发布时间:2023-10-12 17:41:17
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的14篇电磁辐射监测,期待它们能激发您的灵感。
中图分类号:X3 文献标识码:A 文章编号:1674-098X(2013)04(b)-0069-01
现代社会已经进入信息化时代,随着计算机等各种高科技电气设备的增加,各种无线电技术的应用也逐渐广泛起来,卫星导航、电台、手机等的应用进入到千家万户,给人们带来方便的同时,也带来了电磁辐射方面的污染,长期使用这些设备会造成人体的免疫力下降,带来很多问题,因此,电磁辐射已经成为当今的四大公害之一。
1 电磁环境及电磁辐射源
所谓电磁环境是指在我们生活中所有的电磁设备的总和,这些设备的总和包括自然和人为两个方面,静态和动态两个基本的特征。[1]这种电磁辐射主要是由于不同电波之间的联系造成的。当电波的赫兹增大的时候,电磁波就会通过空气给周围的环境带来很大的影响,人长期在这种环境中生存,会对健康十分不利。一般来说,电磁辐射有两种,自然的电磁辐射主要是指自然界中的污染,比如闪电、火山等,这种情况会直接影响广大的用电地区,对其造成干扰,在我国就有被雷击的现象发生的事故。而人为的因素主要是指生活中的一些先进的电气设备,比如广播电视台、手机信号塔等,这些无线设备发出的电波会给生活带来困扰,甚至对当地的饮水带来危险,因此做好电磁环境的处理工作,抵制电磁辐射,是我们生活中必须关注的关键。
1.1 电力系统
现代社会经济的发展,越来越多的电气设备进入千家万户,而由于电荷作用的影响,电网的发展速度也很快,高压电路和一些无线的电磁波日益增多,这些增多的电气设备直接造成了我们生活的环境成为了电磁辐射环境,在生活的时候,会给临近地区产生严重的影响。
1.2 广播、电视发射系统
我们周围的广播和电视信号系统是主要的电磁辐射来源,为了生活的方便,这些大型的无线设备多建立在城市之中,在居民区形成很强的磁场,造成电磁辐射污染。
1.3 移动通信系统
手机的普遍使用带来了无线移动通信设备的发展,而这种移动通信基站是一个很强的辐射源,而且为了防止周围的干扰,辐射的高度在逐渐减低,上网的系统也逐渐增强,因此,各种的分布使得电磁辐射的范围更大,给生活造成了严重的威胁。
1.4 交通运输系统
我国的交通运输行业的发展迅速,但很多的交通运输系统也带来了辐射的威胁,特别是一些无轨电车和地铁进入我们的生活,更多的电磁辐射被制造出来,我们的生活已经成为一个很强的辐射范围,在这种范围下,人们的精神状态也会受到影响。
1.5 工业、医疗科研高频设备
除了以上几种辐射源之外,在医院和工业场所的辐射源更贴近人们的生活,医院里的x光具有很强的辐射,而一些工厂里的先进设备对人的身体会有很大的影响。
2 电磁辐射污染的危害
众所周知,城市中这些污染源会给健康带来危害,但由于这些污染源具有很强的作用,是生活中必不可少的,即使会产生更多的化学和物理作用,也要保留部分功能,而唯一可以采取的办法是进行改造工程,使其的辐射点降低,从而提升安全系数。
2.1 对无线电信号和通信系统的干扰
大功率无线电发射机产生的电磁干扰,可使附近的通信、广播、雷达导航、电视接收机的信噪迅速下降而无法工作。另外,雷电电磁脉冲每年都要酿成火灾、通信中断、电器设备毁坏等一些严重后果。
2.2 对武器装备的危害
军事上所用的无线电发射机和雷达能产生很强的电磁辐射场。这种辐射场能引起武器装备系统中的灵敏电子引爆装置提前启动,对制导导弹会偏离飞行弹道。国内外都发生过飞机偏航、坠毁或意外投弹的事故,而这些都是由于机载电子设备的干扰而引起。
2.3 对计算机系统潜在的危害
随着计算机应用的不断广泛,计算机系统已成为信息系统的重要存储库。但计算机在运行中会产生微弱的电磁辐射,如果这很小的泄漏被高灵敏度的接收系统接收,就会造成不可想象的极大损失。
2.4 对人体的危害
大量文献表明,低频电磁场可以明显影响人的植物神经功能,使其发生紊乱,表现为疲劳、神经衰弱、忧郁等症状;高频辐射对人体是引起中枢神经系统的机能障碍和以交感神经疲乏、紧张为主的植物神经紧张失调的主要作用,主要表现为头昏脑胀、记忆力减退、失眠多梦临床症状等。[2]
3 电磁辐射污染的主要防护措施
电磁污染的传播途径有两种,一是通过空间直接辐射,二是借助电磁耦合线路传导。环境而言,防辐射重点是空间隔离方式,主要是将电磁辐射的强度减小或是降低到一定的范围之内,目前,对电磁辐射污染主要有以下几种防护措施:屏蔽辐射源、吸收防护、射频接地、采取综合性防治措施。[3]
3.1 屏蔽辐射源
采取各种措施,降电磁波控制在一定的范围内。主要是利用屏蔽材料对电磁波进行反射与吸收,使传递到屏蔽材料上的电磁波一部分被反射,又有一部分被屏蔽材料吸收,让能透过屏蔽体的电磁强度大幅衰减,从而减少对人以及环境的损害。
3.2 吸收防护
利用某些物质构成电磁波的吸收部件,分为谐振吸收部件和匹配性吸收部件。
3.3 射频接地
将屏蔽体或屏蔽部件内由于感应生成的射频电流迅速导入大地,使屏蔽体不致成为射频的二次辐射源,以保证高频率的屏蔽作用,达到安全并实用的目的。
3.4 采取综合性防治措施
国家要制定并执行电磁辐射安全标准,对产生电磁波的工业设备产品提出严格的设计指标,要尽量减少电磁设备外漏情况,为防护电磁辐射提供良好条件;加强城市规划,实行区域控制,工业隔离布局,使电磁辐射源远离居民区;同时加强设备管理以及环境的整治。
4 结语
总而言之,现代社会,电磁环境对人的影响非常大,而随着更多现金技术的产生,我国的电磁环境会变得更加复杂,为了更好地进行无线沟通,我们需要采取一定的措施,解决这一问题。因此,加强电磁辐射污染的保护,做好其治理和检测工程,应该成为人们生活的共识,需要高度重视。
参考文献
[1] 赵玉峰.环境电磁工程学[M].北京:化学工业出版社,1982.
【关键词】环境;电磁辐射;监测;对策
中图分类号:TN931文献标识码: A 文章编号:
前言
随着信息时代的带来,各种通信设备、电气设备(如电视台、卫星站、电话等)广泛应用,导致人们生活环境充满了电磁波,对人们生活环境造成严重影响,并对人体健康造成严重威胁,成为目前环境污染的重要污染源之一。因此,必须引起环境监测部门的高度重视,掌握电磁辐射来源,了解电磁辐射危害性,对电磁辐射污染进行有效的监测,以减少电磁辐射对环境和人体的危害。
环境电磁辐射的危害
各种通信设备和电气设备在给人们带来方便的同时,导致环境电磁波的增加,使得频带变宽,对各种电子设备运行造成严重干扰,强化电磁辐射的化学反应、物理反应及生物反应,对环境造成严重的污染,同时危害人体健康,其主要危害主要表现在以下三个方面:
(1)电磁干扰。由于功率较大的无线电设备在运行过程中会产生大量的电磁波,对周围的电台、通信及广播等造成电磁干扰,导致这些通信设备无法正常运行,提高电气设备和通信设备故障发生率,对电力安全造成严重影响[1]。
(2)系统威胁。计算机系统本身具有一定的电磁辐射,但是如果电磁波不断增加,就可能被不法人员利用电磁波来获取计算机系统里的资料,或者对计算机系统造成破坏,给人们带来很大的损失。
(3)人体危害。有关研究表明,电磁辐射对人的神经系统造成严重的危害,低频率的电磁场可导致人的神经系统发生紊乱,出现忧郁、烦闷及神经衰弱等症状,而较高频率的电磁辐射则导致人体中枢神经系统出现交感疲乏、机能障碍、头昏脑胀、记忆力变差等症状,对人体健康造成严重威胁。因此,加强对环境电磁辐射的监测很重要[2]。
环境电磁辐射的监测
3.1一般环境监测
主要是指对大面积范围内电磁辐射各种来源形成的电磁辐射值进行监测。监测人员可根据《环境电磁辐射管理与电磁辐射监测》要求来进行监测,把相关标准在某个区域划分网格,并把网格中心点当做监测点,并对树木屏蔽和建筑物屏蔽等因素进行充分考虑,对监测点进行合理的调整。以电场强度作为电磁辐射评价标准,对环境中的电磁辐射进行合理的评价,评价内容主要包括分布规律、环境特点及环境质量等,通过对环境中的电磁辐射进行评价,可以充分了解该区域环境电磁辐射情况,及时采取有效的防治措施[3]。
3.2特定环境监测
主要是指对特定区域内的固定电磁辐射来源形成的电磁辐射值进行监测。监测人员需对该区域内电磁辐射来源类型、规模及数量等进行深入的调查分析,以为环境电磁辐射监测提供重要依据。以下是几种常见电磁辐射来源及监测方法:
3.2.1移动通信站监测
(1)工作原理。移动通信主要是通过控制设备和射频发射器经过网内通信用户和收发站来进入无线通信,而无线通信则由通信在发射和接收形成的电磁波形成的。所以移动通信站在运行过程中,会使周围环境的电磁辐射发生改变。(2)监测方法。监测人员应根据《环境电磁辐射管理与电磁辐射监测》要求,选择适宜的监测仪器、布置监测点、掌握好监测时间、规范监测技术,并对监测结果进行有效的评估,监测电磁强度应小于5.4 V/m。若大于5.4 V/m,则应采取相应的防治措施,减少电磁辐射对环境的污染,对人体的危害。
