当前位置: 首页 精选范文 高一数学解题公式范文

高一数学解题公式精选(五篇)

发布时间:2023-10-12 15:35:07

序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇高一数学解题公式,期待它们能激发您的灵感。

高一数学解题公式

篇1

关键词:返璞归真;公式和定理教学;实践感悟

一、对开展“高一数学公式和定理教学研讨”的基本认识:

1.新课改的需求:一方面,指出:高中数学课程应返璞归真,努力揭示数学概念、公式、定理的发展过程和本质,使学生理解它们逐步形成的过程,体会蕴含其中的思想方法。另一方面,在新一轮数学课程改革中,将“推理与证明”纳入新课程教材中(选修1-2和选修2-2),这些都预示着对学生合情推理能力的培养将越来越重要。

2.适应高考,培养学生能力的需要:近年来,很多省份的高考中出现了教材中公式或定理的推导、证明,学生的得分率相当低,这与我们日常教学中对公式的推导、对定理的证明极不重视有很大关系。高一年级的任课教师很多都是高三一线下来的老师,经过高考“题海”式的强化训练,更加不会静下心来推导公式或定理,对学生要求“一背二套三默写”、课堂上采取“公式例题加变式”的形式,这样往往使学生头脑里只留下公式、定理的外壳,忽视它们的来龙去脉,不明确它们运用的条件和范围,不利于学生数学能力和素养的提升,也不利于学生的终身发展。

二、开展“高一数学公式和定理教学”的基本做法:

公式和定理是高一数学知识体系的重要组成部分,是数学推理论证的重要依据,每一章均涉及到一些定理和公式,因此,公式和定理的教学是高中数学教学的重要组成部分。下面我就高一年级数学公式和定理的教学谈谈我的一些做法:

(一)重视公式或定理的引入:

公式、定理的引入是发展学生思维、培养探索能力的重要环节。引入最好能够引人入胜,尽量避免“开门见山”式的引入,可以针对不同的公式与定理,采用多样化的引入,这样就能很好地吸引学生,激发他们的探究欲望。常用以下几种引入的方法:

1、实践演示引入:利用与公式和定理相关的、有趣味的模型,使学生在接触课题之前,就产生强烈的探求欲望。例如在引入均值定理时前,可以让学生制作数学家赵爽的“弦图”,引入根的存在性定理(必修1)时,可以先让学生通过大量计算、作图实践、甚至电脑模拟演示等,从而让学生充分体会、领悟该定理的条件、特征及应用。

2、类比引入:

数学中的很多公式和定理在教材中的出现是相对分散的,但知识的整体性要求我们不能忽视相关内容的联系,因此新公式、新定理可以由旧公式、旧定理通过类比迁移而来. 使得新知识成为旧知识在某种程度上的拓展和延伸,非常自然地将新公式和新定理同化到学生的原认知结构中,降低学生对新知识的理解和记忆难度。例如在推导等比数列的通项公式、相关性质(角标性质、连续等长片段的和的性质)这种引入方法,使学生对新公式、新定理不感到突然,而是旧公式、旧定理的延伸与扩展。

3、发现法引入:

对于有些公式和定理,可以带领学生重涉前人探索之路去自己发现.这种发现式的引入,对培养学生观察与探究能力有重要作用.例如在学习等差数列求和公式时,我给同学们讲了高斯小时候求1+2+…+100的故事,并附加提问:“在高斯说出了他的方法后,老师又提出了新的问题,请学生计算1+4+7+…+98”,大家想一想,该如何计算?更一般的等差数列前n项a1+a2+…+an的计算公式我们能推导出来吗?同学们兴致盎然,通过独立探究与合作讨论,很快就得出了等差数列前n项和的公式.

