发布时间:2023-10-11 17:28:02
序言:作为思想的载体和知识的探索者,写作是一种独特的艺术,我们为您准备了不同风格的5篇物联网工程嵌入式培养,期待它们能激发您的灵感。
中图分类号:G4 文献标识码:A 文章编号:1673-9795(2014)02(b)-0000-00
大力发展物联网产业将成为今后一项具有国家战略意义的重要决策[1],物联网是继计算机,互联网后又一个信息技术综合应用的代名词,掀起信息产业第三浪潮,其重要性显而易见,因此国家2011年在全国55所高校开设物联网专业,该专业是国家战略型新兴产业急需的且指定大力发展的电子信息类专业,未来有着很大的需求和发展空间。从2012年开始,我校实施了教育部制定的“卓越工程师教育培训计划”,该计划旨在培养造就一大批创新能力强、适应经济社会发展需要的各类型工程技术人才,为国家走新型工业化发展道路、建设创新型国家和人才强国战略服务[2]。
物联网工程专业是我校特色专业之一,我校将物联网工程专业作为“卓越计划”重点培养专业之一,因此,结合“卓越计划”的要求,深入进行“嵌入式系统”课程教学改革势在必行,以学生为中心,以开拓知识视野、激发学习热情、培养实践能力为目的,为国家提供大批动手能力强,满足企业发展要求,适应社会经济发展需求的高质量各类型工程技术人才。
一、教学现状
目前嵌入式系统教学存与许多其它工科专业共存的问题[3]。比如,课时安排不合理,实验课时较少;重传统理论教学,轻实验教学;实验教学方式比较单一、实验内容陈旧,缺乏创新性,跟不上目前嵌入式发展水平;实验教学缺少对非智力能力和综合能力的训练;实验室嵌入式系统实验的设备过于陈旧,实验室管理制度不完善;不能利用校外有效的合作资源进行实验教学内容的拓展[4];课程考核方式不完善,往往单纯从理论考试成绩和实验结果评判,忽略实验过程,上述种种问题,导致目前许多学生学完嵌入式系统课程之后,即使考到高分,依然不能独自完成教学大纲要求之内的相对简单、容易实现的嵌入式系统项目的开发,学生完全处于纸上谈兵阶段,这样培养出来的学生不符合卓越工程师的要求,更不符合企业和国家所需要的复合型工程技术人才的要求。
二、以创新实践能力培养为原则的改革
1. 开展研究性学习
在理论教学中,改变传统填鸭式教学方法,老师不再只是对着现有的课本或者PPT直接讲解嵌入式系统的理论知识,而是通过提出目前实际嵌入式系统研究和开发过程中遇到的问题,或者将已有嵌入式产品中存在的问题作为探究背景,通过设置让学生和老师之间展开开放式讨论和自由提问的环节,让学生积极参加到课堂活动中来,最后,将老师的点评总结作为课堂内容的点睛环节,旨在将枯燥的基础理论知识是如何运用到实际嵌入式系统开发中、以及如何解决实际问题的过程讲解给学生。通过这种研究性的学习方式,给学生留下更加深刻的印象,激发学生学习嵌入式系统开发的兴趣,使学生对嵌入式系统的理论知识的本质有更加深刻的认识,在以后的学习过程中将知识熟练运用到实践开发项目中去。
2. 开放设计性实验
去除以往实验结果单一,过程机械化,没有拓展性,缺乏综合型和研究型的基础验证型实验[5]。改用内容比较新颖,又不太复杂的开放设计性实验,比如,当前智能手机和游戏开发是一个很流行的研究方向,智能手机中简单游戏就是一个很好的嵌入式具体应用的例子,所以我们可以选取一些相对简单、开放性强、形式新颖、吸引力足的嵌入式系统开发的游戏案例来取代已经沿用多年的实验内容,使实验课的内容真正做到来源于实际案例,又促进实际嵌入式系统开发的功能。开放性设计实验不仅丰富嵌入式系统的实验内容,而且使实验本身更加有趣、贴近生活。更重要的是在进行上述开放性设计实验的过程中,学生可以亲身体会到实践是如何检验真理、理论与实践之间如何相互促进的道理,在一定程度上可以激发学生学习嵌入式系统的兴趣,培养学生敢于创新、敢于探索、不怕困难的科研精神。
3. 以竞促学
学科竞赛是学生实践能力培养的一种重要方式,竞赛是对学生更高一层次的要求,是考察学生综合能力的一个重要方法[6]。目前诸如博创杯嵌入式比赛,“ZLG杯”中国大学生ARM嵌入式系统电子设计竞赛,微软嵌入式大赛,全国大学生电子设计竞赛等都是含金量较高的比赛,通过参加竞赛可以发掘出嵌入式系统这门课程真正的魅力所在,解决嵌入式系统实践环节中缺乏挑战与创新的不足,真正提升学生实际动手操作解决特定问题的能力,提高实践环节的质量。在比赛过程中不仅对学生嵌入式系统及其它学科知识的拓展有所帮助,而且能够培养学生团队竞争和配合意识。
4. 嵌入式系统实习实训
物联网专业作为“卓越计划”重点培养专业之一,对于实践训练要求自然极高,改变以往实习完全以老师讲解为主导,动手环节较少,完全违背实习实训方式,将学生带到当地对嵌入式研究具有一定规模的企业公司参加实习培训,了解目前企业嵌入式系统的研发流程和水平。同时将实习实训的主导权下放给学生,锻炼学生实际动手操作能力,以一种学生为主,老师为辅的实训方式让学生真正融入到嵌入式系统开发中来。