3.2.2电台发射设备监测
(1)工作原理。主要是把传输信号经由调制器来进行控制,并通过高频率的振荡器来实现高频率的电流,把调制完成的高频电流防止相应电频,送至天线上方,最终以电磁波的方式进行发射。(2)监测方法。监测人员要根据《环境电磁辐射管理与电磁辐射监测》要求,在电台发射设备周围区域、发射塔及电磁辐射较为敏感位置设置监测点,对这些区域电磁辐射情况进行有效的监测。电磁强度应小于5.4 V/m。
3.2.3 电力设备监测
(1)工作原理。主要是电力设备周围环境电磁辐射情况进行检查,电力设备主要有变电站、架空电线等;电磁场特点主要表现为电晕、电场及磁场等;电磁辐射污染表现为:绝缘及电晕放电导致的干扰现象,并存在较强的生物效应。(2)监测方法。监测人员要根据《环境电磁辐射管理与电磁辐射监测》要求,按照不同等级电压,选择不同监测仪器和监测技术,并明确电力设备电磁强度和电场强度指标,规范电磁辐射监测技术[4]。
3.3较极低频率电磁辐射监测方法
(1)收集与环境电磁辐射有关资料,主要包括电场强度、磁场强度、电流密度以及磁感应强度等。(2)明确监测时间和监测范围。一般情况下,每个监测点需不间断检测五次,每次检测时间在15s以上,以较为稳定的读值为准。但是若果检测读值波动性较大,则应延长检测时间。监测人员应在离地面0.5米、1米及1.5米的位置设测量点。(3)监测点布置。针对于输电线路电磁辐射监测点的布置:应选择具有代表性意义的档距,并以档距内线路中心位置作为监测点,监测点间距应为5米。针对于变电站电磁辐射监测点布置:控制中心设一个监测点;每个高压设备区各设一个监测点;每个低压设备区各设一个监测点;低压和高压区旁主变位置设一个监测点;开关设备各设一个监测点;监测点间距应为5米。针对于电厂电磁辐射监测点布置:主要是在主控室、发电机、励磁机等位置各设两个监测点,而电厂变电低压侧、变电高压侧、开关室、避雷器及电流互感器等,则各设一个监测点[5]。(4)检测要求。首先在应有检测仪器对周围环境进行有效的检测,并做好检测记录;根据检测对象,选择适宜的检测仪器,并旋转具有代表性的检测结果;尽可能的排除周围辐射源产生的干扰;对检测数据进行有效的统计和整理。(5)注意要点。选择双轴或者以上检测仪器;检测环境温度应为0至40℃,相对湿度应为5至80%;防止人出现在检测位置周围,检测人员应离检测仪器5m远;检测时应将手机登具有电磁辐射设备关闭;检测点位置要平坦且无多余杂物;对检测仪器进行有效的防护,防止其内部存在冷凝水;检测仪器频率要求:检测ELF为50Hz、微波为3GHz至30GHz,三轴检测要求:必须同时对Z、X、Y方向进行检测,检测路程要求:磁场: 10μT至10 mT、电场0·1kV/m至100 kV/m。
结语
随着信息时代的带来,电力设备和通信设备的不断发展和应用,给人们生活带来极大的便利,但是同时也导致环境电磁辐射量的增加,对环境造成严重的污染,干扰电力设备、通信设备的正常运行,对人体健康造成严重的危害。因此,为了减少电磁辐射对设备的干扰、对环境的污染,对人体的危害,必须加强对环境电磁辐射的监测,以为电磁辐射污染的防治提供重要依据,为人们提供一个良好的生活环境。
【参考文献】
[1]朴光玉,徐秀华,罗凤平,成英.刍议电磁辐射的危害及其防护措施[J].黑龙江科技信息,2009,5(19):89-90.
[2]罗穆夏,张普选,马晓薇,杨文芬.电磁辐射与电磁防护[J].中国个体防护装备, 2009,12(05):76-78.
[3]黄春锋,吴建平.环境电磁辐射的监测方法[J].黑龙江科技信息,2009,8(35):90-92.
在30~3000MHz的频率内,电场强度公众照射导出限值为12V/m(功率密度为4OuW/cm2)。《辐射环境保护管理导则电磁辐射环境影响评价方法与标准》(HJ/T10.3—1996)【3】规定,对单个项目的影响必须限定在《电磁辐射防护规定》限值的若干分之一。在评价时,对于由国家环境保护局负责审批的大型项目可取GB8702—88中场强限值的1/,或功率密度限值的1/2。其他项目则取场强限值的1,或功率密度限值的1/5作为评价标准。因此,本次研究中环境电场强度评价标准值取5.4V/m(功率密度为8uW/cm2)。
2、4G基站的监测与评价
2.1、4G基站的选取本次研究选取温州试验网的3个典型4G基站,分别为温州环保局、灰桥农机公司、云中花园二基站。目前,4G基站试运行的频率为18801920MH,机顶功率为20W。3个基站均为多频共址的宏蜂窝基站。选取的4G基站主要技术指标见表1。
2.2、测量仪器测量使用德国NardaSafetyTestSolutions公司生产的SRM3000电磁辐射选频测量系统,频率响应范围75—3000MHz,量程范围2.5×10—420OV/m。
2.3、测试条件天气:阴;相对湿度:55—70%;环境温度:18.1—23.6。C;风力小于3级。测量时间选择在白天8:00—18:00,此段时间为用户使用手机的高峰期。
2.4、监测方法优先考虑基站天线的主瓣方向,对于发射天线架设在楼顶的基站,在楼顶公众可活动范围内布设监测点位,优先布设在公众可以到达的距离天线最近处,同时根据现场环境情况对点位进行适当调整。测量高度:探测器离地1.7m(或离立足点1.7m)。测量时仪器探头与操作人员之间距离不少于0.5m。每个测点读数5次,每次读数时间不应小于15S,并读取稳定状态的最大值,若测点读数起伏较大时,应适当延长测量时间。以5次读数的平均值为该点的测量值。
2.5、质量保证其一,测量中使用的仪器每年均由上海市计量测试技术研究院进行检定。其二,操作程序严格按照HJ/T10.3—1996中的有关规定。
2.6、监测结果本次研究测量时,3个基站均处于正常试运行状态,共选取了22个测试点位,88个测量值,经过数据处理和分析后,选择测量点位在基站天线的主瓣方向,距离天线最近处,将其测量数值列于表2。从表2可以看出,在4G频段(1880~1920MHz)内,3个基站的电场强度测量值为分别为0.19Vim、0.22V/ITI、0.53V/m,均低于《电磁辐射环境影响评价方法和标准》中规定的单个项目的环境电场强度评价标准值。
3、结论
关键词:移动通信基站;电磁辐射;广播;监测
DOI:10.16640/ki.37-1222/t.2017.11.149
1 引言
随着移动通信网络规模的扩大和用户数量的增加,移动通信基站的数量不断增加。公众在充分享受现代通信设备为生活带来的便捷的同时,遍布各地的移动通信基站所产生的电磁辐射是否威胁人体健康,也逐渐成为各个运营商和公众争论的焦点。[1]公众对移动通信基站周边电磁环境安全性的关注、焦虑、冲突及相关投诉逐年上升。
但应注意的是,由于中、短波广播具有影响范围广、发射功率大、场强大的特征,且大中型城市普遍都有大型的中波广播发射台,中、短波广播是城市电磁辐射环境的主要贡献源之一。非选频测量仪很可能在测量基站电磁信号的同时也测到了中短波广播台信号,导致最终测值比基站电磁信号场强值偏高[2]。若基站监测时不区别、排除中短波信号的干扰,依照基站限值对包含中短波信号的基站电磁辐射监测值进行安全性评价,最终可能会得到基站电磁辐射水平不合格的错误结论。
2 监测方法
2.1 信号监测
实时监测当前测量环境中移动通信基站信号是否存在干扰信号,该干扰信号包括:中波信号或者短波信号;选取包括中短波频段和基站频段的综合电场探头,使该综合电场探头连接监测仪主机,得到综合电磁辐射监测仪;将综合电磁辐射监测仪垂直架设,使综合电磁辐射监测仪中的综合电场探头和监测仪主机的连线垂直于地面,记录该综合电磁辐射监测仪的垂直场强数据监测值;将综合电磁辐射监测仪水平架设,使综合电磁辐射监测仪中的综合电场探头和监测仪主机的连线平行于地面,记录综合电磁辐射监测仪的水平场强数据监测值;根据垂直场强数据监测值与水平场强数据监测值的变化幅度,监测当前测量环境中是否存在中短波信号。
2.2 干扰信号的判断
在监测到当前测量环境中存在移动通信基站信号的干扰信号时,分别测量当前测量环境中包含移动通信基站信号和干扰信号的综合场强以及干扰信号的干扰场强;计算垂直场强数据监测值与水平场强数据监测值的变化幅度;当水平场强数据监测值大于垂直场强数据监测值以及水平场强数据监测值存在任意一方向的最大值,且变化幅度大于设定阈值时,判定当前测量环境中存在短波信号;当垂直场强数据监测值大于水平场强数据监测值,且变化幅度大于设定阈值时,判定当前测量环境中存在中波信号;当变化幅度小于设定阈值时,判定当前测量环境中不存在中波信号和短波信号。其中,综合电磁辐射监测仪和专用电磁辐射监测仪均为非选频式宽带辐射测量仪。测量时采用绝缘支撑架;该绝缘支撑架用于架设综合电磁辐射监测仪和专用电磁辐射监测仪,以采集当前测量环境中的场强值;其中,绝缘支撑架包括:三脚架或者绝缘延伸杆。