(二)重视公式或定理的归纳猜想

按照数学知识的基本规律,公式和定理可以通过两个方面去探究归纳:一是,以一般的原理为前提,推出某个特殊情况下的新结论(演绎推理);二是,以若干特殊情况下的情况为前提,推出一个一般的原理作为新结论(归纳推理)。在引入之后,通过归纳、演绎,使学生对公式、定理有一个初步的认识,提出结论,符合知识体系的建立,也利于学生自主探索和交流合作的体验经历,培养学生数学素养。例如均值不等式(必修5)的得来,就是通过老师创设情境、提出问题,让学生合作探究、大胆归纳和猜想。

(三)重视公式或定理推导和证明

公式的推导和定理的证明是教学的核心。经过恰当地引入和归纳猜想,学生的心理状态是“兴趣被激发,对证明、推导有迫切感”,因此抓住机会给予证明。应注重联系,弄清公式、定理的来龙去脉,提高对数学的整体认知。在推导过程的教学中,发挥学生的主体作用,能让学生推导的就让学生推导,并注意让学生彼此发现并指出学生推导中的错误。有些推导过程繁琐的公式与定理,教师可以注重分析,讲清为什么用这样的方法。如果公式和定理有几种推导方法,教学中不是面面俱到,可以让学生课后思考不同的推导方法。例如三角函数公式众多,结构复杂,这就要求我们必须引导学生明白公式的来龙去脉,掌握他们的推导过程,深刻认识公式的结构特征,明确每一组公式在整个公式系统中的地位及作用。否则学生不能熟练应用,平时作业边做题边翻公式,一上考场脑袋一片空白。

(四)重视公式或定理的条件和特例

公式或定理成立是要有一定条件的。学生学习的最大弱点是把公式作为“万能公式”,将定理作为“万能定理”,乱用乱套。因此教学中要强调它们成立的必备条件。如对数运算公式中真数都要大于零、等比数列前n项和必须分q=1和q≠1,an与sn的关系中必须注意验证初始值等条件限制。在公式推导完成后,通过实时练习,从中发现学生忽略条件而产生的错误,让学生讨论公式应用中要注意公式成立的条件。另外,公式虽具有一定的普遍意义,但对一些具有特殊条件的情形要给予注意,这就是公式的特例。如三角诱导公式及倍角公式是两角和与差公式的特例,勾股定理是余弦定理的特例等。

(五)重视公式或定理的灵活应用,提高学生解题能力

数学教学的目的在于应用和实践,因此,在公式和定理的教学中,必须使学生灵活巧妙地应用公式和定理,提高、培养学生实际运用的能力。在此教学环节中要注意引导学生灵活掌握公式和定理,既要引导学生正用、逆用,还要注意变形用、推广用等。这一层次的思维量大,可很好地培养学生思维的灵活性。例如:基本不等式可以变形为a2+b2≥2ab,tan(A+B)=tanA+tanB1-tanAtanB变形为tanA+tanB=tan(A+B)(1-tanAtanB)等,正弦定理也有很多变形公式,如a:b:c=sinA:sinB:sinC等一定要引导学生灵活掌握.

三、高一数学公式或定理教学中要达到的目标:1.要求学生用准确的数学语言表述公式与定理的内容。学生对条件较多、变化较大的定理或公式的感知和记忆要受条件强弱的影响,条件强、用的多的部分更容易被关注和记忆,弱的部分常常被掩盖或忽视。例如等比数列前n项和公式中q=1就是相对较弱的条件,学生非常容易忽视,但他们对q≠1的情况记得非常准确,又如数列中已知Sn求an,学生对相对较弱的验证n=1经常遗漏,该分段不分段,甚至有的学生到高三还在这些方面丢分,归根结底,还是我们高一公式与定理教学过程中对学生的要求没有到位。

2.要求学生学会分析其条件与结论间的内在关系,明确其使用的条件和适用的范围及应用的规律。这是教会学生看清知识的内部联系,从而把所学知识纳入学生认知结构的有效途径。

3.要求学生领悟公式推导过程中包含的数学思想方法。如:数形结合、从特殊到一般、分类讨论、类比等。

4.要求学生学会比较与鉴别。比较与鉴别是学生把公式和定理纳入自身认知结构的重要过程。在练习应用中,一般是应用所学新知识来解题。如果仅仅盯住新公式,学生就失去一次独立选择公式的机会,这无助于学生认知结构的发展。特别是公式较多时,学生一旦面临复杂的问题,他们会无所适从。比如新学的均值不等式与高一上期所学“双钩函数”的比较,通过比较,发现两者并不矛盾可以让学生进一步明确“双钩函数”可以看成是均值不等式的很好的扩充。因此在教学中用注意公式的比较与鉴别,选择合适的公式解题,使学生的解题能力得到发展。