5. 改革考核方式, 体现综合能力
事实证明“一张试卷打天下”的考核方式往往并不能真正反映出学生对于知识的掌握和运用情况。为了督促学生认真做好嵌入式实验,真正考核学生实验动手和实验观察能力[7]。可将嵌入式系统课程成绩分为: ①笔试理论成绩,该项占40%,主要考察嵌入式操作系统概述、微处理器与调试技术、ARM体系结构和指令集、ARM开发工具和汇编程序设计、嵌入式存储器和接口技术等; ②开放设计性实验的成绩,该项占40%,主要考察每次实验课学生出勤次数,具体操作步骤,实验结果完成情况以及实验报告;③课外创新成绩,该项占10%,主要考察学生参加各种嵌入式比赛、实战项目开发和创新实验实践活动的获奖情况;④学期末的实习实训成绩,该项占10%,主要考察在实习实训阶段指定项目开发的完成情况。
结语
工程师是未来世界的塑造者[8]。嵌入式系统是一门实践性很强的课程,因此采用课内外、校内外相结合的实践教学体系,以卓越工程师的基本要求为导向,使学生能熟悉掌握嵌入式系统设计方法,掌握一种开发工具,熟悉一种调试方法,使学生在学完嵌入式系统课程后,能真正掌握最基本的嵌入式系统开发,成为一名合格优秀的卓越工程师。
参考文献
[1] 2009年11月3日总理向首都科技界发表了题为《让科技引领中国可持续发展》的讲话.
[2] 王娜君, 王杰, 李旦, 高胜东. 基于工程能力培养的实验教学改革探索[J]. 教育探索, 2011,(10): 49-50.
[3] 冼进, 贾德良, 毕盛. 嵌入式系统实验课的教学改革初探[J]. 实验室研究与探索, 2010, 30(8): 282-284.
[4] 周爱国. 大学生实践能力培养存在的问题及对策[J]. 教育探索, 2009, (1):74-75.
[5] 李秀娟, 张晓东, 鲁可, 张杰. “嵌入式系统”开放实验室建设与实践[J]. 实验室研究与探索, 2011, 30(5): 156-158.
[6] 殷建军, 张明武, 万军洲. 竞教结合的嵌入式系统实践教学改革[J]. 计算机教育, 2011, (6): 1-4.
[7] 俞建新. 略论嵌入式系统的实验教学[J]. 实验室研究与探索, 2006. 25(7): 741-745.
[8] 龚克. 转变观念大胆试验建立卓越工程师教育培养的中国模式[J]. 中国高等教育, 2010, (18): 10-12.
关键词:嵌入式系统;实践教学;CDIO工程教育
嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统,在工业控制、交通管理、智能家居、环境监测、信息家电、网络通讯、安防等领域有着非常广泛的应用前景。近年来物联网的发展给嵌入式技术提供了新的应用领域,物联网所需设备将达1012数量级,其中绝大部分设备将由嵌入式系统实现。可见未来对于嵌入式系统开发人员的需求非常大,因此,改革嵌入式系统课程使之适应就业市场需要对于学生就业具有重要意义。文章针对计算机科学与技术专业,根据应用型本科嵌入式系统课程的特点,基于CDIO工程教育理念对嵌入式系统的实践教学进行改革,并开发相应的实践教学设备,以满足培养嵌入式应用、开发人才的需要。
1 嵌入式系统课程的特点与现状
1.1 嵌入式系统课程的特点
1)实践性。
嵌人式系统面向应用进行软硬件协同设计,这决定了嵌入式系统课程是理论与实践紧密结合、偏重动手能力与实践能力培养的特点。因此,实践教学是嵌入式系统课程的重要环节,是培养学生实践能力的关键,重理论而偏实验的教学将是纸上谈兵。
2)综合性。
嵌入式系统是一门多学科交叉的课程,涉及数字电路、模拟电路、c语言程序设计、单片机原理、传感器与检测技术、信号与系统等多门前导课程,并通过应用可关联到机电、控制、网络等专业相关的课程。因此嵌入式系统教学需与诸多课程相融合,以促进学生综合能力的培养。
3)发展性。
嵌入式技术的发展非常迅速,嵌入式系统的应用需求也不断变化,这要求嵌入式系统课程密切跟踪嵌入式技术与应用的新发展,及时更新教学内容,以适应就业市场的需求变化。
1.2 嵌入式系统课程的教学现状
目前嵌入式系统课程在教学内容上尚无统一规范,各高校的嵌入式系统课程或注重概念性、基础性的入门教学,或侧重ARM体系结构、指令系统,或偏重嵌入式操作系统,以Linux或uC/OS-Ⅱ的基本原理为主讲内容,这样的内容安排与嵌入式系统以应用为中心的特点难以相符。嵌入式系统应用开发人才不仅要具有扎实的学科与专业基础知识,更应具备很强的技术与工程实践能力,显然以理论教学为主、实验教学为辅的教学方式难以满足这类人才的培养需要。
温州大学是地方性本科院校,其人才培养目标是为本地经济发展服务,这就要求嵌入式系统课程需紧密结合地方特色,培养应用型人才。因此,我们将传统的强调理论化、知识化的教学思路,转变为面向应用,强调工程实践训练,重视培养动手能力与实践能力,为学生从事嵌入式系统应用开发工作打下坚实基础。