2.3 干扰信号的监测
如果当前环境中存在中短波信号,则选取包括中短波频段的专用电场探头,使专用电场探头连接监测仪主机,得到专用电磁辐射监测仪;将专用电磁辐射监测仪垂直架设,使专用电磁辐射监测仪中的专用电场探头和监测仪主机的连线垂直于地面,记录专用电磁辐射监测仪的垂直短波场强数据监测值;将专用电磁辐射监测仪水平架设,使专用电磁辐射监测仪中的专用电场探头和监测仪主机的连线平行于地面,记录专用电磁辐射监测仪的水平中波场强数据监测值。
2.4 计算与评价
根据综合场强和干扰场强,计算移动通信基站电磁辐射场强,在监测到当前测量环境中存在中波信号时,选取综合电磁辐射监测仪的水平场强数据监测值作为中波综合场强测量值;在监测到当前测量环境中存在短波信号时,选取综合电磁辐射监测仪的垂直场强数据监测值作为短波综合场强测量值。其中,根据综合场强和干扰场强,计算移动通信基站电磁辐射场强,分别按照以下公式计算移动通信基站电磁辐射场强:
其中,Eb表示移动通信基站电磁辐射场;E1表示中波综合场强测量值;Em表示水平中波场强数据监测值。
其中,Eb表示移动通信基站电磁辐射场强;E2表示短波综合场强测量值;Es表示垂直短波场强数据监测值。
将计算得到的移动通信基站电磁辐射场强与标准场强限值进行比较,得到比较结果。根据得到的比较结果,评价移动通信基站电磁辐射场强是否符合国家电磁环境控制限值要求。
3 小结
本文介绍的移动通信基站电磁辐射的监测方法,与现有技术相比,其能够实现简单、快速、低成本地甄别基站监测过程中中短波广播的影响,减少检测人员工作量;并且,利用现有仪器及频段差异特性,通过间接计算得到基站准确测值,降低了监测成本;同时,排除了中短波信号的干扰以及中短波信号错误参与基站安全性评价,实现了准确、客观地评价通信基站单项照射剂量。
参考文献:
关键词:4G移动通信基站;辐射环境;环境现状监测与评价
随着人们对移动通信技术要求的提高和移动通信技术的快速发展,移动通信技术已进入4G时代。所谓4G,是第四代移动通信技术的英文缩写,是集3G和WLAN与一体,能够快速传输数据、高质量音频、视频和图像等的技术。其拥有以往技术无法比拟的优势:通信速度更快、网络频谱更宽、通信更加灵活、智能性能更高、兼容性能更平滑、实现更高质量的多媒体通信、频率使用效率更高等。因此,为满足人们对4G服务覆盖的要求,4G移动通信基站建设也如火如荼地进行。然而,4G移动通信基站的建设无疑会带来辐射环境的变化,公众对辐射环境的关注度也越来越高。4G移动通信基站的环境影响评价工作以及处理基站的投诉日渐增加。电磁辐射环境监测是环境影响评价的重要环节,贯穿环境影响评价整个过程,其作为一门综合性学科,运用科学的监测手段对移动基站周围电磁辐射水平进行监测,通过对电磁辐射环境现状定量和系统的分析与评价,为环境影响评价或相关的技术问题提供有力的数据支撑。因此,正确的监测方法和科学、客观的评价是环境影响评价文件结论是否正确的重要保障。
一、电磁辐射环境监测
1监测目的
了解基站周围电磁环境现状,为基站选址的环境合理性及环境影响预测提供数据支撑。
(1)对于拟建基站站址,现场监测基站周围电磁环境现状值,确定该站址是否具有电磁环境容量;
(2)对于已运行基站,现场监测基站周围电磁环境现状值,确定基站周围公众活动区域的电磁辐射环境是否满足国家标准。
2监测依据
根据《电磁环境控制限值》(GB8702-2014)、《辐射环境保护管理导则―电磁辐射监测仪器和方法》(HJ/T 10.2-1996)、《移动通信基站电磁辐射环境监测方法》(试行)制定本项目现场监测实施细则。
3监测对象的选取原则
监测中选取以人口集中区域为重点的环境敏感程度高、与周围公众活动区域水平距离小、与其他运营商共站址、架设形式对环境影响较大的美化天线和桅杆等典型基站,且各抽测基站监测点位的布设应涵盖发射天线所在天面、周围环境敏感点等公众活动区域。所选基站应具有代表性和包络性。
4监测条件
4.1 监测天气情况
无雪、无雨的良好天气。
4.2监测设备
电磁辐射监测仪器设备有:射频电磁辐射分析仪、电磁辐射选频分析仪等。各种测量仪器均应经过国家计量认证部门检定、校准合格,并都在合格证的有效期内,性能满足工作要求。
5质量保证
(1)测量仪器和装置每年经国家计量认证部门检定/校准,检定/校准合格后方可使用;每次测量前、后均检查仪器的工作状态是否正常;几台仪器间进行比对测试。
(2)监测所用仪器与所测对象在频率、量程、响应时间等方面相符合,并保证获得真实的测量结果。
(3)监测布点和监测方法均严格按照《移动通信基站电磁辐射环境监测方法》(试行)的要求进行。监测点位置的选取考虑使监测结果具有代表性,合理布设监测点位,保证各监测点位布设的科学性和可比性。
(4)监测中异常数据的取舍以及监测结果的数据按照统计学原理处理。
(5)建立完整的文件资料。仪器的校准证书、监测布点图、测量原始数据等全部保留,以备复查。
(6)严格实行三级审核制度,经过校对、校核,最后由质量负责人审定。
6 测量方法
6.1基本要求
(1)工作开始前,收集被测基站的基本信息,包括:基站名称、编号、地理位置、基站各项基础参数、天线架设方式、天线架设高度、天线方向角、天线下倾角、半功率角等参数。
(2)测量仪器与所测基站频率、量程、响应时间等方面相符合,以保证监测的准确。
(3)探头(天线)尖端与操作人员之间距离不少于0.5m。
6.2测量点位的选择
测量布点参照《电磁环境控制限值》与《辐射环境管理导则―电磁辐射监测仪器和方法》,并根据《移动通信基站电磁辐射环境监测方法》(试行)的要求进行。
监测点位布设在以发射天线为中心半径50m的范围内可能受到影响的环境敏感区域公众可到达的距离天线最近处,环境敏感区主要包括:居民区、学校、幼儿园、医院和党政机关等,根据现场环境情况可对点位进行适当调整。
监测点位的布设原则上设在定向天线在辐射主瓣的半功率角内。
对于发射天线架设在楼顶的基站,在楼顶公众可活动范围内布设监测点位。
测量室内电磁辐射环境时,一般选取房间中央位置,点位与家用电器等设备之间距离不少于1m。在窗口或阳台等位置监测时,探头(天线)尖端在窗框或阳台界面以内。
6.3测量时间和读数
测量时间:根据《移动通信基站电磁辐射环境监测方法》(试行)“4.4监测时间 在移动通信基站正常工作时间内进行监测,建议在8:00-20:00时段进行”,本项目取每日8:00~20:00为测量时段。
测量读数:测量过程中,每个测量点连续读数5次,每次测量时间不小于15s,并读取稳定状态下的最大值。若读数起伏较大时,适当延长测量时间。
结果记录:根据仪器灵敏度的不同和有效数字的选取原则,射频电磁辐射分析仪测量值均取小数点后两位记录。
6.4测量高度
测量仪器探头距或立足点1.5m。根据不同目的,可调整测量高度。
6.5记录
监测记录中包括基站的位置信息记录、基本参数记录、测量时的天气状况记录、监测仪器记录以及测量结果的记录(以基站发射天线为中心,50m范围内的四至图以及测点布置示意图、测量点位具体名称和测量数据、测量点位与基站发射天线的水平距离和高差)。
二、电磁辐射环境评价
根据《电磁辐射防护规定》(GB8702-88),在30MHz-3000MHz频率范围,公众总的受照射剂量不超过功率密度40μW/cm2,电场强度12V/m。
关键词:基站 电磁 测量 建模
中图分类号:TN929.5 文献标识码:A 文章编号:1674-098X(2016)09(a)-0178-02
目前基站的电磁辐射计算都是基于电磁辐射体为点源的理论公式,而实际测量结果往往与理论计算结果相差很大。因此,该文基于数学分析方法对移动通信基站电磁辐射实际测量结果进行建模,通过模拟得出的经验公式帮助工程计算。
1 理论计算和实际测量
1.1 理论计算
根据《辐射环境保护管理导则――电磁辐射监测仪器和方法》(HJ/T10.2-1996),功率密度S按照
(1)
其中,S楣β拭芏龋W/m2;取单个项目的贡献管理限值0.08 W/m2。P为天线口功率,W;G为天线增益,倍数;d为离天线直线距离,m。
以某种型号的基站为例,其天线详细参数为:频段935~954 MHz,载频数为4,天线挂高40 m,0°俯角,增益15.5dBi,15W/载频。
根据公式(1),代入相关参数,得到A基站T型号天线的功率密度理论计算值,距离天线2 m、4 m、8 m、12 m、16m、20 m、24 m具体数值分别为(单位:×10-2 W/m2):671.59、167.90、41.97、18.66、10.49、6.72、4.66。
1.2 实际测量
