当前位置: 首页 精选范文 网络行为审计范文

网络行为审计精选(五篇)

发布时间:2023-10-13 15:36:50

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇网络行为审计,期待它们能激发您的灵感。

网络行为审计

篇1

关键词:方法;维修性评估;BP神经网络

1 概述

维修性是现代航空武器装备重要的设计特性,是影响其使用可用度和作战效能的重要因素。定型试飞阶段是装备维修性评价的重要环节,其目的是验证装备的维修性水平是否达标,为改进装备维修性设计提供重要参考,提高装备的维修性水平。试飞阶段的维修性评价主要是通过试飞阶段产生的维修信息,验证装备的维修性水平。维修性评估除了有量化指标要求外,还有很多是一些非量化和无法量化的要求和指标。对这些非量化的指标和要求进行评价是非常困难的,往往不易下结论或者结论不够准确。目前,人们一般采用层次分析法(AHP)、模糊综合评判法或灰色评价法进行评价,但这些方法具有较强的主观性,缺乏自学习能力,实际评判中易受判定随机性、参评人员主观不确定性及认识模糊性等诸多因素的制约。针对以上情况,文章在建立维修性定性评估指标体系的基础上,采用目前比较成熟且最常用的一种神经网络方法,即BP神经网络,建立了评价模型,并给出了评价结果。

2 BP神经网络方法

人工神经网络是在现代神经生理学和心理学的研究基础上,模仿人的大脑神经元结构特性而建立的一种非线性动力学网络系统,它由大量简单的非线性处理单元(类似人脑的神经元)高度并联、互联而成,具有对人脑某些基本特性的简单的数学模拟能力。

2.1 BP网络结构

BP神经网络是一种单向传播的多层前馈神经网络,由一个输入层、一个输出层和若干中间层(隐层)构成。每层由若干神经元组成,不同层次的神经元之间形成全互连接。层内神经元相互独立,不同层次之间的神经元以权值W单向连接。每层神经元在节点接受前一层的输出,同时进行线性复合和映射(线性或非线性),通过复合反映不同神经元之间的耦合和映射对输入信息作出反应。

BP神经网络对于输入值要先向前传播到隐层节点,经作用函数运算后,再把隐层节点的输出信息传播到输出节点,最后给出输出值。文章采用一种具有个n2输入节点、n1个隐层节点和单个输出节点的三层BP神经网络,它的数学模型是:

Y=f(WijX+?兹1) (1)

Z=f(WjY+?兹2) (2)

其中,X,Y,Z分别为输入层、隐层和输出层矢量(节点向量);Wij,?兹1和Wj,?兹2分别表示输入层与隐含层以及隐含层与输出层之间的连接权和阈值,i=1,2,…,n2;j=1,2,…,n1;f(x)为网络激活函数或传递函数,通常采用S形函数,即f(x)=■,如果整个网络的输出要取实数域内任何值,则网络输出层可以采用线性函数作为传递函数,即f(x)=x,其结构如图1所示。

图2 图1中神经元j的结构模型

图1中Xk=(xp1,xp2,?撰,xpn2)为评价指标属性值,k=1,2,…,s,其中s是输入样本量;Z为样本模式P的输出。B=[b1,b2,?撰,bs]T=[bp]s×1为与样本模式P对应的评价结果,也是神经网络的期望输出值。实际输出Z与期望输出bp的误差函数Ep定义为Ep=(bp-Z)2/2。

对于图1中隐层的神经元j,其结构模型如图2。

神经元j模型可以表示为:

(3)

2.2 BP网络学习过程

BP神经网络的学习过程由正向传播和反向传播两部分组成,在正向传播过程中,输入模式从输入层经过隐层神经元的处理后,传向输出层,每一层神经元的状态只影响下一层神经元状态。如果在输出层得不到期望的输出,则转入反向传播,此时误差信号从输出层向输入层传播并沿途调整各层向连接权值和阈值。以使误差不断减小,直到达到精度要求。该算法实际上是求误差函数的极小值,它通过多个样本的反复训练,并采用最快下降法使得权值沿着误差函数负梯度方向改变,并收敛于最小点。