2 CDIO模式下的实践教学改革
CDIO代表构思、设计、实现、运行,以产品从构思、研发、运行到废弃和再利用的全生命过程为载体,让学生以主动的、实践的、课程之间具有机联系的方式学习和获取工程能力,符合工程人才培养的规律。针对嵌入式系统课程实践性强的特点和应用型人才培养的需求,我们在CDIO工程教育模式下从以下几个方面出发,对嵌入式系统实践教学进行改革。
1)培养学生主动学习能力。
主动学习方法将重点放在让学生致力于对问题的思考和解决。在课堂上我们运用项目驱动教学法,先给学生演示工程实践案例的运行效果,然后组织学生讨论系统的功能需求与实现系统所需的技术,最后将相关内容分解进行教学。通过教学方法的转变,可以激发学生兴趣,将以教师为主的“听中学”消极学习模式转变为以学生为主的“做中学”主动学习模式。例如在讲解嵌入式操作系统时,以物联网嵌入式网关的开发为目标,通过对功能需求、系统组成的讨论,逐步引导学生主动深入学习Bootloader、内核与文件系统、驱动程序、Socket网络通讯、串口通讯、嵌入式Web服务器与CGI编程、QT图形界面的知识点,最终实现系统。实验分3个层次进行,第1个层次,与Bootloader、内核与文件系统、驱动程序相关的教学内容设计成验证性实验,在理论课堂上边授课边验证;第2个层次,与Socket网络通讯、串口通讯、嵌入式Web服务器与CGI编程、QT图形界面相关的教学内容设计成综合性实验,在实验课上由学生独立完成,每个实验都涉及验证性实验的内容;第3个层次,要求学生综合所有实验内容构建完整的物联网嵌人式网关。学生在验证性实验、综合实验与实验考核中逐步获得成就感并建立自信心,进一步激发学习兴趣。
2)实施课内外紧密结合的实践教学模式。
嵌入式应用开发人才应具备较强的工程实践能力,理论指导下分析与解决实际工程问题的能力以及运用工程技术参与工程项目开发与设计的能力。显然传统课堂“理论+实验”的教学方式已不能满足此类人才的培养要求,因此我们尝试实施由多个课内外环节构成的实践教学模式,以逐步培养学生的基本实践技能、综合实践技能及应用创新技能。其中理论与实验教学面向全体学生,由工程实践案例驱动,让学生“做中学、学中做、边学边做”,培养基本实践技能;课程设计以大型的综合实践项目巩固学生的基本实践技能,培养综合实践技能。如图1所示。学生课题和开放性实验项目面向对嵌入式系统感兴趣的学生,进一步培养学生的综合实践能力;学科竞赛主要参加全国电子专业人才设计与技能大赛和飞思卡尔智能车竞赛,巩固学生的综合实践能力,培养应用创新能力;企业实习和毕业设计注重培养学生的自主开发能力与应用创新能力。
3)建立工程实践案例库。
工程实践案例库是实施工程教育的基础,随着嵌入式技术的发展,工程实践案例库要不断地更新与完善。案例库建设以教师和学生为实施主体,一方面,教师通过自身的科研项目、对企业进行的行业调研、挂职锻炼及产学研过程。沟通跟踪技术动态,并从中提炼工程实践案例;另一方面,学生通过企业实习和就业后的反馈充实案例,不断地对工程实践案例库进行更新和完善,使教学能跟上嵌入式系统行业的最新技术动态。目前我们已建成韵工程实践案例主要有物联网嵌入式网关、温度控制系统、散热控制系统、环境监测系统、家庭气象站、三维固态电子罗盘、运动检测系统、四旋翼无人飞行器等。在物联网嵌入式网关案例中,我们以武汉创维特信息技术有限公司的JX2410 ARM9嵌入式实验箱为硬件平台,通过串口采集MicaZ无线传感器网络汇聚节点的信息,将网络各节点的信息显示在彩色液晶屏幕上,并构建嵌入式Wcbserver,通过CGI动态网页技术将采集的传感器信息在网络上。
4)加强与其他专业课程的结合。
在实际应用中,嵌入式系统要与上位机或其他设备相结合构成完整的产品,因此在工程实践案例建设中我们要注重与其他专业课程的结合。例如在温度控制系统案例中,强调与桌面应用程序开发及数据库相关课程的结合,要求学生实现上位机的监控软件与过程数据在数据库中存储及可视化查看;在家庭气象站中,则要求实现Android智能手机与嵌入式系统的网络通讯。
5)改进考核方式。
对于强调实践能力培养的课程,传统的以考试为主的考核方式已不适用,我们采用以综合设计作品为主的考核方式,以学生的课堂研讨表现、综合作品实物演示效果、作品设计报告、答辩表现为依据,通过综合评判给出课程成绩,使成绩能合理反映学生的工程实践能力、技术写作能力、口头表达及人际交流能力。
3 实践教学设备开发
实践教学设备主要采用、ARM技术的神州Ⅳ号STM32开发板,我们在此基础上开发了配套模块,以满足工程实践案例教学的需要。
1)加热与散热模块。
该模块由NTC热敏电阻、大功率加热电阻及带转速反馈的直流风扇组成,可实现温度测量、加热控制、风扇转速测量与控制,涉及AD、定时器、PWM、ICP等基本知识点,主要用于温度控制系统和散热控制系统的案例教学。