四、高一数学公式或定理教学的实践感悟:

1.教师一定要增强对公式和定理证明的意识。

教师的思想会直接影响学生的思想,教师如果自己觉得公式和定理只要会用就可以,那么要学生掌握公式和定理的证明这是不可能的,因此,我们作为一线教师必须充分重视公式的推导和定理的证明。实践证明,在课堂上适时的推导公式、证明定理,让学生掌握公式和定理的证明,就能够把大部分学生对公式和定理的理解水平提升到领会水平,从而有效地提高学生的解题能力。例如:等差数列前n项和公式的推导(倒序相加)、等比数列前n项和公式的推导(错位相减)、三角函数很多公式的推导及正余弦定理的多种证明方法等,其中所蕴含的数学思想和数学方法就是学生解题中需要用到的。

篇2

关键词:提高;兴趣;挖掘;潜能;控制;成绩;下降

【中图分类号】G635.1

高中数学的内容多、抽象性、理论性强,很多初中毕业生以较高的数学成绩升入高中后,不适应高中数学教学,有相当一部分人的数学不及格,出现了严重的两极分化,少数学生甚至对学习失去了信心。前几年,不少学校受高考指挥棒的影响,只注重升学率而忽视了合格率。现在高中实行会考制,上述问题引起了各校足够的重视,高中学生的数学整体水平得到了提高。本文主要谈谈挖掘学生思维潜能,控制高一数学成绩的下降的策略。

一、高一数学成绩下降的原因分析

1.初、高中数学教材间梯度过大

在初中教材中,往往偏重于实数集内的运算,缺少对概念的严格定义或对概念的定义不全,如函数的定义、三角函数的定义就是如此;对不少数学定理没有严格论证。或用公理形式给出而回避了证明,比如不等式的许多性质就是这样处理的。教材坡度较缓,直观性强,对每一个概念都配备了足够的例题和习题。而高一教材第一章就是集合、映射等代数知识,紧接着就是幂函数的分类问题(在幂函数中,由于指数不同,具有不同的性质和图像)。函数单调性的证明又是一个难点,立体几何对空间想象能力的要求又很高,教材概念多、符号多、定义严格,论证要求又高,高一新生学起来相当困难。此外,内容也多,每节课容量远大于初中数学,这些都是高一数学成绩下降的客观原因。

2.高一新生普遍不适应高中数学教师的教学方法

在一次高一召开的学生座谈会上,同学们普遍反映数学课能听懂但作业不会做,不少学生说,平时自认为学得不错,考试成绩就是上不去。带着这些问题我多次听了初、高中数学教师的课堂教学,从中发现初中教师重视直观、形象教学,老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多,为了提高合格率,不少初中教师把题型分类,让学生死记解题方法和步骤。在初三,重点题目反复做过多次,而高中教师在授课时强调数学思想和方法,注重举一反三,在严格的论证和推理上下功夫。又由于高中搞小循环,接高一课程的教师刚带完高三,他们往往用高三复习时应达到的难度来对待高一教学,因此造成初、高中教师教学方法上的巨大差距,中间又缺乏过渡过程,致使高中新生普遍适应不了高中教师的教学方法。

3.高一学生的学习方法还停留在初中阶段

高一学生在初中三年已形成了特定的学习方法和学习习惯,他们上课注意听讲,尽力完成老师布置的作业,但课堂上满足于听,没有做笔记的习惯,缺乏积极思维;遇到难题不是动脑子思考,而是希望老师讲解整个解题过程;不会科学地安排时间,缺乏自学、看书的能力,还有些学生考上高中后,认为可以松口气了,放松了对自己的要求,上述的学习方法,不适应高中阶段的正常学习。