按照《辐射环境保护管理导则-电磁辐射监测仪器和方法》(HJ/T10.2-1996)、《移动通信基站电磁辐射环境监测方法》(试行)及仪器操作规程对A基站T型号天线进行实际测量。
测量时间:上午10:00~11:00;天气:晴好;测量仪器:NBM-550型综合场强仪,探头型号为EF0391,量程为100 kHz~3 GHz,在检定有效期内。距离天线2 m、4 m、8 m、12 m、16 m、20 m、24 m的具体测量结果分别为(单位:×10-2 W/m2):420.85、123.98、31.84、17.91、13.29、6.88、4.53。
1.3 对比分析
通过对比,可以看出理论计算与实际测量值之间存在巨大差异。这是由于理论计算值是按照天线主瓣方向进行预测,而实际测量时,限于实际情况,测点位置往往不在主瓣范围之内,因此实际测量值与理论预测值相差很大。
随着距离的增大,因为电磁辐射和距离的平方成反比,电磁场能量迅速减弱,因此,距离天线越远,理论预测值与实际测量值越来越接近。
2 数值分析建模
由于工程实际需要,可以用数值分析的方法来模拟建立符合实际测量值的模型,从而解决未测量点的预测问题。
2.1 插值法
由于实际测量结果是趋于收敛的,因此,首先考虑使用插值多项式建模[1]。根据实测数据,采用Newton插值法[2],利用距离天线2 m、4 m、8 m和12 m,4个点位数据作为节点数据,则根据Newton插值法计算差商,可得模拟多项式N(x)=420.85-148.435(x-2)+20.9(x-2)(x-4)-1.84559375(x-2)(x-4)(x-8)。代入x=20进行检验,则N(20)=-2610.1736,与实际测量值6.88明显不符。
原因分析:由于高次插值的Runge现象,即在零点附近逼近程度较好,在其他地方误差就很大,因此,Newton插值法不适用。
2.2 逼近法
根据实测值和预测值的曲线,采用最佳平方逼近的最小二乘法[3]进行拟合。
根据数据,初步判别可采用y=axb函数建模,其中功率密度为y,与天线的距离为x。将实际测量结果进行转换,y=lny、x=lnx。将由于y=axb两边取自然对数,则y=a0+a1X,因此,其正规方程组为。其中s0,s1Xi,s2Xi2,T0Yi,T1XiTi。
3 对比分析
将该基站的理论预测值、实际测量值和拟合函数算值进行对比,如图1所示。
通过对比,可以很明显地看出,拟合函数算值与实测结果两条曲线基本是重合的,因此,采用最小二乘法对实际测量结果进行建模是可行的。
4 结语
在实际工作中,可以只测量基站一条直线方向4个点位的电磁辐射数值,利用最小二乘法对其进行建模,从而达到掌握该方向上实际电磁辐射分布的目的,这不仅大大减少了工作量,也为进一步探究基站周围电磁场分布提供了一个新思路。
参考文献
[1] 孙志忠,袁慰平,闻震初.数值分析[M].南京:东南大学出版社,2002.
【关键词】电磁兼容;测试;相关系数
1.前言
在进行电磁兼容测试时,根据实际情况会选择不同类型的电磁兼容测试设施,而在不同的测试环境下所得到的测试结果往往会存在一定的误差。但从理论上说,在同一个独立的标准下进行测试,得到的测试结果应该与测试地点无关。也就是说,如果某设备在某个实验室中通过了电磁兼容测试,那么在其它的实验室里它也应该能够通过测试;反之亦然[1-4]。因此根据偶极子模型,对不同测试环境的相关性进行了分析,得出了各测试环境下测试结果的相关系数。
2.不同测试环境的偶极子模型
2.1 自由空间
首先只考虑一个电偶极子在自由空间下的情况,磁偶极子或是电/磁偶极子复合的情况推导过程与电偶极子相同。对于一个位于原点,沿z轴分布,长度为dl,最大电流I0的短电偶极子,它的远场辐射为:
(1)
其中ω为角频率,μ为偶极子所处介质的磁导率,k=2π/λ(λ为波长),(θ,φ,r)为球坐标系。
引入坡印廷矢量,可以得到电偶极子的总辐射功率Po为:
(2)
其中η为介质的固有阻抗(对于空气来说为120πΩ)。
对于辐射发射测试,最大电场强度Emax与几何形状有关。在上面的几何形状中,当θ=π/2时,式(1)会出现最大值,此时:
(3)
带入(2)式,式(3)可以写作:
(4)
式(4)也可写为:
(5)
在最大方向性Dmax时(对于电/磁偶极子分别为3/2),辐射的电场强度和功率Po最大。在实际测试中,Emax是通过天线的输出电压Vmax与天线的系数AF来测量的。此时Vmax=AFEmax,由此我们可以得出:
(6)
定义传播损耗因子PLFS=1/(4πr2),式(6)最终可以写作:
(7)
2.2 半空间
半空间是指在自由空间中加入一个理想的地平面(无限长的完全导体)。在距地平面高度h的地方加入一个电偶极子,同时向水平和垂直方向发射,向其它方向的发射可以看成是这两种情况的叠加。在分析时我们加入一个镜像偶极子,采用直角坐标系,地平面位于x-y平面上,偶极子在z轴上位于+h处,镜像偶极子位于-h处。设偶极子到测量点的距离为r1,镜像偶极子到测量点的距离为r2,测量点到原点的距离为r,测量点到z轴的垂距为ρ。那么远场的最大电场强度为:
(8)
对于电/磁偶极子,Dmax仍为3/2,几何因子gmax可以由下式定义:
(9)
如果ρ的值大大于偶极子和z轴的距离h,那么ρ/ r1≈1,ρ/ r2≈1,r / r1≈1,r / r2≈1,此时gmax可以简化为:
(10)
从式(10)可以看出,在水平和垂直方向上gmax=2,此时k(r1-r2)=π/2或π。这就表明由于地平面的反射,使得最大场强增加了一倍。在大多数情况下,gmax=2是合理的。因此,我们在实际电磁兼容测试中采用半自由空间测试状态时,可以认为gmax=2。此时,处于地平面上的电偶极子的最大测量电压可以近似写为:
(11)
在半自由空间状态下:
PLHS=4/(πr2)
如果需要更精确的计算,那么可取:
PLHS=gmax/(πr2)。
2.3 TEM室
TEM线上的偶极子会和TEM耦合并在测试端产生电压。将这个电压和偶极子的旋转相结合就可以得出偶极子辐射出的总能量。例如,电偶极子的Po为[5]:
(12)
其中Z0为特性阻抗(通常为50Ω),是标准化的场因子,是偶极子和隔板的距离,SV表示偶极子旋转一圈后测量到的输出电压。
如果我们使偶极子向最大耦合处发射,那么测量到的电压最大值为,而且:
(13)
将e0y带入上式,将3/2化为Dmax,那么上式可以化为:
(14)
R为到测试单元的垂矩,在连续的TEM传播线上,r就是偶极子到测量端的距离[6]。等价的天线因子可以写为:
(15)
使用相同的方法,式(14)可以写为:
(16)
2.4 混响室
混响室是在数理统计上来模拟平面波的情况。一束理想的平面波应该是向所有方向发射和极化的,好的混响室就可以很接近这种情况。匹配的无损耗天线接收到的处于谐振腔中的信号源的平均功率<Pr>为[7]:
(17)
其中Q是混响室的质量因子,V是混响室的体积,P0是电偶极子的辐射总功率。
但是由于Q很难确定,而且要考虑天线的损耗,因此式(17)在实际应用中很难计算。因此,确定P0的常规做法是在混响室条件不变的情况下,通过已知的信号源功率Pref来计算Po:
(18)
简化<Pr>,并用平均接收电压来表示式(18)有:
(19)
其中Pr=V2/Zc(Zc是天线测试端的阻抗,通常为50Ω)。我们定义Dmax,RC=1(无方向性),V2max,RC≈< V2 >,AF2RC=sZc/η(s=1m在测试条件中已经给出),而且:
(20)
我们可以得到:
(21)
3.辐射测试在不同的测试条件下的相关系数
式(7)、(11)、(16) 和(21)分别显示了在四种不同的测试条件下(自由空间、半空间、TEM和混响室)测到的偶极子发射电压。假设在每种情况下偶极子的发射功率不变,那么不同测试条件下的相关性可以用下式来描述:
(22)
其中的A和B代表FS、HS、TL和RC的任意两两组合。
式(22)是由电偶极子(Dmax=3/2)的情况推算出的,但上式也适用于磁偶极子(Dmax=3/2)的情况或是实际中的测试设备。如果我们不与混响室相比较,那么待测设备的方向性也可以不考虑。对于混响室来说,Dmax,RC=1,那么与它比较时,其它测试条件下的Dmax必须是已知或可以推断的[8]。
表1 辐射测试在不同测试场地下的相关系数表
综上所述,不同测试条件下的相关系数如表1所示。根据这些相关系数对测试结果进行修正,可以提高测试的精度和可重复性。
参考文献
[1]Sreenivasiah I,Chang D,Ma M.Emission characteristics of electrically small radiating sources from inside a TEM cell.IEEE Transactions on Electromagnetic Compatibility,1989,23(3):113-121.