2)环境传感模块。
该模块由SHT11温湿度传感器、BMP085大气压力传感器、夏普GP2Y1010AUOF灰尘传感器、光敏电阻、雨量传感器组成,可实现相应环境参数的测量,涉及GPIO、12C、AD等基本知识点,主要用于环境监测系统和家庭气象站的案例教学。
3)运动检测模块。
该模块由L3G4200D三轴数字陀螺仪、LSM303DLHC三轴加速度/地磁传感器、uBloxNEO-6M GPS模块组成,可实现角速度、加速度、地磁场、速度、位置及时间的测量,涉及SPI、12C、UART等知识点,主要用于三维固态电子罗盘和运动检测系统的案例教学。
此外,作为终极挑战,我们还开发了由STM32F103微控制器、ADISl6405惯性传感器、Novatel OEMV GPS、SRF02声纳高度计、CC2500无线模块及相应机电模块组成的四旋翼无人飞行器,用于学生科研课题的实施。作为教学平台,该飞行器可有效综合单片机、嵌入式系统、传感器技术、自动控制原理、信号与系统、程序设计等多门课程,促进学生系统观念与综合能力的提升。如图2所示。
关键词:项目驱动;嵌入式系统;物联网;教学改革
中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2016)24-0101-02
随着现代电子制造水平和网络技术的飞速发展,嵌入式系统已经成为汽车电子、家电控制和消费类电子等产品的重要组成部分,由于其硬件部分体积小、价格便宜、集成度高,并且软硬件都可以进行“按需定制”可裁剪,嵌入式系统有着十分广阔的发展前景。
同时嵌入式系统中的无线通信技术、传感器技术和自动化系统控制技术的日益成熟,把传感器得到的各种数据,通过互联网的手段传输出去,使得世界的联系从人与人的联系,逐步转变成物与人的联系,物与物的联系;使得现实世界与信息网络更加的紧密结合。通过物联网项目的开发,更好的促进嵌入式系统作为物联网项目的载体的教学和改革工作。
1嵌入式系统教学的现状
关于嵌入式系统教学过程中的课程定位、相关先导课程与基础知识的准备、教学内容(包括硬件平台和软件平台)的选择、实践教学与实践环节组织等问题,在目前,仍然存在争论和探索。本环节就以下几个方面进行分析:
1)嵌入式系统的课程定位
由于各个院校对于嵌入式系统的课程定位的不同,不同的院校对于本课程的应用方向也不同。有的院校更加侧重于底层硬件和系统文件的裁剪,偏向于基于单片机的应用;有的院校更加侧重于嵌入式系统的应用,偏向于软件开发与调试。
2)嵌入式系统教学的先导课程
基于上述不同院校之间课程定位的不同,嵌入式系统课程的先导课程也有所不同,针对偏硬件设计方向的,硬件电路设计作为重点。针对偏软件设计方向的,则是把程序设计语言作为重点。
3)嵌入式系统教学的学时分配
不同院校的不同专业对于嵌入式系统课程的要求不同,有的专业是作为专业核心类课程,有的专业是作为专业通识类课程,有的专业是作为专业选修类课程。因此,对于嵌入式系统教学的学时,有着很大的不同。
4)嵌入式系统教学内容的选择
嵌入式系统课程由于对前期课程的要求较高,同时现有教学内容中,理论偏多,各种概念和模型较难理解,学生动手去实践相对较少,学生学习起来非常抽象和枯燥,无法形成自己的知识体系结构,缺乏直观性,因此学生学习积极性会随着课程的深入,逐步降低。
同时嵌入式系统教学需结合教学平台设备来进行开展。在现有市场上,嵌入式系统教学平台种类繁多,并且配套的软件操作系统也有所不同,不同院校都根据自身的实际情况进行相应选择。
2嵌入式系统教学组织
根据本学院“5-3-3”课程体系构建的思想,再结合江苏省苏州市吴江区地方经济具体特点的基础上,以近年来国际工程教育改革CDIO工程教育模式为思路,将构思、设计、实现和运作贯穿在整个课程体系之中,以产品研发到产品运行的生命周期为载体,结合物联网的发展,在不同的行业、企业及应用背景下,将物联网的项目案例,和嵌入式系统的课程体系融会贯通,强调职业教育教学行动的过程属性,将典型物联网产品设计案例引入到教学中并进行重构,编排模块化课程教学内容,组织教学过程。使得学生通过本课程的学习,不仅能了解嵌入式系统的基本原理和设计方法,同时能对嵌入式系统中的ARM体系结构、ARM指令系统进行应用,选择嵌入式Linux操作系统根据不同的需求进行相应的裁剪、交叉编译开发和移植应用,同时根据学生的实际情况进行应用程序和驱动程序开发,服务地方经济。
3传统教学中存在的问题
传统教学过程中通常以教师讲授为主,以教材对应章节和知识点作为讲授单元,理论基础和实践环节分离,无法做到“理实一体化”。在有限的课程授课时间内,设置与教学内容配套的实践环节,通过课后实践来强化教学内容,激发学生创造性的能力比较有限。
嵌入式操作系统选择非常多,在嵌入式系统应用中常用的软件中间件,比如网络协议栈、嵌入式平台下的根文件系统和数据库管理系统、媒体压缩与解压缩库、各种加密算法与协议等,更是令人眼花缭乱。