3 维修性定性评价指标体系

根据GJB 368B装备维修性通用工作要求中维修性定性评价内容可确定维修性定性评估的指标体系如图3所示。

图3 维修性定性评价指标体系

维修性评价的最主要目的就是得出分析对象的维修性好坏。对于二级指标,这里为了方便现场操作人员评价打分,每个指标又细化为多个评价准则。这里给出了互换性与标准化评价准则表,见表1。操作人员只需对评价准则进行回答,即可得出每个指标的评价值。文章以可达性中视觉可达为例介绍专家打分方法和评价过程。由于影响视觉可达的条件不同,因此具体项目和分值应根据实际操作进行调整。打分共有好、中、差等3项指标,“好”指标对应分值为80~100分,“中”指标对应分值为60~80分,“差”指标对应分值为60分以下,满分100代表最好的视觉可达状况。为了便于神经网络训练,对得到的百分制评价结果进行了处理,即每个分值除以100得到神经网络输入向量的元素,例如,如果专家对视觉可达的最终打分结果是85分,对应文章的输入向量的元素值为0.850。

附表1 互换性与标准化评价准则表

4 维修性BP神经网络评估模型

文章利用MATLAB实现BP神经网络的编程。将维修性定性评估指标体系中的16个指标作为神经网络的输入向量,将其评估结果作为唯一输出,建立一个如图1的16×midnote×1的3层BP神经网络。

其中16是输入样本的维数;

midnote是隐层节点数,隐层节点数目太多会导致学习时间过长、误差不一定最佳,也会导致容错性差、不能识别以前没有看到的样本,因此一定存在一个最佳的隐层节点数。以下3个公式可用于选择最佳隐层节点数时的参考公式:

(1)■C■■>k,其中k为样本数,n1为隐层节点数,n2为输入节点数。如果i>n1,C■■=0;

(2)n1=■+a,其中m为输出节点数,n2为输入节点数,a为[1,10]之间的常数;

(3)n1=log2n2,其中,n2为输入节点数。

1 是输出层节点数。

网络输入层与隐层之间的传递函数f(x)为tansig,即S型的双曲正切函数;隐层与输出层之间的传递函数f(x)为purelin,即f(x)=x;网络训练函数为traingd,即梯度下降BP算法函数;对于BP网络创建函数newff,其性能函数默认为“mse”,即均方误差性能函数,其权值和阈值的BP学习算法默认为“learngdm”。下面将介绍学习步长、初始权值和目标精度的选取要求。

4.1 学习步长、初始权值、目标精度的选取

学习步长是在学习过程中对权值的修正量,与网络的稳定性有关。步长过短,则学习效率低,步长过长,则网络稳定性差,学习步长一般取0.05。

初始权值选取和输出结果是否最接近实际,是否能够收敛,学习时间的长短等关系很大,由于MATLAB仿真软件会根据初始化函数自动生成相应的初始权值和阈值。

目标精度是确定神经网络的精度标准,当误差达到目标精度要求后网络停止。目标精度的确定是根据实际情况对精度的要求而定。

4.2 实例验证

训练根据实际数据和专家评定,选定用于训练和测试的10组样本数据,其中X矩阵的前9行,即9组训练样本,X矩阵的第10行为1组测试样本,B为10组样本的目标输出矩阵,Q为待估样本矩阵。

(1) 学习样本矩阵、目标输出矩阵、待评估矩阵的数据输入

(2)BP神经网络模型程序代码设计:

net=newff (min max(X(1:9,inf)'), [midnote 1], {'tansig','purelin'},'traingd')%创建网络并初始化

net.trainparam.show=50 显示训练状态间隔次数

net.trainparam.lr=0.05 学习步长

net.trainparam.epochs=500 仿真次数

net.trainparam.goal=0.001 目标精度

[net,tr]=train(net, X(1:9,inf)',B') 网络训练

Zsim=sim(net, X(10,inf)') 仿真计算

(3)仿真结果输出及分析

待评估矩阵的仿真结果为:Zsim=0.762066,它表示的意义是在16个二级评估指标能力值分别为待评估矩阵所给定值时,该维修性的评估结果是0.762066。图4为BP神经网络训练图。从图中可以看出,训练仿真到351次时,达到设定的目标精度0.001,训练停止。文章只对BP神经网络解决维修性评估的方法上进行了初步的探索,随着装备维修性研究的不断深入和神经网络技术的发展,BP神经网络方法在维修性评估中的应用将更加广泛。