[2]Wilson P.On correlating TEM cell and OATS emission measurement.IEEE Transactions on Electromagnetic Compatibility,1995,37(1):1-16.
[3]Kanda M,Hill D.A three-loop method for determining the radiation characteristics of an electrically small source.IEEE Transactions on Electromagnetic Compatibility,1992,34(1):1-2.
[4]Holloway C,Wilson P,Koepke G,Candidi M.Total radiated power limits for emission measurements in a reverberation chamber. IEEE International Symposium on Electromagnetic Compatibility on Electromagnetic,New York: IEEE Press,2003:838-843.
[5]Electromagnetic Compatibility part 4-testing and measurement techniques section 20:Emission and immunity testing in transverse electromagnetic waveguides.International Electrotechnical Commission Press,2003:13.
[6]Wilson P.Antenna gain equivalent for TEM cells.IEEE Transactions on Electromagnetic Compatibility,2004,26(1):123-128.
关键词:移动通信 电磁辐射 现状调查
中图分类号:TN929.53 文献标志码:A 文章编号:1674-098X(2014)05(a)-0067-02
1 调查方法
1.1 调查对象和时间
本次调查选择了乌鲁木齐市市区40个正常运行移动通信基站进行电磁辐射水平监测。以上基站分布在乌鲁木齐市天山区、沙依巴克区、高新(新市区)、水磨沟区、米东区和经济技术开发区(头屯河区)等主要城区。调查时间为2014年2月。
1.2 典型基站的选取原则
典型基站的选取遵循以下两个原则:(1)基站所处环境的不同状况,如住宅区、商业区、学校、医院等;(2)基站不同的架设方式,如楼顶抱杆、楼顶支架、铁塔、美化塔等。
1.3 监测仪器
本次监测使用的仪器为德国Narda Safety Test Solutions公司生产的NBM-550电磁分析仪,该仪器为综合场强仪,仪器在检定有效期内。仪器参数见(表1)。
1.4 监测方法及布点
依据HJ/T10.2-1996《辐射环境保护管理导则-电磁辐射监测仪器和方法》[1]和《移动通信基站电磁辐射环境监测方法(试行)》[2]等相关标准规范的要求进行监测。监测点位分为地面测点(按不同距离)和敏感建筑物室内测点(按不同层高),以基站发射天线为中心,沿其主辐射方向,按照间隔10 m布设监测点,依次监测至50 m处,测量距地1.7 m处的功率密度;当主辐射方向50 m内有敏感建筑物时,在建筑物室内布点。
1.5 数据处理
每个监测点连续测量5次,每次测量时间不小于15 s,读取稳定状态的最大值。取5个测量数据的平均值作为该点的监测结果。
1.6 评价标准
《电磁辐射防护规定》[3](GB8702- 88)中要求,电磁辐射公众照射导出限值应不超过40 μw・cm-2,同时要满足《辐射环境保护管理导则-电磁辐射环境影响评价方法和标准》[4](HJ/T10.3-1996)中规定的:单个项目电磁辐射管理限值应不超过8 μw・cm-2要求,本次调查执行8 μw・cm-2的评价标准。
2 调查结果
监测结果统计见表2和表3。
3 数据分析
从监测数据看,乌鲁木齐市市区移动通信基站地面电磁辐射水平最大值为0.005~3.474 μw・cm-2;敏感建筑物室内电磁辐射水平为0.059~1.224 μw・cm-2。所有监测点位的功率密度均低于《辐射环境保护管理导则-电磁辐射环境影响评价方法和标准》(HJ/T10.3-1996)中单个项目电磁辐射管理值8 μw・cm-2的评价标准。
4 结语
目前,乌鲁木齐市市区移动通信基站电磁辐射水平符合国家规定的限值标准,不会对周围环境产生电磁辐射污染,也不会对人们产生电磁辐射危害。
参考文献
[1] HJ/T10.2-1996,辐射环境保护管理导则-电磁辐射监测仪器和方法[S].
[2] 移动通信基站电磁辐射环境监测方法(试行),环发[2007]114号,国家环境保护总局[S].
【关键词】 电磁辐射 WCDMA 移动基站 强度预测 监测防护
一、移动通信基站及电磁辐射
1.电磁辐射在人们生活中不可避免,长被人们称之为电子烟雾,它是由空间共同移送的电能量和磁能量组成的,由电荷的移动产生的能量。而移动通信正是依赖电磁辐射来实现传播的。电磁辐射对于人们生活的影响很大,有很多人也都为此苦恼,移动通讯在给人带来便利的同时,对人们生活环境和人的身体健康的影响极大。
2.电磁辐射会照成电磁污染,当电磁辐射超出人体和环境的影响的范畴,就会产生极大的危害。电磁辐射对于身体的危害主要分为三方面,其一就是所谓的非热效应,人体的器官都是处于一个相对平衡的状态。而电磁辐射则会改变这种平衡关系,人体的器官和身体细胞会受到损伤。其二是热效应,人体的主要组成成分是水,当水分子吸收电磁辐射之后,相互碰撞,温度不断提高,温度的升高会对人体中的蛋白质和DNA结构产生影响,严重的能够引起细胞突变。其三就是累积效应,现在的生活中,到处都有着电磁辐射,当电磁辐射对你身体的伤害还没有完全恢复之前,就在此受到伤害,长此已久,人受到的伤害会越来越重。
3.移动通讯系统往往由移动台、基站、移动交换中心以及与市话网络相连接的中继线等组成。移动通讯的特点是信息交流的双方至少有一个处于移动通讯收发状态,它依赖电磁波的传播,所以一些恶劣的条件会影响通讯信号。并且移动信号与信号之间有干扰,常会出现紊乱的现象,经过人们研究,移动通信设备使用了自动功率控制电路,就是人靠近基地站的时候他的发射功率自动降低,而远离的时候则会自动升高。
二、基站电磁辐射的评价标准及监测方法
1.基站就是无线电台的一种,它主要是作为信息的中转,也就是信号的收发,它连接着移动电话和移动通讯网络。基站是固定在某一个地方的高功率多信道双向的无线电发射工具,当你用手机打电话的时候,民众手机上发出和接受的信号都会通过附近的移动基站,通过移动基站,会把你的电话接入无线网路中,为了避免信号的相互干扰,往往不同区域的信号高低不同,就好像蜂窝一样,因此通讯系统又被成为蜂窝系统。
2.移动基站的电磁辐射主要来源于三个方面,其一是发射机本身的电磁泄漏,基站一般建设的都比较高,距离地面比较远,其对于地面上的辐射强度小。其二是发射天线的信号发射,发射天线一般建设在离地五十米以上的塔楼上,他们的发射能量有限。其三是高频电缆和接头处,但是接头处一般都有着特殊的防护。但是那些建设在高楼楼顶的发射基站对于那些居住距离楼顶比较近的人,危害还是很大的。
3.当今社会对于电磁辐射越来越重视,移动通信方面不能马虎,移动通信对于基站电磁辐射的检查时刻都不能松懈,电磁辐射如果泄露严重,对于人和环境影响都是巨大的。对于电磁辐射监测一般都是定期进行,一般都是固定的某一个时间段固定的地点进行不间断的监测,防止电磁辐射对于人们的危害,把电磁的辐射控制在一个安全的范围。
三、基站电磁辐射的防护
1.安全防护距离是指符合我国对于电磁辐射防护规定的公众照射限值和电磁辐射的管理规定。由于发射天线有着方向性,所以对于不同方向上电磁辐射程度不同,对于电磁辐射的防护力度应该也有所不同,并且发射天线与空间某一点的最小距离也要控制好。如果这这些因素无法改变,那么就应该对防护人员进行个体防护。
2.想要减少电磁辐射对于环境的污染,可以有三种防护措施,防护措施主要是干扰源的改变、干扰传播途径、减少敏感设备。对于移动通讯中的电磁辐射的防护,主要是对干扰源的合理建设采取一些有效的措施。
四、结束语