同时,作为授课对象的学生,由于来自不同的专业方向,前导课程的基础知识参差不齐。具体表现为:电子类专业方向的学生,软件基础较为薄弱,计算机类专业方向的学生,电路与硬件基础弱。
4基于物联网项目驱动的嵌入式系统教学
以职业岗位能力为主线的高职教育体系需要构建项目化教学课程体系,同时在物联网技术快速发展的大背景下,嵌入式系统的课程体系确实应当有所调整,以适应时代的发展和社会的需求。
项目驱动教学的理念认为:学生知识的积累和构建,是在一定的条件下自主构建而成的;学习是知识、技能与行为、态度与价值观等方面的长进。
同时,以企业中真实的生产、研发和具有实际应用价值的案例作为教学内容的选择,要求学生能够通过自身的特点,获取相关的资讯,指定真实的计划,通过自身的决策和实施,并且进行检查和互查来对项目进行评价。
1)项目的具体构建
将嵌入式系统教学课程知识点进行碎片化和重组,以本院的校企合作单位物联网智能家居企业真实案例为基础,将整个教学过程以项目的形式开展教学,再将物联网智能家居项目中分成相应子项目,对相应子项目再进行具体的任务分解。在整个过程中,要求学生能够以教学主体的身份参与进来,对真实案例从总体上进行把握,明确学习和构建的内容。
2)项目驱动教学组织形式
本院该课程在采用小班化教学的基础上,对学生进行项目分组,将4~5名学生分配到一个项目团队。在不同的项目中扮演企业开发过程中的不同角色,同时在不同的子项目中,学生的角色进行轮转或互换,使得学生在完成本课程的学习之后,能对项目开发的整个过程相对熟悉。
学生在不同的子项目中,可以对项目团队的不同角色进行体验,根据自身的实际情况,为更好的走上工作岗位,融入企业项目团队做准备。
3)具体项目教学的实施
在每一个具体项目教学的实施过程中,以本院的2014级计算机应用技术专业为例,该专业有40人,将学生以5个学生为项目小组进行分组,共8个小组,根据学生的学情和实际情况进行项目任务书下发,将CDIO中的构思(Conceive)、设计(Design)、实现(Implement)和运作(Operate)融入进来。
以物联网智能家居企业真实案例中的智能窗帘子项目为例,通过任务分解,如下图所示,可以分为嵌入式Linux系统裁剪、直流电机控制、交叉编译、驱动文件加载和嵌入式平台下移植应用等五个子任务,同时针对模块化教学,进行相应学习情境设计和教学方案设计,整合现有教学内容,使得老师的教和学生的学都体现项目驱动模式下理实一体化的紧密结合。
首先要求每个项目小组的学生进行项目分析,将构思(Conceive)采用行动导向中资讯的形式展现出来,给出工作任务,提出任务要求,要求学生应当把前导课程以及已做过的项目中已掌握的知识点和即将开展的项目中需要的知识点进行融合,使得学生温故知新,同时也学会综合运用新旧知识的技能;其次要通过实践的方式,项目和任务必须能够通过实践来完成及验证。
对于设计(Design)则要求学生在项目小组中指定相应计划,安排时间进度。
而实现(Implement),要求各小组通过决策和实施的方式,分别提出完成该项目的设计方案说明书,每个小组推选1名同学上台进行本组实施方案的具体表述,授课教师与项目小组成员共同讨论,进行分析和优化,最终确定相对合理、科学的最佳方案,并进行下一步的实施。
运作(Operate),则是在之前所做工作的基础上,结合项目方案说明书,对于项目内容对照完成。在项目完成之后,对照最初提出的工作任务要求,逐项检查项目完成情况。如存在不符的情况,进行分析和修改,直至满足相应要求。同时要求项目小组内的同学和不同小组的同学进行自评和互评,进行相应总结和考核。
5总结
基于物联网飞速发展的技术和应用背景,如何精简嵌入式系统课程的理论教学内容,并扩宽学生的知识面,让学生掌握设计与思考的方法,重点把与真实项目案例密切相关的内容进行重构与设计,同时进行层次化的实践设计,在实践环节中,让学生真正参与到前沿发展的企业课题和项目中去,这是在嵌入式系统课程教学改革中要研究和具体实践的方向。
基于物联网项目驱动的嵌入式系统教学改革实践教学过程中,学生对于企业项目开发的整个过程更加熟悉,学生参与项目团队开发的积极性和主动性得到提高,同时,通过项目驱动的学习方法,学生也认识到团队合作的重要性。项目驱动教学改革的实施,使学生学习的方式发生了很大的变化,学生能够主动地去学习,更加善于发现问题和思考问题,解决问题的能力也得到了很大提高,学生的专业技能能力得到系统的锻炼。项目驱动教学改革,为学生自主学习意识的养成和从学校到毕业顶岗实习、就业更好的“无缝”对接提供了保障。
参考文献:
[1] 陈承欢.软件工程项目驱动式教程[M].清华大学出版社,2015.
[2] 丁金昌.高职教育人才培养理论研究与实践[M].国防工业出版社,2011.
[3] 童加斌.高职教学改革[M].东南大学出版社,2010.