图4神经网络训练误差曲线

5 结束语

文章将BP神经网络方法应用于对航空维修性的评价,意在建立更加接近于人类思维模式的定性与定量相结合的综合评价模型。通过对给定样本模式的学习,获取评价专家的经验、知识、主观判断及对目标重要性的倾向,当需对有关对象作出综合评价时,便可再现评价专家的经验、知识和直觉思维,从而实现了定性分析和定量分析的有效结合,也较好地保证了评价结果的客观性,此外仿真结果精确度高,可信性强。

参考文献

[1]黄书峰,端木京顺,唐学琴,等.航空维修保障能力的神经网络评估方法与应用[J].航空维修与工程,2008.

[2]GJB 368A-1994.装备维修性通用大纲[S].

篇2

基金项目:国家社科基金重大项目(10ZD&054)。

作者简介:钟阳(1982―),女,满族,黑龙江哈尔滨人,吉林大学经济学院博士研究生,主要从事国际金融研究;丁一兵(1973―),男,湖北武汉人,吉林大学经济学院教授,博士生导师,主要从事世界经济、国际金融研究;何彬(1979一),男,云南昆明人,吉林大学国有经济研究中心博士,主要从事应用计量经济学、公共经济学研究。

中图分类号:F821.0

文献标识码:A

文章编号:i006―1096(2012102-0070―05

篇3

关键词: 正交基神经网络; 非线性; 卫星信道; 预失真

中图分类号: TN927?34 文献标识码: A 文章编号: 1004?373X(2013)09?0040?03

0 引 言

高功率放大器是卫星通信系统中的重要组成部分,当其工作在饱和区附近时,卫星信道具有严重的非线性。这种非线性对信号的影响主要有两方面[1]:一是信号星座图发生变形,造成码间串扰(ISI);二是频谱再生,引起邻近信道干扰(ICI)。

随着现代通信技术和多媒体业务的高速发展,大容量高速率的信息传输十分必要,卫星通信也以不可抵挡之势向高速率大容量的方向迅猛发展。由于通信速率和通信带宽的迅猛增加,频谱资源越来越紧张,现代卫星通信更趋向于采用比恒包络调制频谱效率更高的幅度相位联合调制方式,如DVB?S2标准中的APSK等调制方式[2?3]。与传统的相位调制技术相比,APSK信号由于其信号幅度的变化,对卫星信道的非线性失真更加敏感。为保证通信性能,必须对信道的非线性失真进行补偿。

1 高功放的非线性特性及其对系统性能的影响

高功放的工作特性分为线性区和非线性区,当输入信号功率较低时,输出和输入功率关系是线性的;当输入功率较高时,输出和输入功率关系呈现出非线性,当输出功率达到饱和,再增加输入功率,输出功率不会增大还可能会减小。

高功放非线性模型非常多,本文采用经典的Saleh模型,该模型中幅度和相位的输出仅与输入信号的幅度有关。其幅度和相位转移特性曲线如图1所示,当输入信号归一化幅度小于0.6时,幅度转移和相位转移呈现线性,大于0.6时,其转移特性呈现非线性。

图2为16APSK信号经过非线性高功放的收发信号星座图。可以看出,接收信号星座图已经发生严重畸变,外圈星座点半径被压缩,内圈星座点半径扩大,内外圈星座点欧式距离被缩小;星座点相对原来位置发生逆时针旋转;码间串扰很大,星座点扭曲严重。由于高功放非线性效应的影响,在不加补偿的情况下,接收机已经不能正常工作。

2 正交基神经网络

正交基前向神经网络模型如图3所示。该网络模型由输入层、隐藏层和输出层组成。其中输入层、输出层各有一个神经元,使用线性激励函数[f(x)=x],隐藏层有[n]个神经元,采用一组阶次逐渐增高的正交多项式[φ(x)]作为其激励函数。

传统的神经网络存在收敛速率慢和易陷入局部极小等缺点,文献[4]提出了一种Chebyshev正交基神经网络,该网络的隐藏层神经元采用Chebyshev正交多项式,即文献[4]采用基于伪逆的方法,实现了一步权值直接确定,不需要迭代,具有更高的计算速率和工作精度,同时不存在局部极小的问题。考虑到Chebyshev正交基神经网络的优点,将其应用到卫星非线性信道的补偿技术中。