移动通讯的应用现今越来越普遍,在生活中必不可少。人们逐渐意识到电磁辐射对于环境和人体的危害和影响,民众应该更好的去了解相关的知识,正确的看待电磁辐射,适当进行防护。通过移动通讯电磁辐射对于环境方面的影响的研究,让民众对于电磁辐射有了更深的了解。对于移动信息基站建设的一些防护措施进行了简略的探讨。
参 考 文 献
[1] 林少龙,蔡贤生. 移动通信基站天线设置与电磁辐射影响分析[J]. 中国无线电. 2011(05)
第二条凡在本市行政区域内从事带有本条第二款所列电磁辐射作业活动的单位和个人,必须遵守本办法。
本办法所指电磁辐射,是指广播电视设施、无线通讯设施和雷达等在信息传递中发射的电磁波,高压送变电设施、电气化铁路、城市轨道交通在运行中产生的电磁辐射,以及工业、科学、医疗设备应用中产生的电磁辐射。
第三条市环境保护行政主管部门对本市行政区域内的电磁辐射污染防治实施统一监督管理。
市无线电管理、广播电视、电力、信息产业、民航、铁路、卫生、轨道交通等主管部门,依照各自职责,协同市环境保护行政主管部门对电磁辐射污染防治实施监督管理。
第四条市环境保护行政主管部门负责组织建立本市电磁辐射环境监测网络,定期电磁辐射环境质量状况公报。
第五条市环境保护行政主管部门依照《电磁辐射防护规定》(GB8702-88),负责确认本市电磁辐射建设项目或设备的豁免水平。
前款所称豁免水平是指国务院环境保护行政主管部门规定的对应用或伴有电磁辐射活动免于管理的限值。
第六条建设电磁辐射项目或购置电磁辐射设备的,应当遵守国家和本市有关建设项目环境保护管理的规定。
市环境保护行政主管部门负责确定未列入国家《建设项目环境保护分类管理名录》中的电磁辐射建设项目或设备的环境保护管理类别,并向社会公布。
第七条电磁辐射的建设项目或设备与周围建筑物之间的防护距离,应当符合经批准的环境影响报告书(表)的要求,建设项目或设备的电磁辐射强度不得超过国家规定的标准。
第八条从事带有电磁辐射作业活动的单位和个人,应当将电磁辐射的种类、强度、用途、方式以及污染防治设施等向市环境保护行政主管部门办理申报登记手续,并提供污染防治方面的有关资料。
电磁辐射在种类、强度、用途、方式以及污染防治设施等方面发生重大改变的,应当在15日前向市环境保护行政主管部门办理变更登记手续。
本办法实施前,未办理申报登记手续的单位和个人,应当在本办法实施之日起3个月内补办电磁辐射申报登记手续。对不符合本办法规定和国家标准,污染严重的,要采取补救措施,难以补救的要依法关闭或搬迁。
第九条从事带有电磁辐射作业活动的单位和个人,必须保持电磁辐射污染防治设施的正常运转,不得擅自拆除或者闲置。
确有必要拆除或者闲置的,应当在15日前向市环境保护行政主管部门提出申请,说明拆除或闲置理由。市环境保护行政主管部门接到申请后,对电磁辐射强度和防护距离能够达到规定要求的,应在20日内予以批准。
第十条从事带有电磁辐射作业活动的单位和个人,应当制定电磁辐射的监测方案,并向市环境保护行政主管部门备案。
从事带有电磁辐射作业活动的单位和个人,应当按照监测方案进行监测,也可以委托具有法定资质的单位进行监测。监测中发现异常的,应当及时向市环境保护行政主管部门报告。
第十一条市环境保护行政主管部门有权对本市从事带有电磁辐射作业活动的单位和个人进行现场检查。被检查的单位和个人必须如实反映情况,提供必要的资料和数据。市环境保护行政主管部门应为被检查单位和个人保守技术和商业秘密。
第十二条市环境保护行政主管部门应会同有关部门制定本市电磁辐射污染事故应急方案,报市人民政府批准后执行。
第十三条从事带有电磁辐射作业活动的单位和个人,应当制定电磁辐射污染事故应急预案,并向市环境保护行政主管部门备案,加强电磁辐射防护知识和技能的培训,建立安全责任制,防止发生电磁辐射污染事故。
第十四条造成电磁辐射污染事故的单位和个人,应当按照应急预案采取处理措施,在污染事故发生后24小时内向市环境保护行政主管和有关主管部门报告,并协助调查,接受处理。
第十五条市环境保护行政主管部门接到污染事故报告后,应当按照本市电磁辐射污染事故应急方案及时组织监测,确定污染程度和范围,采取相应的控制污染措施。
第十六条造成电磁辐射污染事故的单位和个人,应当查明事故原因,并向市环境保护行政主管部门提交书面事故报告。
市环境保护行政主管部门应当会同有关部门,对事故的原因、性质、污染程度和范围、危害后果和责任等进行全面调查,并由市环境保护行政主管部门或有关部门依法做出处理决定。
第十七条违反本办法有下列行为之一的,由市环境保护行政主管部门责令限期改正,并处罚款:
(一)排放的电磁辐射强度超过国家规定标准的,处5000元以上3万元以下罚款;
(二)拒报、谎报或瞒报有关申报登记事项的,处3000元以上3万元以下罚款;
(三)擅自拆除、闲置电磁辐射污染防治设施的,处5000元以上3万元以下罚款;
(四)未制定电磁辐射监测方案或在监测中发现异常未及时向市环境保护行政主管部门报告的,处3000元以上1万元以下罚款;
(五)被检查的单位和个人拒绝检查或者在检查中弄虚作假的,处5000元以上3万元以下罚款;
(六)未制定电磁辐射污染事故应急预案的,处1000元以上1万元以下罚款。
第十八条违反本办法第十四条规定,未在规定时间内向市环境保护行政主管部门和有关主管部门报告污染事故的,由市环境保护行政主管部门处1万元以下罚款。
违反本办法,造成电磁辐射污染事故的,由市环境保护行政主管部门处1000元以上3万元以下罚款,并承担相应的民事赔偿责任。
第十九条对监督管理部门的工作人员、、的,由所在单位或上级机关给予行政处分;构成犯罪的,依法追究刑事责任。
第二条凡在本市行政区域内从事带有本条第二款所列电磁辐射作业活动的单位和个人,必须遵守本办法。
本办法所指电磁辐射,是指广播电视设施、无线通讯设施和雷达等在信息传递中发射的电磁波,高压送变电设施、电气化铁路、城市轨道交通在运行中产生的电磁辐射,以及工业、科学、医疗设备应用中产生的电磁辐射。
第三条市环境保护行政主管部门对本市行政区域内的电磁辐射污染防治实施统一监督管理。
市无线电管理、广播电视、电力、信息产业、民航、铁路、卫生、轨道交通等主管部门,依照各自职责,协同市环境保护行政主管部门对电磁辐射污染防治实施监督管理。
第四条市环境保护行政主管部门负责组织建立本市电磁辐射环境监测网络,定期电磁辐射环境质量状况公报。
第五条市环境保护行政主管部门依照《电磁辐射防护规定》(GB8702-88),负责确认本市电磁辐射建设项目或设备的豁免水平。
前款所称豁免水平是指国务院环境保护行政主管部门规定的对应用或伴有电磁辐射活动免于管理的限值。
第六条建设电磁辐射项目或购置电磁辐射设备的,应当遵守国家和本市有关建设项目环境保护管理的规定。
市环境保护行政主管部门负责确定未列入国家《建设项目环境保护分类管理名录》中的电磁辐射建设项目或设备的环境保护管理类别,并向社会公布。
第七条电磁辐射的建设项目或设备与周围建筑物之间的防护距离,应当符合经批准的环境影响报告书(表)的要求,建设项目或设备的电磁辐射强度不得超过国家规定的标准。
第八条从事带有电磁辐射作业活动的单位和个人,应当将电磁辐射的种类、强度、用途、方式以及污染防治设施等向市环境保护行政主管部门办理申报登记手续,并提供污染防治方面的有关资料。
电磁辐射在种类、强度、用途、方式以及污染防治设施等方面发生重大改变的,应当在15日前向市环境保护行政主管部门办理变更登记手续。
本办法实施前,未办理申报登记手续的单位和个人,应当在本办法实施之日起3个月内补办电磁辐射申报登记手续。对不符合本办法规定和国家标准,污染严重的,要采取补救措施,难以补救的要依法关闭或搬迁。
第九条从事带有电磁辐射作业活动的单位和个人,必须保持电磁辐射污染防治设施的正常运转,不得擅自拆除或者闲置。
确有必要拆除或者闲置的,应当在15日前向市环境保护行政主管部门提出申请,说明拆除或闲置理由。市环境保护行政主管部门接到申请后,对电磁辐射强度和防护距离能够达到规定要求的,应在20日内予以批准。
第十条从事带有电磁辐射作业活动的单位和个人,应当制定电磁辐射的监测方案,并向市环境保护行政主管部门备案。
从事带有电磁辐射作业活动的单位和个人,应当按照监测方案进行监测,也可以委托具有法定资质的单位进行监测。监测中发现异常的,应当及时向市环境保护行政主管部门报告。