1.物联网背景下的嵌入式系统教学课程
1.1物联网的概念
物联网的概念始于20世纪90年代末期。当时的物联网,主要是针对物与物、人与人之间的互联互通,提供技术支持。这个新型的概念和技术出现后得到了理论和工业界的充分关注。
1.2嵌入式系统的理论教学内容
嵌入式理论教学内容主要包括ARMffC:入式微处理器、嵌入式操作系统、应用和前沿发展等内容。以嵌入式开发技术掌握为教学目的。具体的授课内容包括;系统概述、微处理器的原理;实用操作、移植交叉开发、物联网在嵌入式系统教学中的应用等。物联网应用背景下的嵌入式课程体系框架如图1所示。
2.物联网基础上的嵌入式系统实验概述
2.1理论结合实践
物联网基础上的嵌入式系统实验设计采用的是层次化的实验环节,包含基础知识、动手能力、创造性思维等等。例如,嵌入式实验开发平台上,主流的串行接口和以太网接口,GPS全球定位系统模块,总线接口等等。这些接口和物联网的应用背景是通过层次化的实验设计展开的。内部包含了实验的要求和实践阶段的不同设置,整体层次的设计从浅显到深入,实验层次不同,对应的组织形式也不同。例如基础性实验的目的用于熟悉物联网,实验层次的循序渐进,为了实践的开发和设计打下了基础。而综合性的实验和实践是为了提高物联网的应用能力。
2.2实践与合作相结合
在物联网中间层的嵌入式网关设计中,根据模块接口的采集,终端的经纬度信息得到无线数据手法模块中的传感器的温度和日照等的环境信息,通过ARM处理器打包成UDP数据包,将之通过以太网网络接口传送到基站的服务器中。
整个流程为,从以太网网络进行接入,将数据传送到嵌入式处理器,通过GPs模块接口进行无线数据的收发,再传送到嵌入式处理器中,最后到达外部存储器。
在物联网的技术支持下,学校组织学生成立了第二课堂,组成了以物联网为主题的学习小组,对项目进行模拟实践和开发。例如GPS数据采集和处理的课题小组,要对操作系统、网络协议栈的移植、多任务的GPS模块的接口数据进行打包,UDP数据包发送到网络等众多内容进行实践。在团结合作中,兴趣小组的同学各自有分工合作,最终实现了将终端传感器传送了了基站的网络服务器的实验目标。
3.嵌入式系统教学的现状
坚持对嵌入式系统的教学的创新进行探索,包括课程设置、基础知识的传授、教学软硬件平台的搭设、实践教学的组织等等。目前在教学中存在以下特点。
在嵌入式系统的教学中,课程定位的方向以及应用不同。有的院校侧重于底层和系统文件的构建,有的院校侧重于应用以及软件的开发。
在嵌入式系统教学的课程中,由于院校课程定位的不同,因此在课程设置上也有所不同,有的偏重于硬件的设计,有的以电路设计为主,有的偏重语言程序的设计。
在嵌入式教学的学时分配上,有的院校侧重于课程的要求,有的院校侧重专业的核心课程,有的院校侧重专业的通识课程设置,有的院校将其作为辅修课程,因此在学时的安排上各有不同。
在教学内容上。嵌入式系统课程中理论和概念较多,因此学生容易感到枯燥,对于知识体系的架构来说,积极性不高会导致学习效果不佳,同时嵌入式教学平台目前的种类偏多,但是配套的操作系统却没有跟上。
嵌入式教学体系具有若干缺点,首先,在传统的教学模式中,教师的主导性地位过强,教师只会将教材中的章节进行讲解。但是基础理论往往于实践脱钩,使得理实一体化难以实现。有限的课程中,教学内容多用于理论学习,能够强化学生实践能力的实践课程较少。
嵌入式系统教学中以网路协议栈、文件系统、数据库管理系统、媒体压缩和解压缩系统等等的数据实验平台众多,但是真正能够以为学生提高学习成效,加强软件基础为目标的课程设置不多。
4.基于物联网项目驱动的嵌入式系统教学架构
当前,高等院校的教育体系中,对教学项目进行构建,对教学课程进行设置,往往是围绕着工程能力的培养展开的。物联网技术的发展背景下,嵌入式系统的课程教学体系必须也有相应的调整,才能应对当今时代和社会发展的需要。
企业的生产过程以及实际的应用价值,是教学内容在选择上参照的依据。高等院校培育的学生,必须要获取实践机会,提升决策和实施的能力,并且能够制定物联网系统规划,培养对物联网项目的u估能力。
嵌入式系统教学的知识点一般较为碎片化,通过学校与企业合作的形式,将这些碎片加以重组。例如,在物联网企业的要求下,教学项目设立了一个以某企业的产品为主项目的子项目,在子项目中将任务具体化,分解到每个学生身上,学生参与到项目中,成为教学的主体,在真实的企业生产情景下,感受到物联网学习的氛围以及学习内容。
项目启动后,课程被分解为小组学习的模式,学生担任项目中的角色,大约4~5个学生分为一个项目团队。项目中,学生成为企业员工,担任开发程序中的角色。在实习中,学生的角色可以进行轮转和互换,以便于课程结束后,学生能够对项目的全部流程有深刻认识。
在项目进行过程中,学生的实际能力表现都是项目考核和评价的内容。每个学生在团队中的表现以及工作成果都被记录下来作为将来接受课程评价的依据,学生的能力也通过项目的开展不断提高,为将来进入社会成为工作岗位的中坚力量打下了牢固的基础。