3 基于正交基神经网络的预失真补偿算法

正交神经网络预失真系统框图如图4所示。[x(n)]为预失真器的输入,[y(n)]为预失真器的输出、高功放的输入,[z(n)]为高功放的输出,用[M(?)]和[N(?)]分别表示预失真器的幅度和相位转移特性,预失真器的输入输出关系为[1]:

篇4

【摘要】 目的: 探讨矽肺纤维化同生物活性介质之间的关系。方法: 利用Delphi语言编制了BP人工神经网络模型计算机程序,建立并分析了矽肺胶原纤维预测的数学模型。结果: 选定网络隐含层节点为9,初始权值阈值约为(-0.2,0.2),最大相对误差为4%,最小相对误差为0.2%。 结论: 应用神经网络具有较好的预测效果,可为临床医学研究提供一个很好的研究思路。

【关键词】 BP神经网络; 生物活性介质; 矽肺; 胶原纤维; 预测

矽肺是尘肺中最严重的一种类型,是由于长期吸入超过一定浓度的含有游离二氧化硅的粉尘,肺内发生广泛的结节性纤维化。矽肺纤维化的预测困难,诊断滞后。目前,矽肺的发病机理仍然不完全清楚,尚无有效的早期诊断(筛检)方法,也无早期诊断的特异性指标和特异性的治疗药物和方法。一经传统的后前位胸大片确诊,肺部病变已经无法逆转。因此,寻找早期诊断(筛检)特异性的生物介质组合,对预防、治疗乃至最终消除矽肺具有重要意义。矽肺的发病与细胞因子(Cytokine,CK)网络调控有密切联系,高宏生等用系统生物学的方法论证了细胞因子对矽肺纤维化的网络调控关系[1,2],论证了细胞因子复杂非线性致炎致纤维化的网络调控假说。王世鑫等用判别方程的方法,通过诊断肺纤维化正确率。矽肺纤维化与不同活性介质、基因表达等多种因素密切相关[3],因此预计是一个多目标决策问题。传统的预测方法是用多元线性回归来进行预测,统计者千方百计的想找出决策目标和各因素之间找出一个线性的公式关系,试图想用一个严格的数学模型公式表达出相应的关系。实际上,具有良好的非线性的神经网络可以预测矽肺纤维化结果。本研究图基于神经网络的方法预测生物活性介质网络调控的矽肺纤维化。

1 神经网络的基本理论

人工神经网络是基于对人脑组织结构、活动机制的初步认识提出的一种新型信息处理体系。通过模仿脑神经系统的组织结构以及某些活动机理,人工神经网络可呈现出人脑的许多特征,并具有人脑的一些基本功能。从本质上讲,人工神经网络是一种大规模并行的非线性动力系统。它具有许多引人注目的特点:大规模的复杂系统,有大量可供调节的参数;高度并行的处理机制,具有高速运算的能力;高度冗余的组织方式等。

在预测领域中应用最广泛的还是BP网络。BP网络的学习算法是一种误差反向传播式网络权值训练方法。实质就象最小二乘法一样,BP算法是在样本空间中耦合这样一个曲面,即使所有的样本点均在这个曲面上,若这样的曲面不存在,就找到离样本点的距离之和最小的曲面作为近似解。

BP网络的学习过程包括:正向传播和反向传播。当正向传播时,输入信息从输入层经隐单元处理,后传向输出层,每一层神经元的状态只影响下一层的神经元的状态。如果在输出层得不到希望的输出,则转入反向传播,将误差信号沿原来的神经连接通路返回。返回过程中,逐一修改各层神经元连接的权值。这种过程不断迭代,最后使得信号误差达到允许的误差范围之内。如图1所示为3层神经网络结构图。

输入层

隐含层

输出层

图1 神经网络结构

设3层BP神经网络,输入向量为X=(x1,x2,…xn)T ;隐层输出向量为Y=(y1,y2,…ym)T ,输出层向量为O=(o1,o2,…ol)T ,期望输出向量为d=(d1,d2,…dl)T 。

对于输出层,有ok =f(net),netk=m j=0wjkyj ,k=1,2,…l

对于隐层,有yj =f(net),netj=n i=0vijxi ,k=1,2,…m

f(x)=1 1+e-x ,BP学习算法权值调整计算公式为:

Δwjk=η(dk-ok)ok(1-ok)yj

Δvij=η(l k=1δ0k wjk)yj(1-yj)xi

δ0k =(dk-ok)ok(1-ok)

η∈(0,1)

2 应用实例

2.1 矽肺预测的影响因素

大量研究表明,肺泡巨噬细胞和肺泡上皮细胞在肺组织炎症反应及纤维化病变的启动、发展过程中起到最为关键的作用,主要是通过分泌细胞因子、炎性介质等生物活性物质,发挥直接或间接的生物学作用。这些CK包括:白介素(interleukin,IL)、肿瘤坏死因子(tumor necrosis factor ,TNF)、转化生长因子(transforming growth factor,TGF)等。根据分泌细胞因子不同将Th 细胞分为Th1 和Th2 两种类型。Th1主要分泌白介素-2(interleukin-2,IL-2)、白介素-12(interleukin-12,IL-12)、白介素-18(interleukin-18,IL-18)、干扰素-γ(Interferon-γ,IFN-γ)等,主要介导细胞免疫应答,与炎症有关,具有抗纤维化作用,可抑制成纤维细胞的增殖及纤维的生成。Th2主要分泌白介素-4 (interleukin-4,IL-4)、白介素-5 (interleukin-5,IL-5)、白介素-10 (interleukin-10,IL-10)、白介素-13(interleukin-13,IL-13)、单核细胞趋化蛋白-1 (monocyte chemoattractant protein-1,MCP-1)等,而Th2主要介导体液免疫反应,可促进成纤维细胞的增生,导致胶原蛋白合成增加,并抑制胶原蛋白的降解,最终导致细胞外的基质蛋白沉积和纤维生成。Th1 型和Th2 型免疫应答之间存在着交互的负反馈作用,维持着正常的免疫平衡。其负反馈调节通常就是靠产生的细胞因子起作用的,即一型CK可以下调另一型CK的功能。Th1/Th2型CK失衡可导致机体对损伤的异常反应。总之,矽肺病人存在CK网络的平衡紊乱,其错综复杂的调控机制可能参与矽肺的发生和发展[6~9],如图2所示。

图2 细胞因子网络调控图

2.2 矽肺预测的BP网络模型的设计

本研究运用神经网络的模型方法,对矽肺预测进行设计,得出其预测模型。

2.2.1 输入层、隐含层、输出层的设计

矽肺纤维化输入层的确定:根据meta分析和微分方程网络模型确定生物活性介质为输入层。

转贴于

对于矽肺预测,应当依据其关键要素来确定输入层各因素,在神经网络模型中,输入层可以选定白介素(interleukin,IL)、肿瘤坏死因子(tumor necrosis factor ,TNF)、转化生长因子(transforming growth factor,TGF)等。根据分泌细胞因子不同将Th 细胞分为Th1 和Th2 两种类型。Th1主要分泌白介素-2(interleukin-2,IL-2)、白介素-12(interleukin-12,IL-12)、白介素-18(interleukin-18,IL-18)、干扰素-γ(Interferon-γ,IFN-γ)作为输入层,输入单元数为8,隐含层节点的确定参考下面单元计算公式:

c=n+m+a

其中c 为隐层单元数,n为输入神经元个数,m 为输出神经元个数,a 为1~10之间的常数。本研究中,隐层单元数计算如下:

8+2+1≤c≤8+2+10

即:4.33≤c≤13.33

根据c 的计算值,由小到大改变节点数训练并检验其精度,当节点数的增加误差不进一步减小时,其临界值即为应采用的值。最后,经过网络的实际训练结果比较,选定网络隐含层节点为9,此时网络能较快地收敛至所要求的精度。

2.2.2 初始权值的确定

在神经网络模型中,初始权值选取对于输出结果是否最接近实际,及是否能够收敛、学习时间的长短等关系很大。初始权值太大,使得加权之后的输入和N落在了网络模型的s型激活函数的饱和期中,从而会导致φ′(·)非常小,而由于当 φ′(·)0时,则有δ0,使得Δwji 0,最终使得调节过程没有什么效果。所以权值及阈值的初始值应选为均匀分布的小数经验值,约为(-2.4/F,2.4/F)之间,其中F为所连单元的输入层节点数。本模型输入端节点数为11,所以初始值约为(-0.2,0.2),可随机选取[4]。