第十一条市环境保护行政主管部门有权对本市从事带有电磁辐射作业活动的单位和个人进行现场检查。被检查的单位和个人必须如实反映情况,提供必要的资料和数据。市环境保护行政主管部门应为被检查单位和个人保守技术和商业秘密。
第十二条市环境保护行政主管部门应会同有关部门制定本市电磁辐射污染事故应急方案,报市人民政府批准后执行。
第十三条从事带有电磁辐射作业活动的单位和个人,应当制定电磁辐射污染事故应急预案,并向市环境保护行政主管部门备案,加强电磁辐射防护知识和技能的培训,建立安全责任制,防止发生电磁辐射污染事故。
第十四条造成电磁辐射污染事故的单位和个人,应当按照应急预案采取处理措施,在污染事故发生后24小时内向市环境保护行政主管和有关主管部门报告,并协助调查,接受处理。
第十五条市环境保护行政主管部门接到污染事故报告后,应当按照本市电磁辐射污染事故应急方案及时组织监测,确定污染程度和范围,采取相应的控制污染措施。
第十六条造成电磁辐射污染事故的单位和个人,应当查明事故原因,并向市环境保护行政主管部门提交书面事故报告。
市环境保护行政主管部门应当会同有关部门,对事故的原因、性质、污染程度和范围、危害后果和责任等进行全面调查,并由市环境保护行政主管部门或有关部门依法做出处理决定。
第十七条违反本办法有下列行为之一的,由市环境保护行政主管部门责令限期改正,并处罚款:
(一)排放的电磁辐射强度超过国家规定标准的,处5000元以上3万元以下罚款;
(二)拒报、谎报或瞒报有关申报登记事项的,处3000元以上3万元以下罚款;
(三)擅自拆除、闲置电磁辐射污染防治设施的,处5000元以上3万元以下罚款;
(四)未制定电磁辐射监测方案或在监测中发现异常未及时向市环境保护行政主管部门报告的,处3000元以上1万元以下罚款;
(五)被检查的单位和个人拒绝检查或者在检查中弄虚作假的,处5000元以上3万元以下罚款;
(六)未制定电磁辐射污染事故应急预案的,处1000元以上1万元以下罚款。
第十八条违反本办法第十四条规定,未在规定时间内向市环境保护行政主管部门和有关主管部门报告污染事故的,由市环境保护行政主管部门处1万元以下罚款。
违反本办法,造成电磁辐射污染事故的,由市环境保护行政主管部门处1000元以上3万元以下罚款,并承担相应的民事赔偿责任。
第十九条对监督管理部门的工作人员、、的,由所在单位或上级机关给予行政处分;构成犯罪的,依法追究刑事责任。
【关键词】电磁辐射;环境管理;问题;管理策略
随着社会经济的快速发展,人们的生活水平逐渐提高,对各类通讯设施、供电设施的要求越来越高。为满足公众的需求,许多大型电磁类工程项目开始出现,对周围地区造成了较大的电磁辐射污染,严重影响了周围地区的环境以及人们的身体健康。因此,必须要做好电磁辐射的环境管理工作,采取适当的管理策略,解决电磁辐射污染问题,为人们的身体健康提供基本保障。
1 当前我国电磁辐射环境管理工作存在的问题
1.1 相关法律法规以及控制标准不完善
在电磁辐射环境管理方面,我国目前还没有一部完善的法律法规。虽然国家环保总局在1993年颁布了《电磁辐射环境保护管理办法》,对电磁辐射环境管理工作起到了一定作用,但是由于没有及时进行修订,其中的许多条例都只适用于当时的情况,无法满足现代电磁辐射环境管理的需求,缺陷日益明显。首先,其中许多实施办法效率比较低,难以达到应有的环境管理效果;其次,相关内容是以过去的电磁设备管理为主,对于新型电磁设备的辐射管理尚未明确出来,所以无法满足现代电磁辐射环境管理工作的需要;最后,某些条款与国家的环保法律、法规相抵触。比如在编制环境检测报告时,《电磁辐射环境保护管理办法》中的相关条例与《环境影响评价法》的相关法规有一定的冲突。我国目前的电磁辐射防护标准有《电磁辐射防护规定》(GB 8702-88)和《环境电磁波卫生标准》(GB 9175-88),行业标准有《电磁辐射环境影响评价方法与标准》(HJ/T 10.3-1996)以及《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T 24-1998)。从这些标准里可以发现,我国的电磁辐射环境管理存在以下几点问题:首先,电磁辐射的“环保标准”与“卫生标准”不符。《电磁辐射防护规定》与《环境电磁波卫生标准》都属于国家标准,但是两者对于电磁辐射控制范围的规定却是不一样的,导致我国各大企业、电磁辐射环境管理机构对于电磁辐射强度的控制范围不明确;其次,相关标准的作用范围太小。目前,我国电磁辐射控制标准只适用于100kHz-300GHz频率范围,对于某些工作频率较小的高压电力设施的电磁辐射管理控制却没有明确的参考标准。导致电磁辐射环境管理部门缺乏相关的管理依据,许多工作都难以顺利开展;最后,我国制定的标准与国际标准不相匹配。我国的《电磁辐射防护规定》与《环境电磁波卫生标准》已经使用了多年,其中的多项标准条例与我国的实际情况出入较大,而国际相关标准却早已进行了多次修改,与实际管理工作紧密结合,因此,我国电磁辐射环境管理相关标准与国际标准存在较大差异,与实际情况脱节[1]。
1.2 对电磁辐射环境现状不够了解
我国电磁辐射环境管理发展的时间还比较短,且近年来电磁设备更新换代的速度很快,更换频率较高,所以电磁辐射环境管理部门对电磁辐射污染源的详细分布情况并不是十分了解。在上世纪末,我国的环保部门曾对全国范围内的电磁辐射情况进行了全面调查,对我国各地区的电磁辐射污染源都有了一定的了解,再加上近年来电磁设备安装建设时都需要进行申报,所以电磁辐射环境管理部门能够更加方便地掌握电磁辐射污染源的信息。但是,由于申报并未与项目审批结合,申报时只是要求建设单位提供相应的申报资料,没有建立相应的数据库,所以许多申报相关资料数据都没有得到有效的利用。近年来,科学技术发展十分迅速,电磁设施设备也越来越先进,安装建设的速度也比较快,所以通过调查所了解到的数据与实际情况有一定的差异。此外,我国的电磁辐射环境管理大多是针对某一项目,管理面太窄,没有结合全国实际情况对电磁辐射环境进行全面监测,从而导致我国电磁辐射环境管理部门对电磁辐射环境现状了解得不够充分。
1.3 规划不合理
规划阶段是电磁辐射环境管理的重要阶段,规划的合理程度对电磁辐射环境管理质量有较大的影响。目前,由于我国缺乏相关的科学依据,在对电磁设施设备进行规划时考虑不全面,经常发生电磁设渲间相互干扰、交叉影响的问题。按照原有规划,为了防止电磁辐射影响市民的正常生活,电磁设施设备一般是设置在郊区的。但由于近年来用地紧张,所以郊区也开始实施建设,许多居民区出现在电磁设施周围,从而使得电磁辐射对居民的不利影响扩大化[2]。
2 电磁辐射环境管理策略分析
2.1 完善相关法律法规及国家标准
完善相关法律法规,为电磁辐射环境管理设置专项法律,加快立法进程。对于电磁辐射环境管理,要优先考虑电磁辐射污染的预防工作,再加以合理的控制措施,为电磁辐射环境管理提供有效的法律支持。完善相关国家标准,使得国家标准适用于全国范围内所有类型的电磁辐射源;针对每一种电磁辐射源,分别设置相应的电磁辐射控制标准[3]。
2.2 强化电磁辐射环境监测工作
首先,需要对全国范围内的电磁辐射源分布情况进行普查,了解电磁辐射环境的基本情况,并建立相应的数据库;其次,在各电磁辐射较大的地区设置长期的监测系统,掌握当地的电磁辐射污染情况,如果发现问题,立即通知相关部门进行处理。
2.3 加入环境影响评价机制,提高规划的科学性
环境影响评价机制可以对当地环境的承载能力进行评价,综合考虑国民经济发展与社会发展的需求,对区域内的生产力布局、资源配置等进行分析,从而给出更多实用性的建议。因此,将环境影响评价机制加入到电磁辐射环境管理工作中,综合考虑电磁设施设备的总体布局以及与当地电磁环境容量之间的关系,尽量避开电磁环境敏感区,从决策源头上控制电磁污染,保护环境[4]。
3 结束语
随着我国科学技术的不断发展,电磁辐射问题成为了我国重要的环境问题之一。电磁辐射不仅会影响周围的生态环境,还会影响附近居民的身体健康,因此,电磁辐射环境管理部门必须要了解每个电磁辐射源的分布情况,设置长期监测系统对各电磁辐射源进行实施监测,并采取适当措施控制电磁辐射的强度,从而降低电磁辐射污染,保证附近居民的身体健康。
【参考文献】
[1]陆智新,梁美霞.基于生态市建设的泉州市电磁辐射污染监管现状与对策研究[J].高师理科学刊,2015,35(11):56-59.
[2]张金帆,郭键锋,黄恒,时劲松.输变电工程电磁辐射环境管理存在的问题及解决对策研究[J].中国辐射卫生,2015,24(5):517-519.