二、控制高一数学成绩下降的对策

1.课前调动学生求知欲

求知欲是人们思考研究问题的内在动力。让数学从高度抽象、极其枯燥的金字塔中解放出来,创设真实有趣具有挑战性的问题情境,就可以激发学生的学习愿望和潜能。例如,在教学概率一章时,我做了两个实验,第一,我断言班里肯定有生日相同的学生,提前让全班学生在教室的电脑里输入自己的生日,上课时当众打开,让同学们亲眼看到出现了几对生日相同的学生,告诉他们这几乎是个必然结果。再比如,在学习利用不等式求最值时,通过对易拉罐的观察和测量得出结果。易拉罐的形状都是圆柱形,而且高与直径比大约是2:1.为什么要如此设计呢?与生活如此贴近,学生产生强烈求知欲。

2.课中提高学生学习兴趣

1)数学史融入课堂。爱因斯坦说过“兴趣是最好的老师。”借助数学史,名人逸事,数学典故是培养学生兴趣的第一媒介。例如在《导数》一章之初,我就讲到1687年牛顿从研究运动的瞬时速度入手引出导数概念,而1684年莱布尼茨由研究曲线的切线问题引出导数的概念,二人分别独立研究,不谋而合,学生对本章内容产生浓厚兴趣。

2)文学魅力融入课堂。好多数学公式枯燥难以记忆,数学概念抽象难以理解,我尝试用诗意的语言描述数学概念,用著名诗句阐述图像特征,用自编口诀帮助记忆公式,起到很好效果。比如,用三部曲概括证明单调性的步骤:在区间找代表,函数值作比较,通过讨论定大小。用诗句“上穷碧落下黄泉,两处茫茫皆不见”刻画正切函数图像的值域,用“京口瓜州一水间,无缘对面手难牵”形容它的周期性和定义域。把对数函数图像形象地分为“风吹麦”型和“风摆柳”型,用“正弦半角要求根,竹竿钓鱼二人分”口诀帮助记忆半角正弦公式等等,使学生产生浓厚兴趣。牢固掌握了所学知识。

3)多媒体辅助教学。多媒体可以提供五彩缤纷的富有吸引力的动态图像特征,直观演示性质。例如讲y=Asin(ωx+Φ)图像时借助多媒体演示A、ω、Φ中的变化,可以短时间内列举大量例子,观察规律。再如线性规划一节,通过目标函数的移动,准确找到最优解,尤其是利用网络,找整数解,学生看得非常清楚、明白,也对相应内容产生浓厚兴趣。

4)课堂中给学生创造性尝试的机会和体验。学生不是接受的“容器”,而是可以点燃的“火把”。轻松活泼的课堂气氛和师生关系,是点燃的“火把”最适宜的火种。对于学生富有创意,别出心裁的解题给予充分的肯定,让学生意识到自己内在的无穷力量,也从老师的肯定中体验到创造和成功的乐趣。

三、多种教学形式,挖掘潜能

1.锻炼自学能力。自学不仅能培养自学能力,而且能发现重点,难点,减少听课过程中的盲目性,有助于提高学生的思维能力和概括总结能力。

2.组织课堂讨论。这样培养的学生敢于提问题、敢于批判、敢于质疑、思维敏捷。不受老师讲解的束缚。可为发散思维的培养创造良好的内、外部环境。

3.适当进行“一题多解”“一题多变”“一法多用”,培养学生的发散思维。

篇3

一、指导学生科学预习

很多学生在初中时就没有预习的习惯,只是上课时一味听老师讲解,然后课后根据老师讲解的例子加以模仿练习,就能够考出挺不错的成绩。上高中后,保持原有的学习方式,认为预习可有可无,即使预习也是简单地阅读一遍课本,然后就开始听课。月考之后,面对自己的成绩,感到空前的失败,惊慌失措,痛苦不堪。主要是因为初中数学内容相对简单,大都以形象、通俗的语言进行表达,而高一第一章集合与函数概念,就一下子接触到抽象的符号语言、图形语言、逻辑运算语言等,学生难以适应。同时,每一堂课的内容在“量”上也急剧增长,很多学生无法接受并消化。因此,课前预习对于提高课堂听课效率,显得十分重要。教师在指导学生预习时,首先应该粗读课本,大概了解本节课要上的内容。其次要细读,认真阅读本节课的重要概念、重要公式、重要法则等,最好做到熟记。对于在预习中不理解的内容,要做好摘记,以便在课堂上听老师讲评,提高听课的针对性。在预习中用到的没有掌握好的有关旧知识,要进行补缺补漏,以减少听课的困难,提高思维能力。最后,教师要对学生的预习情况进行监督落实,让他们能够长期坚持预习,养成良好的预习习惯,形成良好的自学能力。