在具体的项目教学中,学生以开发成员的身份进入项目小组中,根据实际项目设计目标研究项目任务书,进行项目的需求分析、项目的设计、项目的实现和系统测试。
以具体的项目内容为例,实践项目要求通过嵌入式uNux系统,进行各个计算机流程的操作,包括系统裁剪、电机控制、驱动文件加载、交叉下移,平台嵌入式编译等等。在模块化教学的情景下,学生可以学习如何设计系统结构和接口,在理实一体化的模式下将项目软硬件系统通过设计和编码进行实现。
在项目完成之后,教师、企业、学校组成专门的评价小组,对照工作任务要求,逐项检查项目完成情况。对不足的部分要求学生进行分析和修改,并要求项目小组内的同学和不同小组的同学开展互相评价、总结,以综合的考评成绩作为对学生的考核结论。
【关键词】 CDIO模式 计算机 硬件嵌入式技术
近年来,嵌入式技术在工业控制、通信设备、医疗仪器及航空航天等领域中的应用越来越广泛,新兴的物联网技术、智能家居等都以嵌入式系统为基础,在这样的背景下,市场对嵌入式人才的需求越来越重视。但就目前来看,当前高校计算机专业关于嵌入式技术方面的教学还存在一定问题,往往过于注重软件方面的程序开发,忽略了硬件嵌入式技术的研究和教学。
在这样的背景下,本文以CDIO功课教学模式为基础,探讨了计算机硬件嵌入式技术的发展方向和人才培养内容与方法,旨在为相关研究与实践提供参考。
一、CDIO模式概述
CDIO模式属于一种工程教育模式,是国家工程教育改革的一项突破性成果,由麻省理工学院等四所大学组成的研究团队历时四年研究获得。CDIO模式代表构思、设计、实现及运作四个过程,以产品整个生命周期为载体,让学生对产品研发到产品运行各个阶段进行学习,实践性较强。
CDIO理念继承了欧美先进工程教育改革观念,创新性的提出了可操作性的教学标准,对于提升功课教学质量有着重要的意义,代表了当代工程教育的发展方向和趋势[1]。
就我国来看,工科教育体系需要积极培养出与世界接轨的工程师,但我国工科教育实践还存在着诸多问题,过于注重理论和轻视实践,过于注重学习而忽略创新,在这样的背景下,应当积极学习并应用CDIO工程教育模式。
二、基于CDIO理念分析计算机硬件课程存在的问题
CDIO的核心为构思、设计、实现及运作,强调实践性和创新性,基于这一理念,分析我国计算机课程中存在的主要问题。
2.1缺乏设计能力培养
近年来计算机技术发展较快,应用越来越广泛,使得计算机系统复杂度提升,传统软硬件相隔离的设计方式已经难以满足现代计算机系统要求。计算机系统平台搭建、软硬件协同设计等成为主流设计思想,但当前计算机硬件技术相关课程缺乏对学生这种先进设计能力的有效培养。
2.2缺乏可编程芯片设计能力培养
我国工科高校开设计算机硬件课程很少涉及到关于芯片编程的实验课程,仅有的实验安排在大肆,但受到教育体制的影响,许多学生毕业设计不涉及到芯片编程就不会认真学习,这就大大弱化了对学生可编程芯片设计能力的培养。
2.3缺乏创新能力培养
收到实验条件等因素的影响,现有计算机硬件实验大多针对的是纯硬件逻辑,缺乏横向功能拓展和纵向功能延伸,给予学生的创新空间较少,学生在现有条件下难以完成综合性和创新性的设计。
三、嵌入式技g发展现状
嵌入式系统是一种专用的计算机系统,其以计算机技术为基础,以具体应用为核心,软硬件可进行裁剪来满足应用系统的相关要求,例如功能要求、稳定性要求、功耗要求、成本要求及体积大小要求等[2]。嵌入式系统的应用能够实现计算机技术、电子技术与各行各业应用的有效结合,其应用前景广泛。
嵌入式技术的快速发展和应用使得计算机分类模式发生了改变,从传统的按体积进行分来变化为通用型和嵌入型两类,涉及到的领域十分广泛,例如医疗领域、航天航空领域、军事领域、工业控制领域及金融领域中都能够看到嵌入式系统的身影。嵌入式系统中软硬件结合,要想从事此项工作,需要具备较高的计算机技能水平,具体来说如下:
一方面,是电子工程、通信工程等硬件专业方面的人才,这些人才以硬件设计和开发为主,开发硬件驱动程序,对硬件原理掌握较为清楚,但这些人才对复杂的软件系统往往能力较差,例如复杂应用软件、嵌入式操作系统的程序设计等。
另一方面,是偏软件专业的人才,这些人才在软件开发和嵌入式系统开发上造诣较高,且如果软件方面人才掌握了相关硬件原理,完全可以自主开发硬件驱动程序,硬件设计完成后则需要依赖于软件实现系统功能。但就目前来看,许多企业将硬件设计部分外包,硬件设计能力较弱,对硬件有所忽视,这就造成市场上对硬件嵌入式技术方面的人才短缺。
四、基于CDIO模式计算机硬件嵌入式技术发展方向
4.1无线网络技术
近年来,移动设备发展快速,无线网络也随之发展起来,人们对无线网的需求也越来越大,而软件系统是否能够支持无线网络也成为了嵌入式系统发展的关键所在[3]。因此,在今后的一段时期内,无线网络应用将成为嵌入式技术的重要发展方向,就目前来看,WIFI、蓝牙技术及无线传输技术等的应用越来越成熟,但需要注意的是,这些技术有着一定的局限性,其传输距离大多较近,这就需要在未来研发的过程中着重解决远距离传输的问题,例如3G协议栈的开发等。
