性、互换性和再利用性等,是绿色产品的特性,是制造业发展的趋势。产品的模块化设计具有广阔的发展前景和极大的市场竞争力,势必会对未来市场的产业发展带来极大影响。

参考资料:

[1] 林宋 《机械模块化设计关键技术》, 机械工业出版社, 2011-06

[2] 张俊哲《 无损检测技术及其应用》,科技出版社,第一版. 1993

篇3

温差发电片;外形设计;空调热风;家居低碳

当今世界,能源与气候问题日益突出,在全球气候变暖的大背景下,低能耗、低排放、低污染的“低碳经济”时代即将到来。低碳的循环的能源亟待发展,对于家居生活的低碳能源倡导,我们还没有投入足够的关注。低碳家居作为一个新兴理念在未来发展中将逐渐显现出其价值。本文关注这一理念,并对家居低碳概念付诸实际行动。温差作为我们日常生活中极其常见的物理现象,有着其不为大多数人所洞察的潜在能量,目前对于这块能量的利用还处于初步的阶段,我们采用半导体温度发电模块来对热源能量进行转化[1],其具有无噪音、低污染、转化率相对较高等优点,可广泛地用于对家电废热的回收及利用,所产生的电能可作为家庭辅助电力供应系统来使用。

本器件的重要组件为半导体温差发电片,其以塞贝尔效应[2]为基本原理制成。半导体温差发电是一种将温差能(热能)转化成电能的固体状态能量转化方式。事实上,温差发电片在温差较小的范围内并不能体现实际的利用价值。本文选择空调外机出风作为热源,很大程度上考虑到空调其出风口的温度相较于环境存在较为可观的温差。

在空调外机的出风口处架一与出风口大小相匹配的圆弧形罩面(其尺寸随空调设计规格的不同而调整),照面内部规则镶嵌若干温差发电片如图1(a),系统整体功能的实现是通过热风使得罩面两侧形成一定温度差,内部的温差发电片通过线路排布,整合成效率较高的转化装置,所产生的电能经由配置控制电路或储存在蓄电池或直接加载到用电器上。罩面由五个支架固定在空调外机上,罩面与出风口之间留有空隙,使热空气向侧面流通,防止外机散热受阻,引起压缩机无法工作。发电片在罩面内部的排布参照太阳能电池方阵,其主件是由温差发电片单体串并联获得[3],其扑拓结构如图1(b)。

考虑阵列中所有模块两端的温差构成矩阵 T

假设热电偶的赛贝克系数[4],模块的内阻和导热性都与温度无关。我们可以将阵列模块等效为一个电压源,其开路电压和电阻分别为和,不考虑输出电流的限制,所以可计算得:当时,输出功率取到最大:

这里是单一热电偶的塞贝克系数; 是与组件相关的导热性系数; t是组件两端的温差。从上式看出,该装置的输出功率主要受三个因素影响:发电片的规格及性能参数;模块的阵列拓扑结构;两端温差。

温差发电罩面包括铝制外壳层、温差发电片、线路排布通道、内壳层、整体电流输出线路管,温差发电片利用软性导热硅胶绝缘垫固定在散热铝槽所做外壳。软性硅胶导热材料有良好的导热能力、高强的绝缘效果、厚度可选择、柔软而富有弹性等特点,引导热量由内而外,分散热量使空间内达到均温。在散热设计中的应用是很广泛的。

我们所用的温差发电实验通过构建冷热源,模拟温差发电装置工作环境,测定温差发电装置在不同温差条件下的热电特性。实验得出TEC112706T200温差发电片发电特性如下:

表1 温差发电片测试一试验组数

实验条件说明:冷源温度恒定为30℃;热源加热至稳定20秒后读数;热源初始温度为35℃,逐渐上升。实验测试不同温度等级下的空载电动势得到变化曲线,两组全呈线性增长的变化趋势。由表知,当温度在45℃到55℃时,其发电特性接近于水平,能得到稳定电压1V。我们估计在夏季室外的温度平均可达32℃,而空调外机吹出的热风的温度可达70℃左右。这里的温差在考虑到罩面导热损耗所产生的的温差趋近因素,我们可以确定该款温差发电片能达到预定的功率输出。但是显而易见,其电压水平达不到正常用电器的工作电压,所以可以通过上述的阵列排布将多片串并联起来提高电压,并且针对这一温差发电组件,设计系统的蓄电电路,将温差发电片组件所产生的电能,经过升压,稳压进而储存到蓄电池中以备使用,该电路结构简单,体积小,成本低,而且转换效率达到了90%以上。