二、指导学生科学听课

良好的预习习惯,就是为提高听课效率服务的。高中数学与初中数学相比,在知识的难度、深度、广度上都是一次质的飞越,在能力要求、思维方式等方面也提出了更高的要求。因此,能不能掌握好所学的知识内容,听课质量的高低显得尤其重要。很多学生在初中时听课带有很强的随意性,有时候很认真听,有时候不听也行,而且往往无法集中精力从头听到尾,由于初中数学内容相对简单,因此考试成绩还过得去。但是,高中数学较深奥,知识内容之间联系紧密,一旦哪一节课的内容没掌握好,便直接影响到后续内容的学习,因此,每一节课的内容不分轻重,都很重要。所以,教师在指导学生听课时要反复强调,要求学生提高听课的韧性,能够做到全神贯注地听好45分钟,提高听课效率。指导学生在听课过程中要认真听老师对知识讲解的过程,弄懂知识的来龙去脉,以便熟练应用知识解决问题;要认真听好老师对重点内容、难点内容的分析,特别是自己在预习中记下来的不理解的内容,提高分析问题的能力;要认真听好老师对例题的讲解思路及所用到的思想方法,以提高自己的思维能力;要认真听好老师的解题方法和解题技巧,以丰富自己的解题手段和解题技巧;要勤于思考,多动脑筋,特别是一个题目解完后,要进行及时反思、总结,提炼方法与技巧,达到“解一题会一片”的效果,以摆脱题海之苦,有效提高自己的数学水平。

三、指导学生科学笔记

提高听课效率的重要手段就是做好笔记。在教学过程中,发现有些学生只听不记,有些学生却只记不听,这些不良的听课习惯都不可能达到好的听课效果。因此,教师要指导学生科学地记笔记,记笔记就是为了提高听课效率。所以,记笔记要服从认真听课,在适当的时候记录;要重点记老师在课堂上讲解的解题方法、解题技巧、解题思路,以便启迪自己的解题思维,开阔解题视野,培养解题能力,提高解题水平;要记好课堂上未听明白的问题,以便下课后,及时请教老师或同学,把问题弄明白,不影响后续内容的学习;要认真记易混易错的题目,并用彩色笔加以标记,引起自己对这些题目的重点关注,特别是考前要做重点复习,保证自己在考试中不出错;要认真对待笔记本中的每一道典型例题,经典解题方法,巧妙的解题技巧,做到完全理解,让它们变成自己的东西,并在今后的学习中熟练运用。

四、指导学生科学解题

篇4

关键词: 初高中数学教学 衔接工作 必要性 教学措施

高中数学难学,难就难在初中与高中衔接中出现的“高台阶”。刚从初中升上高中的学生普遍不能一下子适应过来,都觉得高一数学难学,特别是对意志品质薄弱和学习方法不妥的那部分学生,更是使他们过早地失去学数学的兴趣,甚至打击他们的学习信心。如何搞好高初中数学教学的衔接,帮助学生尽快适应高中数学教学特点和学习特点,跨过“高台阶”,就成为高一数学教师的首要任务。本文试图从以下方面探讨高中新生在数学学习中存在的问题和解决的对策。

一、做好初高中数学教学衔接工作的必要性

高一阶段数学教与学中普遍存在的问题是:“学生感到难学,教师感到难教。”高一数学相对于初中数学而言,逻辑推理强,抽象程度高,知识难度大。一些学生以较高的数学成绩升入高中后,不适应高中数学教学,学习成绩大幅度下降,出现了严重的两极分化,过去的尖子生可能变为后进生,少数学生甚至对学习失去了信心。