2.2.3 目标值及学习步长的选取

对矽肺预测之前,应先根据影响矽肺预测的因素进行综合预测。在实际操作时,还应结合经验值。若Sigmoid函数选取反对称函数——双曲正切函数,综合评估指标的目标值D的范围也应在[-1,1]之间,也即是综合指标的无量纲数值在[0,1]之间。通常输出单元的局部梯度比输入端的大,所以输出单元的学习的步长应比输入单元小一些[5]。

通过以上分析可得网络模型结构如图3。利用Delphi语言编制了BP人工神经网络模型计算机程序进行训练集样本训练,训练输入节点数为8,表1为矽肺预测输入训练样本和检测样本,当误差给定E=0.00005,学习步长为0.1,经200次训练,网络精度达到要求,如表2和图4所示。表1 矽肺预测输入训练样本和检测样本表2 训练样本训练次数网络误差

样本经200次训练后,网络误差满足精度要求,隐含单元到各输入单元的权值和阈值及输出单元到各隐含单元的权值和阈值调整为表3和表4所示。

由于矽肺预测神经网络模型经训练后,网络精度已经达到要求,可以用检验样本检测预测效果,如表5所示。

从预测结果看,最大相对误差为4.0%,最小相对误差为0.2%,预测效果非常明显,该网络的检验性能稳定,可以很好的对矽肺进行预测。表3 隐含单元到各输入单元的权值和阈值表4 输出单元到各隐含单元的权值和阈值表5 检验样本及矽肺预测结果

3 讨论

本研究通过采用神经网络的方法,探讨矽肺纤维化同生物活性介质之间的关系,并建立了矽肺纤维化的影响因素和Ⅰ型胶原、Ⅲ型胶原的BP神经网络,从预测效果看,能够较准确的预测矽肺纤维化。但还应当看到神经网络应用到预测还有许多不尽如意的问题,主要的弱点之一是它是一种黑盒方法,无法表达和分析被预测系统的输入与输出间的关系,因此,也难于对所得结果作任何解释,对任何求得数据做统计检验; 二是采用神经网络作预测时,没有一个便于选定最合适的神经网络结构的标准方法,只能花大量时间采用凑试法,从许多次实验中找出“最合适”的一种。本研究在矽肺预测上运用神经网络建模上进行了初步的探讨,对网络模型的拓展性、收敛性等问题还有待于进一步的研究 。

参考文献

1 高宏生, 伍瑞昌, 张双德, 等. 基于meta分析和微分方程模型的肺纤维化细胞因子调控网络研究. 军事医学科学院院刊,2008,32(3):312~316.

2 高宏生,杨霞,丁朋,等. 应用meta分析肺纤维化TNF-α的时空变化. 武警医学院学报,2008,17(8):561~562.

3 刘萍 王世鑫 陈蕾,等. 矽肺患者血清克拉拉细胞蛋白和表面活性蛋白D的改变. 中华劳动卫生职业病杂志, 2007, 25(01):18~21.

4 韩力群.人工神经网络理论、设计及应用.化学工业出版社,2001.

5 何海龙,王青海,王精业.神经网络在装备保障性评估中的应用. 系统工程理论与实践,2003,9:111~116.

6 Kohonen T.Self-Organization and Associative Memory. Berlin Heidelberg:Springer-Verlag,1984.

7 Lapedes A,Farber.Nonlinear signal processing using neural networks :prediction and system modelling[R].Technical Report LA-UR-87-2662,Los Alam os National Laboratory.Los Alamos.NM,1987.

8 Wang CH, Mo LR, Lin RC, et al. Artificial neural network model is superior to logistic regression model in predicting treatment outcomes of interferon-based combination therapy in patients with chronic hepatitis C.Intervirology,2008,51(1):14~20.

9 Kato H, Kanematsu M, Zhang X,et al. Computer-aided diagnosis of hepatic fibrosis: preliminary evaluation of MRI texture analysis using the finite difference method and an artificial neural network.AJR Am J Roentgenol, 2007,189(1):117~122.

10 Piscaglia F, Cucchetti A, Benlloch S,et al. Prediction of significant fibrosis in hepatitis C virus infected liver transplant recipients by artificial neural network analysis of clinical factors. J Gastroenterol Hepatol, 2006,18(12):1255~1261.