关键词:深部 冲击地压 监测 钻屑法 电磁辐射法
中图分类号:TD353 文献标识码:A 文章编号:1672-3791(2012)06(b)-0045-01
赵各庄煤矿3137工作面位于13水平西翼1石门12煤层,平均埋深1137m;煤厚9.7m;煤层倾角9°~32°,平均20°;煤岩层裂隙发育,面内小构造发育,地质构造复杂;属深部孤岛工作面。西至13西1石门上山,上山以西为3137西面于2003年至2009年回采完毕,东至东Ⅲ断层煤柱线。
1 冲击地压监测技术
冲击地压现场监测采用钻屑法和电磁辐射方法进行。依据3137工作面区域情况和赵各庄矿开采历史长的现实,采用钻屑法、电磁辐射为主,应力变化方法为辅的主次监测方法,同时利用矿山地震灾害速报系统进行趋势预测[1]。
1.1 钻屑法监测
(1)监测方法。
对3137工作面回风巷、运输巷采面侧巷帮和工作面煤壁进行钻孔煤粉量监测[2],根据煤粉量大小判断其危险性,同时依据钻孔钻进过程的卡钻、吸钻等微冲击现象,进行冲击危险判定。在监测范围内每隔5m布置一个点进行钻屑法监测,监测巷道的内帮或者两帮的煤粉量大小。监测孔布置:钻孔直径42mm,孔深8m,间距5m,孔距底板1.2m左右,单排布置,钻孔方向为水平垂直巷帮,实施监测时按照由外向里的原则监测,确认无冲击危险后方可向里进一步实施。
(2)监测内容。
主要监测每米钻孔钻屑量,单位升或公斤,另外还需记录卡钻、孔内冲击等情况。
(3)临界指标。
钻屑量监测临界值如表1所示,4m以内包括4m为3.0kg/m,大于4m为4.0kg/m。
打眼过程中出现的钻杆跳动、卡钻、劈裂声和钻孔内微冲击等动力现象时,视为有动力现象危险。
根据以往12煤层钻屑法指标确定煤粉量临界指标,如果监测钻具参数发生变化时必须重新确定临界指标(动力显现区域测定)。当监测到的煤粉量超过上述临界指标时,应认为煤体处于临界危险状态,必须立即采取解危措施。
1.2 便携式电磁辐射监测
(1)监测方法。
通过近几年的研发,地球物理探测技术在动压危险性预测方面具有整体可靠性特点,其监测的范围比钻屑法扩大,可以深入到煤层20m范围,可靠性明显提高。在监测范围内每隔10m布置一站进行便携式电磁辐射监测,每个测站监测巷道两帮、底板、顶板(在卸压巷区域不监测顶板)等多个测点。采用KBD5矿用本安型电磁辐射仪进行监测,每班监测一次,每个点测量时间为2min。实施便携式电磁辐射监测时按照由外向里的原则顺序监测,确认无冲击危险后方可向里进一步实施;每个班要对能够监测的最里侧的测站向外的所有测站进行监测。
(2)监测指标。
监测指标包括:临界值法预报和动态趋势法预报。
临界值法预报:电磁辐射预报指标有幅值平均值、幅值最大值、脉冲数,首先分别标定三个预报参数的平均值,取平均值的1.3倍作为预警临界值。当电磁辐射强度或脉冲数超过设定的预警临界值时,判定为存在冲击危险。
动态趋势法预报:通过分析相同地点不同时间电磁辐射值的变化趋势和不同地点相同时间电磁辐射值的变化趋势进行危险预报。
当电磁辐射强度或脉冲数随时间呈现增长趋势时,或当电磁辐射强度或脉冲数先期随时间呈增长趋势,而后突然降低,之后又呈增长趋势时判定为存在冲击危险。
每天监测完升井后,及时处理监测数据并打印曲线,并根据预报指标进行冲击危险预报,发现问题及时反映给有关部门和领导。
2 结语
(1)通过对3137工作面开采环境的分析,包括区域地应力分析和局部开采边界应力分析,为冲击地压监测方法的选择提供重要依据。
(2)根据3137工作面的赋存条件,在类比国内外冲击地压监测技术基础上,确定3137工作面冲击地压监测方法为钻屑法和电磁辐射法。
(3)钻屑法监测需要确定监测方法、监测内容和监测指标等参数。电磁辐射法需要确定其监测方法和监测指标等参数。
参考文献
关键词:电磁辐射;环境监管;策略探析
电磁辐射既是一种资源也是一种环境污染物,而且还具有较强的隐蔽性能,从而也就让环境监管难度变得更加困难。在我国,主要是运用双轨监督和分级审批的方式来应对豁免水平之上的电磁辐射体,也就是借助于国家和省级环境保护相关部门进行审批,监督权交由行业主管部门来实施。有关基站电磁辐射具有一定的特点,如果处理不当,不仅会造成非常严重的污染危害,而且也会给我国的经济发展造成严重损失。
一、有关基站电磁辐射特点
移动通信基站天线大都是呈现一种均匀的平面阵、直线阵或者圆阵,在有效组成成分当中,基本半波振子扮演了极为重要的角色。通常情况下,将2D2/λ的距离作为天线近场距离远场的分界判定准则,当中“D”表示天线尺寸的最大值。工程上900MHzGSM是最为典型的一种基站定向天线,以此为例,远、近场分界距离大致在10米,因此,基站天线一般情况下都是处在天线的近场内天面上。从环境保护视角上来看,移动通信基站远场电磁辐射水平最为常用的是理论预测方法,但基于近常评估期间,使用的最为普遍的测量方法为现场测量方法。针对理论预算完成相应的计算工作时,通常是用微波远场轴向功率密度计算公式加以计算。由于计算公式的复杂程度较高,本文不对其进行详述。如果根据一般角度分析,基于GSM以及WCDMA等系统进行基站远场电磁辐射水平估算过程中,通常采取的方法为天线轴向电磁辐射水平测量;而针对于TD-SCDMA系统基站时,由于其自身具备智能天线,与此同时还不存在固定模式的发射方位;因此,基于系统满负载监测过程中,以及多波束赋形监测过程中,通常会采取估算电磁辐射水平的方法[1]。若以较为典型的GSM、CDMA基站为例,它的电磁辐射水平、高差以及水平距离之间的关系为:离天线水平距离15m以外的区域电磁辐射水平小于《电磁辐射防护规定(GB8702-1988)》中0.03~3GHz频段公众照射功率密度导出限值40W/cm2,随着高差的增加,上述距离逐渐减小。此外,据相关的调查显示,广东广州市主城区域移动通信基站周边,基于公共区域,电磁辐射水平通常是百分之八十;但处于0.80W/cm2内,大致为94%,则在4.0W/cm2以内。介于此,我们能够看出,移动通信基站周围环境中电磁辐射水平并不是很高。
二、有关基站电磁辐射防护与环境监管的策略探析
首先,一般情况下,公共场所和居民楼相对比下,前者天面借助于加锁。设立警示牌,而且还有专人管理等方法,通过这些方法能够有效的预防群众进入到天面中,相对于居民楼天面而言,公共场所天面群众的活动可能性要小很多[2]。介于此,在架设基站的时候,应该更加倾向于选择公共场所。因为基站天线周围都会伴随着非常高的电磁辐射水平且都是在天面上集中,而居民楼天面所处地区很多居民都能够轻易到达,所以针对于高于电磁辐射水平管理目标值的相关基站,应在整改时尽可能的不借助于加锁的方式,而应该借助于基站发射功率来约束天线的架设位置、角度以及高度等,从而让公众能够到达的天面区域中所存在的电磁辐射水平在管理目标值内。其次,对存在较高电磁辐射水平的天面各个监测点位的站点,应该对其周围的电磁辐射源进行着重调查,并及时实施分频测量;针对于共建共享站,倘若存在基于监测点位当中的电磁辐射水平要远远高于项目管理所设定的目标值的情况下,那么则需针对天面上每一个基站的信息进行深入分析、评估,进一步明确分频测量方法及成果。第三,要明确的要求验收基于验收环节,需明确的内容包括:(1)时基站变更的数量;(2)是不是属于共建共享站;(3)天线属于何种类型,天线采取何种架设方式;(4)基站所处区域的类型以及基站变更的发射机参数类型以及应如何处理未验收的站等方面;严格规范典型站的抽测比例和典型站的选取原则。第四,针对基站发射功率来说,基于环评以及验收批复过程中,需明确的是绝对不可高于核准功率。倘若需对天线角度进行调整,并对相关功率进行调整,则需做好该基站环境的电磁辐射水平的检测工作,并交由相关的环境保护机构进行备案和记录。第五,从基站的建设性质的视角上来看,尤其是对界定扩建、改建以及技术改造等进行明确的过程中,将对基站的各个参数进行填写的过程中,应该保证参数的规范性和正确性,在改建或扩建基站的过程中,应该在基站信息表中记录好改建或扩建之前的基站信息。最后,要详细的解释室内基站和微蜂窝基站分布的原因,并明确给出能否可以将其设为评价对象,如果需要评价,则应该严格的规定它的监测和评价内容;倘若对室内分布基站完成了相对应的评估,同时对微蜂窝基站完成了相对应的评估,那么基于验收监测期间,应该明确规定是否需要对其进行验收,如需验收,验收方法选择哪一种[3]。
三、小结
随着当下相关基站的迅速发展,人们在对其所带来的便利进行享受的同时,也更加重视电磁辐射对环境和人体健康所带来的危害。因此,只有国家或省级环境保护相关机构对电磁辐射水平做到严格监测,在建设、规划和维护相关基站的过程中,严格规范电磁辐射防护措施的实施工作,落实贯彻环境保护意识,才能让公众和环境得到更好的保护。
作者:吴俊 单位:成都理工大学核技术与自动化工程学院
参考文献:
[1]张艳春,晁晓会,耿德军,贺金龙,彭燕,吴永红,李志慧,高艳,李雨,张成岗.复杂电磁环境作业人员对电磁相关知识的认识情况分析[J].军事医学,2014,01:57-61.