近年来,初中数学教学内容有了较大程度的压缩、上调,中考难度的下调、新课程的实验和新教材的教学使高中数学在教材内容及高考中都对学生的能力提出了更高的要求,使得原来的矛盾更突出。

二、初、高中数学学习的显著差别

一是数学语言在抽象程度上突变:历来学生都反映,集合、映射等概念难以理解,离生活很远,似乎很“玄”。

二是思维方法向理性层次跃迁:数学语言的抽象化对思维能力提出了更高的要求。

三是知识内容的整体数量剧增,加之时间紧、难度大,这样,不可避免地造成学生不适应高中数学学习,从而影响成绩的提高。

三、现有初高中数学知识存在“脱节”现象

初高中知识“脱节”在哪里?

1.立方和与差的公式。这部分内容在初中教材中已删去不讲,但进入高中后,它的运算公式却还在用。

2.因式分解。十字相乘法在初中已经不作要求了,同时三次或三次以上多项式因式分解也不作要求了,但是到了高中,教材中却多处要用到。

3.二次根式中对分子、分母有理化。这也是初中不作要求的内容,但是分子、分母有理化却是高中函数、不等式常用的解题技巧,特别是分子有理化。

4.二次函数。二次函数的图像和性质是初高中衔接中最重要的内容,二次函数知识的生长点在初中,而发展点在高中,是初高中数学衔接的重要内容。二次函数作为一种简单而基本的函数类型,是历年来高考的一项重点考查内容,经久不衰。

5.根与系数的关系(韦达定理)。在初中,我们一般会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程,而到了高中却不再学习,但是高考中又会出现这一类型的考题,因此笔者建议:(1)理解一元二次方程的根的判别式,并能用判别式判定根的情况;(2)掌握一元二次方程根与系数的关系,并能运用它求含有两根之和、两根之积的代数式(这里指“对称式”)的值,能构造以实数p、q为根的一元二次方程。

6.图像的对称、平移变换。初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,对称轴、给定直线的对称问题必须掌握。

7.含有参数的函数、方程、不等式。初中教材中同样不作要求,只作定量研究,而在高中,这部分内容被视为重难点。方程、不等式、函数的综合考查常成为高考综合题。

8.几何部分很多概念(如重心、垂心、外心、内心等)和定理(如平行线分线段比例定理,射影定理,圆幂定理等),初中生大都没有学习,而高中教材中常常要涉及。

四、搞好初高中衔接应采取的主要措施

高中数学教学中要突出四大能力,即运算能力,空间想象能力,逻辑推理能力,以及分析问题解决问题的能力。要渗透四大数学思想方法,即数形结合,函数与方程,等价与变换,划分与讨论。这些虽然在初中教学中有所体现,但在高中教学中才能充分反映出来。这些能力、思想方法正是高考命题的要求。

1.优化课堂教学环节,搞好初高中衔接。

①立足于大纲和教材,尊重学生实际,实行层次教学。高一数学中有许多难理解和掌握的知识点,如集合、映射等,对高一新生来讲确实难度较大。因此,在教学中应从高一学生实际出发,采取“低起点、小梯度、多训练、分层次”的方法,将教学目标分解成若干递进层次逐层落实。在速度上,放慢起始进度,逐步加快教学节奏。在知识导入上,多由实例和已知引入。在知识落实上,先落实“死”课本,后变通延伸用活课本。在难点知识讲解上,从学生理解和掌握的实际出发,对教材做必要层次处理和知识铺垫,并对知识的理解要点和应用注意点作必要总结及举例说明。

②重视新旧知识的联系与区别,建立知识网络。初高中数学有很多衔接知识点,如函数概念、平面几何与立体几何相关知识等,到高中,它们有的难度加深了,有的研究范围扩大了,有些在初中成立的结论到高中可能不成立。因此,在讲授新知识时,我们有意引导学生联系旧知识,复习和区别旧知识,特别注重对那些易错易混的知识加以分析、比较和区别。这样可达到温故知新、温故而探新的效果。