篇5

根据国外公司法或者国外研究人员的定义,财务危机是指企业由于经营失败而没有能力支付到期债务。以下事项只要满足一项就表明企业经营失败,即:破产,债券违约,透支银行账户,无法支付优先股股利。这样的定义是基于国外资本市场十分成熟的情况下做出的,然而,由于我国的资本市场仅仅发展二十余年,尚不成熟,并且我国上市公司的退市制度还不完善,因此,本文将发生财务危机的企业定义为中国证券监督管理委员会(证监会)设定为“特别处理”的企业,通常在资本市场中这类企业的股票代码前冠以“ST”符号以示区分。

基于现有的各类财务指标,构建一个财务危机预警的数学模型,用于提示企业发生财务危机的可能性有很多现实意义。建立与企业实际发展状况相符的财务危机预警模型有利于投资者做出更加理智的投资决策,有利于企业管理者更好地理解企业财务状况以提高管理水平,有利于银行和其他债权人更好地评估企业的债务违约风险,有利于政府监管部门更有针对性地监督上市公司,有利于审计人员更加高效地审计上市公司等等。

二、选择样本

失败企业的筛选:

在第一部分,将“ST”企业定义为经营失败的企业,数据来自于上海证券交易所和深圳证券交易所网站。由于有些失败企业数据缺失,最终筛选出2005年的55家“ST”企业。为了将模型适用于各类企业,这55家“ST”企业来自各行各业,有制造业、建筑业、交通运输业等。资本市场中,大部分企业使用统一的会计制度,但是金融保险业上市公司使用其专有的会计制度,因此,本文挑选的55家“ST”企业不包括金融保险业上市公司。

非失败企业的筛选:

非失败企业的筛选按照以下步骤进行:(1)查找“ST”公司的行业类别代码;(2)在该类行业中,筛选出和“ST企业”资产规模最接近的企业;(3)如果筛选出的企业是非失败企业,则采用;(4)重复以上步骤,直到筛选出与失败企业同样数量的非失败企业。

表 失败企业和非失败企业的来源与数量 单位:家

三、选择财务指标

目前,通过哪些财务指标来判断企业是否遇到了财务危机没有一个统一的标准,而且仅仅通过若干个财务指标来描述企业的经营状况是很困难的。本文在前人研究经验的基础上,初步筛选出反映企业总体状况的六个方面的15个财务指标,这六个方面分别是短期偿债能力,长期偿债能力,盈利能力,资产管理能力,主营业务盈利能力和增长能力。筛选的15个财务指标来自2005年12月31日的资产负债表,主要有流动比率,速动比率,现金比率,产权比率,已获利息倍数,现金收入比率,总资产收益率,净资产收益率,存货周转率,应收账款周转率,总资产周转率,主营业务利润率,资本保值增值率,净利润增长率,总资产增长率。

在建立预测模型之前,首先要在15个财务指标中找出与企业被“ST”最相关的指标。在Rapidminer 6.1中,使用相关矩阵测算财务指标与“ST”之间的关系。通过计算,除去流动比率(相关系数为0.03

图1

使用Rapidminer 6.1的相关矩阵函数计算找出与企业被“ST”最相关的财务指标,软件中使用的模块和连接如图中所示。

图2

展示了13个财务指标分别与企业被“ST”之间的相关系数,运行结果显示,财务指标X1(流动比率)和财务指标X3(现金比率)与“ST”的相关系数小于0.05,表明他们之间的相关性小,因此剔除这两个财务指标。

四、实验过程

神经网络的建模过程如图3、图4所示,图5表示的是预测的准确率。

图3 主要处理过程

将待处理数据和SPLIT函数模块拖入主界面,将两个模块连接,SPLIT函数模块的作用是将待处理数据随机分割成两部分,设定分隔系数是0.7,即70%的财务数据用作训练数据,30%的财务数据用作检验数据。

图4

将导入主界面的全部数据中的70%,即导入77家上市公司的财务数据,使用神经网络模型进行训练,训练完成的神经网络模型用于对剩余30%的数据即33家上市公司的财务数据进行预测,预测这33家上市公司中失败企业(即“ST”上市公司)的数量和非失败企业(即正常上市公司)的数量。

图5

训练后的神经网络的预测结果:93.33%的原“ST”企业被预测成功,88.89%的原正常企业被预测成功,总体预测精度达到90.91%。