4.2网络互连技术
在嵌入式系统不断发展和应用的背景下,各种互联网接口受到关注,传统的单片机难以满足对互联网接口的要求,从而催生了各种新型的嵌入式系统,例如微型处理器,从互联网接口方面来看,嵌入式处理器能够支持TCP/IP、USB、CAN、IEE1394等多种通信接口,一些先进的嵌入式处理器甚至能够同时支持几种接口,但同时也需要一些硬件驱动程序,只有这样才能够实现轻松上网,打破众多用户上网的时空限制。
4.3人工智能技术
归根结底,嵌入式技术的应用就是满足人类相关的应用服务,人工智能化的发展和使用则能够提升嵌入式技术的服务水平,将人工智能技术与嵌入式系统或产品相结合,实现人机交互,扩展嵌入式系统的服务应用范围。就目前来看,人工智能技术与嵌入式系统的结合在医疗卫生领域应用较为成熟,能够降低手术病人受到的伤害[4]。
而随着技术的发展和社会的进步,人工智能技术的应用范围将会得到进一步拓展,例如自动控压装置、自动控温装置等智能化仪表的应用越来越多,这都会促进人工智能技术的进一步发展。
五、基于CDIO模式的计算机硬件嵌入式技术人才培养
计算机硬件嵌入式技术课程的学习是一个系统性、长期性的过程,需要循序渐进,不仅涉及到原油的硬件课程,还涉及到后续嵌入式技术理论知识和嵌入式设计开发等。本文结合CDIO工程教育模式和理念,探讨计算机硬件嵌入式技术的人才培养方向和方法,具体来说如下。
5.1学习嵌入式系统基本知识
CDIO工程教育模式强调对构思、设计、实现及运作等产品整个生命周期的研究和学习,而对于嵌入式系统来说,其构思、设计、实现及运作都离不开嵌入式系统的基本知识,因此,在计算机硬件嵌入式技术人才培养过程中,嵌入式基本知识的学校至关重要。
嵌入式系统大体可以分为三类,其一为传统的实时多任务系统,即RTOS系统,主要包括Vxworks操作系统、Tornado开发平台等;其二为嵌入式Linux操作系统,其不仅可以作为服务器的操作系统,在嵌入式领域也有着良好的应用前景,系统免费,支持的软件众多,这会大大降低嵌入式产品的开发成本;其三为Windows CE嵌入式操作系统,如Microsoft等,其进入嵌入式市场前景良好,Windows CE嵌入式操作系统虽然于近几年才被研发出来,但却能够迅速抢占市场,尤其对于智能手机、显示仪表等对界面要求较高,Windows CE嵌入式操作系统的应用有着良好的效果。通过对嵌入式系统这些基础知识的学习,能够让学生全面掌握嵌入式软件整体开发环境情况和开发平台,形成对系统开发理性、直观的认识[5]。
5.2 ARM技术及嵌入式微处理器
当前嵌入式处理器种类较多,例如ARM处理器、MIPS处理器及PowerPC处理器等,其中应用最为广泛的处理器当属ARM,ARM有着四个通用处理器系列,不同系列能够提供的性能有所差异,但基本覆盖了大多应用领域,有效满足了不同应用领域的应用需求。以SecurCore系列为例,其专门应用于对安全等级要求较高的场合。因此,应当让学生积极学习ARM技术及相关嵌入式微处理器结构,为后续产品设计研发实践奠定基础。
5.3指令系统与硬件电路设计
一般来说,ARM微处理器有两种工作状态,且其能够在两种工作状态之间随时切换,第一种工作状态为ARM状态,在这种工作状态下,处理器执行的ARM指令为32位字对齐指令[6];第二种工作状态为Thumb状态,在这种工作状态下,处理器执行的是Thumb指令,属于16位半字对齐指令。两种状态下指令有着一定的关系,即Thumb指令集合为ARM指令集合的功能子集,但相较于等价ARM代码来说,其能够有效节省存储空间,节省比例能够达到30%-40%之间。
对于嵌入式技术来说,其软硬件可以裁剪,因此应当做好硬件电路设计工作,通过有效的硬件电路设计来获取最优硬件组合,提升嵌入式系统的硬件性能。
除了上述提到的说那个方面之外,数字电路、数据结构算法及汇编语言和编程语言等也较为重要,需要在计算机硬件嵌入式技术人才培养中有所侧重。
六、结论
综上所述,在计算机领域,嵌入式系统的应用越来越广泛,计算机硬件嵌入式技术越来越受到关注,计算机嵌入式技术人才的培养应当以CDIO模式为指导,以市场需求为导向,以嵌入式技术发展趋势为依据,合理选择教学内容,培养先进的计算机硬件嵌入式技术人才。
参 考 文 献
[1]苏英.基于CDIO的微机原理与接口技术教学研究[J].中国管理信息化,2016(10):218-219.
[2]杨伟力 李伟民 杨盛毅.基于CDIO理念的嵌入式系统课程改革实践[J].科教导刊(上旬刊),2016(06):56-57.
[3]徐武雄.基于CDIO的地方高校嵌入式系统仿真实验室建设研究[J].中国电力教育,2012(19):98-99.
[4]王伟 王杨 孟炜 李明.变电站自动化IED设备嵌入式通信模块的开发[J].科技资讯,2014(24):9-10.