③重视展示知识的形成过程和方法探索过程,培养学生的创造力。高中数学较初中抽象性强,应用灵活,这就要求学生对知识理解要透,应用要活,不能只停留在对知识结论的死记硬套上。教师应向学生展示新知识和新解法的产生背景、形成和探索过程,不仅使学生掌握知识和方法的本质,提高应用的灵活性,而且使学生学会如何质疑和解疑的思想方法,促进创造性思维能力的提高。

④重视培养学生自我反思、自我总结的良好习惯,提高学习的自觉性。高中数学概括性强,题目灵活多变,只靠课上听懂是不够的,需要课后进行认真消化和总结归纳。这就要求学生应具备善于自我反思和自我总结的能力。为此,我们在教学中,应抓住时机积极培养。在单元结束时,帮助学生进行自我章节小结,在解题后,积极引导学生反思:反思解题思路和步骤,反思一题多解和一题多变,反思解题方法和解题规律的总结。由此培养学生善于进行自我反思的习惯,扩大知识和方法的应用范围,提高学习效率。

⑤重视专题教学。利用专题教学,集中精力攻克难点,强化重点和弥补弱点,系统归纳总结某一类问题的前后知识、应用形式、解决方法和解题规律。并借此机会对学生进行学法指点,有意识地渗透数学思想方法。

2.加强学法指导。

高中数学教学要把对学生加强学法指导作为教学的重要任务之一。指导以培养学习能力为重点,狠抓学习基本环节,如“怎样预习”、“怎样听课”等。具体措施有三:一是寓学法指导于知识讲解、作业讲评、试卷分析等教学活动中,这种形式贴近学生学习实际,易于被学生接受;二是举办系列讲座,介绍学习方法;三是定期进行学法交流,同学间互相取长补短,共同提高。

总之,初高中数学的衔接,既是知识的衔接,又是教法、学习方法、学习习惯和师生情感的衔接,只有综合考虑学生实情、课标和大纲、教材、教法等各方面的因素,才能制定出较完善的措施。教育教学中虽然没有固定的方法,但也不是无章可循的。教师要积极地了解学生、关爱学生;不断探讨教学的规律,为提高课堂教学质量不懈地努力;不断提高自身素质,强化自身的业务能力,以自身的人格魅力吸引学生,以自身的严谨作风感染学生,以自身过硬的能力指导学生,才能取得教育教学的成功。

参考文献:

[1]中华人民共和国教育部.普通高中数学课程标准.

[2]郑和钧.协同教学原则.湖南教育,1993,11.

[3]殷显耀,等主编.新教学方法.吉林科技出版社,1995,11.

篇5

一、做好初高中数学教学衔接工作的必要性

1.高一数学在学生高中数学学习阶段中的作用。高中新课程所使用的教材,把高考的几个热点几乎集中在高一。高一数学的重要性,这里不多说了。

2.高一阶段数学的教与学中出现的问题。"学生感到难学,教师感到难教",高一数学相对于初中数学而言,逻辑推理强,抽象程度高,知识难度大。初中毕业生以较高的数学成绩升入高中后,不适应高中数学教学,学习成绩大幅度下降,出现了严重的两极分化,心理失落感很大,过去的尖子生可能变为学习后进生,甚至,少数学生对学习失去了信心。

3.新课程的实验和新教材的使用所带来的变化。初中数学教学内容作了较大程度的压缩、上调,中考难度的下调、新课程的实验和新教材的教学,使高中数学在教材内容以及高考中都对学生的能力提出了更高的要求,使得原来的矛盾更加突出.