结论:我们通过温差发电片模块化的设计,使其与空调相配套,构成可靠,低碳的发电系统。并且对该模块组件进行阵列线路的分析,推导得到该模块所能输出的最佳功率的表达。并且选用到一款合适的温差发电片,对他的在温差的主要性能参数进行了试验检测,其符合日常空调使用的环境情况。最后本文还通过整合蓄电电路,解决了整个系统所产生电源的存储和正常范围内电压驱动等问题。

篇4

1模块化系统组成

1.1接口模块

1.1.1串行LVDS接口串行LVDS接口模块采用美国TI公司的10位LVDS解串器SN65LV1224B作为接收芯片,串行LVDS数据经过解串器后输出10位并行数据.系统上电时,将解串器与发送芯片建立同步,保证数据传输的可靠性.隔离芯片选择ADI公司iCoupler?技术的微功耗四通道数字隔离器AD-UM3440,无需外部驱动器和其他分立器件,提供低脉宽失真和严格的通道与通道之间的匹配.串行LVDS接口模块框图如图2所示。

1.1.2并行LVDS接口并行LVDS接口接收16位并行LVDS信号、1位时钟信号CLK和1位写使能控制信号,接收芯片采用NationalSemiconductor公司生产的DS90LV048A,支持四通道信号传输,具有高速的传输率和超低的功耗,选择4片DS90LV048A作为并行数据传输,1片DS90LV048A作为接收控制信号.隔离芯片选择ADUM3440,满足传输速率要求.当接收芯片检测到写使能的高电平信号时启动数据传输,接收有效数据.并行LVDS接口模块框图如图3所示。

1.1.3RS422与模拟量接口RS422接口采用AM26LS32作为差分线路接收器,实现RS422数据传输;模拟量接口进行模拟量采样时首先经信号调理电路对信号进行处理,然后送入模拟开关,再经过A/D转化和数字隔离实现模拟量采集.RS422与模拟量接口模块框图如图4所示.

1.2存储模块

根据存储容量和存储速度要求,存储模块分为小容量存储和大容量存储两部分,小容量存储模块采用流水线操作即可满足要求,大容量存储模块采取流水线操作和并行扩展技术分别从横向和纵向实现存储要求[10].NANDFlash选用SAMSUNG公司的K9WBG08U1M,单片存储容量为4GB,1页容量为4KB,内部由2片2GB的Flash芯片叠装组成,通过片选信号CE1和CE2分别选通,读、写操作以页为单位.写操作包括加载和编程两步,单片K9WBG08U1M写满1页所需加载时间为102.5μs,最大编程时间为700μs.

1.2.1小容量存储模块小容量存储单元采用2片K9WBG08U1M搭建流水线,减少对编程时间的等待.一组流水线进行4次加载操作,后面3片的加载时间为307.5μs,小于最大编程时间700μs,因此所需的总时间为102.5+700=802.5μs.一组8GB流水线的存储速率为16kB÷802.5μs=163MB/s,满足存储速度和容量要求.小容量存储模块框图如图5所示。

1.2.2大容量存储模块大容量存储单元采用16片K9WBG08U1M搭建4×4存储阵列,存储容量达到4×4×4=64GB.采用流水线技术,最大限度提高Flash芯片的存储速度,每组16GB存储单元的最快存储速率为40MB/s,4组Flash并行操作速率理论上可达到160MB/s,满足指标要求.在FPGA内部建立FIFO模块实现数据缓存与位数转换.横向进行位扩展的4片Flash拥有相同的片选信号和不同的数据通道,扩展为32位数据线;纵向进行流水线操作的4片Flash拥有不同的片选信号和相同的数据通道.大容量存储模块框图如图6所示。

2系统测试与分析

2.1模块化测试与分析系统工作时,首先确认上位机与下位机接口连接无误,然后上位机发送启动命令,进行初始化操作.初始化结束后基板发送信号进行检测,工作时基板作为中央逻辑控制单元控制各个模块,记录系统采用模块化设计,接口模块由存储板上的FPGA控制启动接收数据,并进行存储,事后回读分析.RS422和模拟量的回读数据分别如图7和图8所示.模块化的管理方法,能够满足记录系统的存储要求,实现各通道的实时存储.