二、关于初高中数学成绩分化原因的分析

1.教材的变化:内容多并且抽象、逻辑性强。首先,初中新课程的教材偏重于运算、应用,缺少对概念的严格定义或对概念的定义不全,如函数的定义、三角函数的定义就是如此;对不少数学定理没有严格论证,或直接用公理形式给出而回避了证明,比如不等式的许多性质就是这样处理的;教材坡度较缓,直观性强,对每一个概念都配备了足够的例题和习题。高中教材从知识内容上整体数量较初中剧增;在知识的呈现、过程和联系上注重逻辑性,且数学语言抽象程度发生了突变,高一教材开始就是集合、映射、函数定义及相关证明、逻辑关系等,概念多而抽象,符号多,定义、定理表述严格、论证严谨,逻辑性强。教材叙述比较严谨、规范而抽象。知识难度加大,且习题类型多,解题技巧灵活多变,计算繁冗复杂,体现了"起点高、难度大、容量多"的特点。其次,初中难度降低,有中考试卷的难度降低作保障;而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度并没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。如现行初中数学教材在内容上进行了较大幅度的调整,难度、深度和广度大大降低了,那些在高中学习中经常应用到的知识,如:负指数、二次不等式、解三角形、分数指数幂等内容,都转移到高一阶段补充学习。这样初中教材就体现了"浅、少、易"的特点,但却加重了高一数学的份量。另外,初中数学教材中每一新知识的引入,往往都与学生日常生活实际很贴近,比较形象,并遵循从感性认识上升到理性认识的规律,学生一般都容易理解、接受和掌握。而高中阶段却不可能是这样。

2.升学考试要求不同下的教法变化。在初中,由于内容少,课容量小,进度慢,对重难点内容均有充足时间反复强调,对各类习题的解法,教师有时间进行举例示范,学生也有足够时间进行巩固。老师每讲完一道例题后,都要布置相应的练习,学生到黑板表演的机会相当多,为了提高合格率,不少初中教师把题型分类,让学生强记解题方法和步骤,重点题目反复做过多次。如江苏洋思的先学后教模式。而高中教师在授课时要求内容容量大,从概念的发生发展、理解、灵活运用及蕴含其中的数学思想和方法,注重理解和举一反三、知识和能力并重。

从升学考试看,在初中,教师讲得细,类型归纳得全,练得熟,考试时,学生只要记准概念、公式及教师所讲例题类型,一般均可对号入座取得中考好成绩。而高考要求则不同,有的高中教师往往用高三复习时应达到的类型和难度来对待高一教学,造成了轻过程、轻概念理解、重题量的情形,造成初、高中教师教学方法上的巨大差异,中间又缺乏过渡过程,至使新生普遍适应不了高中教师的教学方法。

3.学习方法的变化。学生在初中三年已形成了固定的学习方法和学习习惯。由于初中生的学习负担较重,他们上课注意听讲,缺乏积极思维,遇到新的问题不用自主分析思考,老师会讲解整个解题过程;不能自我地安排时间,缺乏自学、看书的能力,而课后,也不看书,按老师上课讲的例题方法套着解题,碰到问题可寄希望于老师的讲解,依赖性较强。虽然不少高一教师介绍并强调了高中数学的学法调整,但由于原有学习方法已成习惯,有的同学特别是女生不敢对自己的学习方法进行调整,突出的就是不能真正理解知识、不会灵活运用。同学们普遍反映数学课能听懂不会做题,或者说能做作业但考试不会,在数学上花了最多的时间去做练习,但收效不大。

4、学生学习能力的脱节。从学生的数学能力看,初中的逻辑思维基本只限于平几证明,知识间逻辑联系较少,运算要求降得较低,分析解决问题的能力基本得不到培养,想象能力较低。从数学思想方法看,高中所重点要求的四大数学思想,初中对其要求很低。

相对来说,高中对数学能力和数学思想的运用要求比较高,如高一集合部分的数学思想要求高,如韦恩图法的借助、数轴的帮助、函数图象的使用等都要求学生有较强的数形结合意识,但对不少学生来说只能是听得懂做不出。

另外,与初中生相比,多数高中生表现为上课不爱举手发言,课内讨论气氛不够热烈,与教师的日常交往渐有隔阂感,即使同学之间朝夕相处,也不大愿意公开自己的心事。心理学上把这种青年初期最显著的心理特征称为闭锁性。高一学生心理上产生的闭锁性,给教学带来很大的障碍,表现在学生课堂上启而不发,呼而不应

三、搞好初高中衔接所采取的主要措施