2.2柔性化测试与分析系统设计接口扩展插槽和存储扩展插槽,可根据需求插入接口板,将扩展的接口模块经内部转换设计为与已知接口模块具有相同控制信号的模块,插入对应存储板实现扩展功能.如图9所示为某次试验对温度数据的记录,验证了系统的可扩展性.柔性化的构建,有利记录更多通道的数据,体现了记录系统的灵活性,使用便捷.

2.3现场试验测试与分析某次飞行试验中,对系统功能进行检验测试,事后进行回读分析,经上位机软件回读后的数据如图10所示.经过多次现场试验验证,将系统实测数据分析对比,验证了记录系统具有较高的可靠性.

3结论

篇5

关键词:汽车线束;模块化;周期;质量

DOI:10.16640/ki.37-1222/t.2016.14.215

0 引言

模块化设计是指在对一定范围内的不同功能或相同功能不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,通过模块的选择和组合可以构成不同的产品,以满足市场不同需求的设计方法。

1 联合卡车线束模块化设计运用

在商用车领域内,车型种类、轴距及客户订单配置的多异化特点,重型卡车底盘线束基本上专车专用。由于线束零件品种的繁多,给生产物料仓储、备件及供货周期都带来极大的困扰,线束常常成为设计变更的被动方,设计冻结之后变更会导致线束大量的返工,带来一些潜在的质量风险。因此,联合卡车车辆线束在研发之初就引入了模块化设计理念。

1.1 线束模块化设计影响因素

从事汽车线束设计的人员都清楚的知道,影响线束零件变化的因素太多。在商用车领域内,主要影响线束模块化设计因素有两大方面,即整车电器原理和电器件的布置,具体影响因素见图1。

1.2 线束模块化设计思路

汽车线束模块化设计思路就是通过对单元系统原理进行分析,结合整车装配工艺拆分成多个组成单元的线束,并通过对转接口定义模块化设计规划、电器功能模块化、电器件布局模块化设计来达到整车线束模块化设计。

(1)联合卡车原理设计。联合卡车电器原理基于正向电子电器架构开发,图2为联合卡车的电器原理拓普图。联合卡车电器原理设计具有如下特点:(1)模块化设计--①车辆信息由最近的模块采集;②功率驱动能力;③具备自诊断功能;(2)总线功能--①各节点信息通过J1939报文实行数据交换;②通过网关实现信息共享;③4路CAN和1路LIN;④灵活的订制功能。

(2)线束转接口定义模块化设计。考虑到线束加工制作、车辆装配工艺节拍及售后维修的需求,联合卡车整车线束进行了分段式处理和转接插件功能定义的规划,如驾驶室与底盘对接处插接件分为发动机、后处理、变速箱及通用相关功能。

(3)线束功能模块化。我们通过对线束终端功能分析,可将单个线束按功能拆分成几个子功能线束,分别给每个子功能线束进行定义,使它们在公共过渡转接口处的插接件针角定义进行固化;把每个功能模块的系统固化,使我们线束最终组合产品更为通用化。模块化过程必须考虑进组合模块的影响,如共用接合点的设计,在遇到多个接合点设计时,建议采用导通片回路来实现功能。

(4)线束布局模块化。目前线束的设计方式有两种模式,即集成式和分段式。集成式线束设计方式使得线束臃肿庞大,加工制造及模块化生产带来极大的困难;分段式线束是根据整车电器布置进行规划,按照功能和区域进行合理的划分,使得单个线束变得简单。

线束的生态环境很大程度取决于整车开发的模块化,并且在开发过程中是否严格的系统化、流程化去设计和规划,因此,线束设计技术开发应尽早的参与到整车开置规划中,提出设计规划要求,共同制定技术路线图。

1.3 模块化设计优点

模块化设计的优点有如下几点:①品种优化,整车线束匹配可进行匹配组合;②能够有效地降低产品呆滞风险;③可进行库存储备;④加快备件调取进度;⑤变更成本降低;⑥提升产品质量,简化线束设计流程,缩短设计周期。

采取模块设计后,原本复杂的线束设计过程变得简单化、标准化、系统化。可有效降低和减少线束设计与生产风险,从而提升产品质量。

参考文献: